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In this work, CALPHAD-based calculations provided with data for various stable and
metastable phases in 2XXX, 6XXX, and 7XXX classes of aluminum-based alloys. These
data were scaled and then used to develop Deep Learning Artificial Neural Network
(DLANN) models for all these phases as a function of composition and temperature.
Code was written in the python programming language using TensorFlow/Keras libraries.
DLANN models were used for determining the amount of various phases for new
compositions and temperatures. The resulting data were further analyzed through the
concept of Self-organizing Maps (SOM) and a few candidates were chosen for studying
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the precipitation kinetics of Al3Sc phase under the framework of CALPHAD approach.
This work reports on heat-treatment simulation for one case of 6XXX alloy where the
nucleation site was on dislocation, while a detailed study for other alloys is reported in
a previously published work. Grain-growth simulations presented in this work are valid
for single crystals only.
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1 Introduction
Aluminum is one of the most abundant elements in the Earth’s crust and has the
potential of replacing steel and titanium alloys in the automotive and aerospace sector
due to its superior strength-to-weight ratio [1]. One of the challenges is to develop
aluminum alloys than possess superior mechanical properties and are corrosion
resistant at elevated temperatures of about 400 °C. Aluminum alloy series 2XXX is Al-Cu
based, 6XXX is Al-Mg-Si based, while 7XXX is Al-Mg-Zn based [1]. Initial classifications of
2XXX, 6XXX, and 7XXX were based on a particular alloying element as mentioned below
[1]. However, these alloys can contain several alloying elements. The precipitation
sequence of critical phases in these alloys is as follows:

2XXX: Supersaturated solid solution transforms to GP-zones which further
transforms into θ″ followed by θ′ which finally transforms into a stable θ (Al 2Cu)
phase. This class of alloys achieves superior strength when θ″ and θ′ are
predominant [1].
6XXX: Supersaturated solid solution transforms to GP-zones which further
transforms into β″ followed by β′ which finally transforms to stable β (Mg 2Si) phase.
Here, the predominant phase is β″, which is observed after aging [1].
7XXX: Supersaturated solid solution transforms to GP-zones which further
transforms into η′ which finally transforms to stable η (Mg 2Zn) phase. This class of
alloys achieves superior strength when η′ and η are predominant while maximum
hardness is achieved when η′ is predominant [1].
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In aluminum-based alloys, all the metastable as well as the stable phases can be
present in the microstructure [2,3]. However, in thermodynamic calculations, one may
not observe any trace of metastable phases in the presence of a stable phase [3].

Scandium (Sc) improves mechanical strength and corrosion resistance of aluminum
alloys, and the Al3Sc phase is thermodynamically stable [1,4–6]. However, scandium is
expensive and it can form a stable Al3Sc phase up to a saturation limit [1]. Thus,
scandium can be added up to a certain amount, while the above-mentioned metastable
phases still are beneficial for achieving superior mechanical properties in these alloys.
Aluminum alloys with scandium addition may need two-step aging as Al3Sc precipitates
during aging at temperatures between 300 °C and 450 °C, while other metastable
phases precipitate around 200 °C [1]. Research shows [5] that Al3Sc dispersoids can be
helpful in nucleation and stabilization of θ′ phase precipitates during aging. At the
same time, an increase in copper content has a dual effect on coarsening of Al 3Sc
precipitates, as the increase in copper content can lead to both increase and decrease
of coarsening of Al3Sc precipitates [7]. Thus, it is important to study the effect of
composition and temperature on the stability of stable and metastable phases in
aluminum alloys with scandium addition.

Aluminum (Al) alloys have been studied under the framework of the CALPHAD
approach [8–11] using Thermo-Calc software [3,12–14]. The available literature on
aluminum alloys studied through the CALPHAD approach deals with compositions of
known alloys or slight deviations from known compositions [8–11]. Additionally, the
number of elements in these alloys is relatively small and varies between 3 and 8
maximum [8–11].

Thus, the current research problem was framed so that it can address the current
limitations. In the work presented here, alloys have been considered to have 12 alloying
elements for 2XXX, 10 elements for 6XXX, and 11 elements for 7XXX, thus expanding
the number of alloying elements of the current state of the art.

Through the CALPHAD approach, one can only estimate the stable phases. A phase
associated with minimum Gibbs free energy will be the most stable for a given
composition and temperature regime. Any other phase with a Gibbs free energy higher
than that phase will be unstable or metastable, and its amount cannot be estimated
through equilibrium calculations for that given composition and temperature regime.

javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;


Skip to Main Content

In multicomponent systems like the present case of aluminum alloy, there exist several
metastable phases which are important for improving multiple mechanical properties
of that alloy. In order to estimate those metastable phases, one has to suppress stable
phases while performing equilibrium calculations. They must repeat these calculations
multiple times in order to estimate these metastable phases. Through deep learning
artificial neural network (DLANN), a user can use the data generated through the
CALPHAD approach and develop the DLANN model for each of these phases.
Thereafter, they can estimate all of these phases for thousands of new compositions in
a fraction of a second, while these calculations may take hours through the CALPHAD
approach.

In the current work, data were generated through the CALPHAD approach [3,12–14] for
various stable and metastable phases for 2XXX, 6XXX, and 7XXX families of alloys to
explore the optimum scandium content that can be beneficial for precipitation of the
Al3Sc phase along with other stable and metastable phases. These data were then used
to develop predictive models for each of these stable and metastable phases as a
function of composition and temperature [15]. A computer code was developed in the
python programming language using TensorFlow [16] and Keras [17] libraries to develop
Deep Learning Artificial Neural Network (DLANN) models for each of the stable and
metastable phases in 2XXX, 6XXX, and 7XXX classes of aluminum alloys. These
predictive DLANN models were then used to predict stable and metastable phases for
new compositions and temperatures. Thereafter, these data were used and analyzed
through Self-organizing Maps (SOM) [18–20] to determine various patterns within the
dataset as well as for choosing a few candidate alloy compositions to perform
solidification and heat-treatment simulations under the framework of the CALPHAD
approach. In the current work, one case of isothermal heat-treatment simulation for
6XXX alloy is reported where the nucleation site is at the dislocations. Detailed studies
of solidification and heat-treatment simulations have been reported in another
publication [15]. Our research group has expertise in designing alloys’ compositions for
optimal properties by the application of several concepts of artificial intelligence on
data generated through experiments and data generated under the framework of the
CALPHAD approach [18–24]. This publication is intended to provide researchers with a
predictive tool for screening alloy compositions for phase stability prior to performing
experiments.
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2 Materials and Methods
In this study, 2XXX, 6XXX, and 7XXX classes of aluminum alloys were chosen. These
classes of alloys are heat treatable. For each class of these alloys, variable bounds for
concentrations of alloying elements were defined based on data available in the
literature [1,4]. These variable bounds for the chemical composition of alloy series
2XXX, 6XXX, and 7XXX are reported in Table 1. It can be observed that in 2XXX a total of
12 alloying elements were considered. In the 7XXX series, the addition of Zr along with
Sc was considered, while dropping V, while for the 6XXX series alloys both Zr and V were
excluded. Equilibrium calculations were performed to stabilize the metastable phases
for these alloys.

Table 1
Minimum and maximum concentrations for each of the 12 alloying elements (wt%) for three series of Al–Sc-based
alloys (also reported in Ref. [15], reprinted with permission from Elsevier)

Element 2XXX Series 6XXX Series 7XXX Series

Min. Max. Min. Max. Min. Max.

Si 0.20 1.20 0.20 1.80 0.12 0.50

Fe 0.30 0.50 0.10 0.70 0.15 0.50

Cu 3.80 6.80 0.10 0.40 0.10 2.40

Mn 0.20 1.20 0.05 1.10 0.05 0.70

Mg 0.02 1.80 0.35 1.40 0.80 3.70

Cr 0.00 0.10 0.00 0.35 0.00 0.30

Zn 0.10 0.25 0.05 0.25 3.80 8.30

Ti 0.02 0.15 0.00 0.20 0.01 0.20

V 0.00 0.15 0.00 0.00 0.00 0.00

Zr 0.00 0.25 0.00 0.00 0.00 0.20

Sc 0.00 10.00 0.00 10.00 0.00 10.00
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Element 2XXX Series 6XXX Series 7XXX Series

Min. Max. Min. Max. Min. Max.

Al Balance to 100.00 Balance to 100.00 Balance to 100.00

2.1 Identification of Stable and Metastable Phases.
Commercial software, Thermo-Calc 2018B [12], was used for studying stability of
phases using the thermodynamic database TCAL5 [3] and mobility database MOBAL4
[14]. Assadiki et al. [25] provided a brief description of stabilizing metastable phases in
aluminum alloys, which can be useful for studying 2XXX and 6XXX alloys. As mentioned
before, in 2XXX supersaturated solid solution transforms to GP-zones which further
transform into θ″ followed by θ′ which finally transforms into a stable θ (Al 2Cu) phase.
Thermodynamic database TCAL5 [3] and Andersen et al.’s [26] study on various
precipitates in aluminum alloys show that θ″ closely resembles GPII zones in 2XXX,
while θ-Al 2Cu is the stable phase. In 6XXX, β″ closely resembles GPII zones in 2XXX,
while β-Mg 2Si is the stable phase [3,26]. For 7XXX, η-MgZn 2 is the stable phase with the
C14 structure, while η′ is the metastable phase [27]. In the thermodynamic database
TCAL5 [3], V_PHASE is considered as MgZn2, while there exists another phase with
C14_LAVES_PHASE in the TCAL5 database. The structure of the GP-zones or η′ phase has
been debated [26]. In the thermodynamic database TCAL5 [3], Al3Sc exists as the AL3X
phase. CALPHAD approach utilizes Gibbs Energy minimization as a criterion to
determine the formation and stability of any particular phase [12,25]. In Thermo-Calc
[12], it is possible not to get another metastable phase in 2XXX, 6XXX, and 7XXX,
although it can coexist with the stable phases experimentally [3].

2.2 Generation of Phase Stability Data.
The prime target phase, Al3Sc, is the stable phase. But, in aluminum alloys, superior
properties are achieved by the combination of stable and metastable phases. For
stabilizing metastable phases, one needs to suppress the stable phases during
equilibrium calculations. This way the next phase becomes stable and its amount
(volume fraction and mole fraction) can be estimated. For example, for the 2XXX series,
1200 sets of compositions and temperature were generated and amounts (volume
fraction) were estimated of the θ (AL2CU_C16) phase. For these 1200 cases, no
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metastable phases were observed. Therefore, the θ (AL2CU_C16) phase was removed
from calculation and generated 1200 sets of compositions and temperature for which
again the amount of θ′ phase was calculated through Thermo-Calc. This way, a
significant amount of data was generated for stable and metastable phases for 2XXX
alloys. The dataset includes 1200 combinations of composition and temperature for
each of the stable and metastable phases. Similarly, a large amount of data was
generated for the 6XXX and 7XXX series of alloys that is suitable for the application of
various concepts of artificial intelligence.

2.3 Data Preprocessing.
Data obtained from Thermo-Calc were not directly used. All these data were scaled. It
will be mentioned in the main body of the article.

2.4 Deep Learning Artificial Neural Network (DLANN) Template.
This is a multicomponent system with multiple design variables. Specifically, there are 10–
12 alloying elements and temperature as variables in a design process using data
generated through Thermo-Calc and developed predictive models for each of the
stable and metastable phases as a function of the concentration of alloying elements
and temperature. Computer code was written in the python programming language
using TensorFlow [16] and Keras [17] libraries for developing DLANN models for each of
these stable and metastable phases as a function of alloying elements and temperature
for 2XXX, 6XXX, and 7XXX alloys.

Prior to model development, data were scaled for all the variables and objectives such
that all values were between 0 and 1. Variables include composition and temperature of
candidate alloys, and objectives are the amount of stable and metastable phases. There
were several cases for which the equilibrium amount of phase was 0 (zero). This is a
complex dataset where too many points are missing. A Deep Learning Artificial Neural
Network (DLANN) was then developed which had four hidden layers. The architecture
of the DLANN is something that a user decides. For example, the first hidden layer
consisted of 50 neurons, and the remaining three layers consisted of 100 neurons each.
For each of the alloying phases studied here, a DLANN was developed where the initial
layer was set as having 50, 60, 70, 80, 90, or 100 neurons, while each of the other three
hidden layers consisted of 100, 120, 140, 160, 180, or 200 neurons, respectively.
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This dataset was divided randomly into a training set for training the DLANN model and
a testing set for its validation. The testing set consisted of 33% of all the available data
mainly to avoid overfitting. Rectified Linear Unit (ReLU) was chosen as the activation
function, while “AdaM” was chosen as an optimizer [16,17]. AdaM stands for Adaptive
Moment Estimation. The stopping criterion for training was the number of epochs, and
it was fixed at 100 for all of these cases. Mean Squared Error (MSE) and Mean Absolute
Error (MAE) over the validation set was one of the performance metrics considered for
choosing a model for various stable and metastable phases. Tensorboard [28] was used
for visualization and determining/choosing the model that can be used for predictive
tools. Apart from MAE/MSE error metrics and visualization via Tensorboard, the most
important criterion for choosing a model was the physical metallurgy of aluminum
alloys. In this work, there are lots of missing data points for metastable phases. This
requires giving priority to the physical metallurgy of aluminum alloys. Thus, concepts of
statistics and artificial intelligence are used as a guiding tool, while avoiding
overdependence on these tools.

As mentioned, Al3Sc is a stable phase, while there are several stable and metastable
phases. Through the CALPHAD approach, both stable and metastable phases cannot be
estimated simultaneously for a given composition and temperature. Separate
calculations need to be performed for estimating both stable and metastable phases.
Hence, DLANN models were used to estimate the amount of stable and metastable
phases for compositions and temperature in equilibrium in case any of this information
was missing. These estimates were performed for 2XXX, 6XXX, and 7XXX series alloys.
Hence, a more complete dataset was created containing all the stable and metastable
phases in equilibrium for any given chemical composition and temperature.

2.5 Self-Organizing Maps.
Data obtained from DLANN models for various phases were then analyzed through the
concept of SOM [18–20] for understanding patterns, correlations among variables,
correlations between variables and the number of critical phases, and correlations
among the critical phases. SOM plots are known for preserving the topology of the
dataset. SOM maps are used to determine complex correlations in large and small
datasets and are known for preserving the topology of the dataset, though the
prediction capability of SOM is not accurate as each of the hexagonal units on the SOM
plots are averaged [18–20]. In this approach, accurate predictive DLANN models were
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developed through the Deep Learning approach. Hence, SOM analysis was used for
analyzing correlations and studying patterns within the dataset.

Through SOM analysis, a set of candidate alloys was selected based on the optimum
amount of stable and metastable phases for 2XXX, 6XXX, and 7XXX alloys. SOM analysis
of 6XXX alloys has been reported in the main paper, while SOM analysis of 2XXX and
7XXX series alloys is reported in Appendix  A.

2.6 Solidification and Heat-Treatment Simulations.
The chemical composition of the candidate alloys was used for studying the
precipitation kinetics of the Al3Sc phase, where the nucleation sites were in the bulk.
Most of this work has been reported in other publications [15]. In the current work, a
case for 6XXX series Al-based alloys is presented where isothermal heat-treatment
simulations were performed at 300 °C and the nucleation sites were at the dislocations.
Interfacial energy between the precipitate (AL3X) and the matrix (FCC_L12) was
optimized for this simulation. It was fixed at 0.07 J/m2. Thermo-Calc module TC-PRISMA
uses Kampmann–Wagner Numerical (KWN) [8] approach for simulating precipitation
kinetics. Governing equations for KWN approach have been included in Appendix  B
and the companion paper [15].

2.7 Computational Infrastructure

2.7.1 CALPHAD-Based Work.

Thermo-Calc was installed on a desktop computer in a computer lab. The operating
system was Windows 10, Core i7 processor (CPU) with 16-GB random access memory
(RAM). Phase transformation calculation time varied between 20 min and 30 min,
depending on the number of alloying elements considered for an alloy system. As
mentioned, 12 elements were considered for 2XXX alloys, 10 elements for 6XXX, and 11
elements for 7XXX series of Al-based alloys. For heat- treatment simulation presented in
this work, it took about 3 to 4 h. In this work, heat-treatment simulations for 6XXX
alloys were performed with 10 elements where the nucleation sites were on dislocation.
During this simulation with the nucleation site on dislocation, the system crashed
comparably more often than when performing simulations with nucleation sites in the
bulk [15].

2.7.2 Artificial Intelligence-Based Work.
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Artificial Intelligence (AI)-based work was performed on a laptop. The operating system
was Windows 10, Core i7 processor (CPU) with 32 GB RAM. DLANN model development
took about 20–30 min depending on the number of alloying elements. Once the model
was developed, the prediction was done in a few seconds. DLANN models were also
used on an Android phone with 6 GB RAM and octa-core processor (CPU). Prediction
time was a few seconds on the Android phone. SOM model development took about
20–30 min for each case.

3 Results

3.1 DLANN Model.
Based on the literature [3,26–29] and the developed DLANN model, performance
metrics for models for various phases in 2XXX, 6XXX and 7XXX series alloys has been
listed in Table 2.

Table 2
Performance metrics for DLANN models for various phases in 2XXX, 6XXX, and 7XXX series of Al-based alloys

Alloy Phase DLANN Architecture Error metrics (validation set)

Mean square error (MSE) Mean absolute error (M

2XXX THETA_PRIME (θ′) 90-180-180-180 4.47e-4 0.01535

THETA_DPRIME (θ″) 60-120-120-120 9.87e-4 0.01972

AL2CU_C16 (θ) 80-160-160-160 0.01086 0.04221

S_PHASE 50-100-100-100 4.24E-4 0.01077

AL3X (Al3Sc) 80-160-160-160 6.69e-4 0.0207

6XXX MG2SI_C1(β) 70-140-140-140 6.63e-4 0.01911

BETA_PRIME (β′) 80-160-160-160 8.32e-4 0.0175

BETA_DPRIME (β″) 80-160-160-160 1.79e-3 0.01075

AL3X (Al3Sc) 80-160-160-160 6.09e-4 0.01898
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Alloy Phase DLANN Architecture Error metrics (validation set)

Mean square error (MSE) Mean absolute error (M

7XXX C14_LAVES (η′) 50-100-100-100 6.63e-4 0.01892

T_PHASE 100-200-200-200 1.56e-3 0.01877

V_PHASE (η-MgZn 2) 80-160-160-160 8.31e-3 0.04712

S_PHASE 50-100-100-100 1.76e-3 0.01604

AL3X (Al3Sc) 60-120-120-120 2.13e-5 2.9961e-3

The architecture of the DLANN model chosen in this work has been listed in Table 2.
The Mean Absolute Error (MAE) in Table 2 appears to be large at first glance. As
mentioned in Sec. 2.3, data for all the design variables and objectives were scaled
between 0 and 1. DLANN models were developed for all the stable and metastable
phases as a function of composition and temperature. From phase stability data, it
could be observed that the maximum amount (mole fraction) of any of these phases
was numerically low (about 0.1). Mole fraction value for any of these phases varied
between 0 and 0.1.

Regarding the error metrics in Table 2, apart from AL2CU_C16 (θ), mean square errors
(MSE) for all the phases are quite low, on the order of 1e-3 to 1e-5. AL2CU_C16 (θ) and
V_PHASE (η-MgZn 2) have a mean absolute error (MAE) of about 0.4. Most of the MAE
values for other phases are around 0.01, while MAE for AL3X for 7XXX series is
extremely small, of the order of 1e-3. MAE of around 0.01 still seems large. However,
when these models will be used as a predictive tool, these results will be rescaled back
to provide a practical estimate of the amount of all these phases. For example, the
initial range (0–0.1) was scaled to a new range (0–1) for model development. After these
models are used for prediction, these data will be rescaled, or the range (0–1) will be
scaled back to the range (0–0.1). Thus, even if considering MAE at 0.01, after rescaling it
will become 0.001. In a complex problem with 10–12 alloying elements and a large
database with several missing values, an error of 0.001 can be acceptable, though there
is still room for improvement. Again, it should be recalled that in this work artificial
neural network (ANN) model with four hidden layers was developed through Deep
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Learning approach. ANN models are prone to overfitting. Thus, one must be careful
while choosing a model and using it as a predictive tool. As mentioned before, priority
was given to physical metallurgy of aluminum alloys in selecting DLANN models, while
using concepts of statistics and artificial intelligence for guidance. AL2CU_C16 (θ) data
contain lots of missing values, and there are 13 variables: temperature and
concentrations of 12 alloying elements. For MAE at 0.04, it will be rescaled to 0.004.
MAE is about 4% when compared with the maximum value for AL2CU_C16 (θ), which is
about 0.1. Thus, although MAE and MSE appear large for a few cases, they are still
between 1% and 5% of the maximum value, which is still quite small for a complex
problem like this.

One can observe that the chosen model has a different structure, where 50–100–100–
100 represents the number of neurons in the four hidden layers of the DLANN. Based
on our experience, DLANN models with acceptable performance metrics MSE and MAE,
calculated over the validation/testing set, were chosen for further study. A reader
needs to take into account that there were several cases where the amount of phase is
zero, and the alloy system contains 9–12 alloying elements. From the data sheet, 67% of
data were assigned to the training set and 33% of data were assigned to the testing set,
mainly to avoid overfitting. Hence, there is a possibility to improve the performance
metrics of the models by changing these parameters.

3.2 Self-organizing Maps Analysis.
Table 3 summarizes the error metrics of SOM analysis for 2XXX, 6XXX, and 7XXX alloys.
It can be observed in Table 3, that topological error is low, while quantization error is
comparatively higher. In this work, predictive models were developed through
TensorFlow/Keras libraries in python [16,17] with better prediction accuracy (Table 2).
Thus, SOM was used for understanding patterns in the dataset, while for prediction,
the Deep Learning Artificial Neural Network (DLANN) models were used. As mentioned
before, a commercial software Thermo-Calc was used so that phase stability
calculations were performed within the framework of the CALPHAD approach.

Table 3
SOM Error metrics for 2XXX, 6XXX, and 7XXX series of Al–Sc-based alloys
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Quantization error Topological error

2XXX 0.126 0.030

6XXX 0.109 0.034

7XXX 0.131 0.017

The CALPHAD approach utilizes Gibbs Energy minimization as a criterion to determine
the formation and stability of any particular phase [12,25]. In aluminum alloys (2XXX,
6XXX, and 7XXX), targeted properties are achieved by an optimum combination of
stable and metastable phases. Thermodynamically, these metastable phases will be
absent in the presence of stable phases, but kinetically these metastable phases have
been observed in the microstructure of aluminum alloys [2,3]. In order to stabilize a
metastable phase, one needs to remove the stable phases while performing
calculations for the stability of metastable phases. In this work, a complex
multicomponent system for 2XXX, 6XXX, and 7XXX series alloys was chosen. It can be
possible that a certain metastable phase can be absent for a certain composition and
temperature combination even after the stable phases are removed from the
calculation as several other equilibriums exist in a multicomponent system.
Determining these compositions and temperature regimes can be helpful in screening
alloys prior to performing experiments. Thus, SOM plots can be used to determine the
composition regime prior to performing precipitation kinetics simulations for the Al3Sc
phase or experiments.

3.3. 6XXX Alloys.
Figure 1 shows the component plot for 6XXX alloys. In Fig. 1, one can observe that
elements Al, Sc, and the phase AL3X are clustered together or are correlated. This
relation can be established as an increase in Al and Sc will lead to an increase in AL3X
(Al3Sc) phase. In Fig. 1, MG2SI_C1 (β) and BETA_PRIME (β′) phases are clustered
together. From the physical metallurgy of aluminum alloys, one can establish this
relation as BETA_PRIME (β′) is a metastable phase, which finally transforms into a stable
MG2SI_C1 (β) phase [1].

Fig. 1
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SOM plot of components for alloying elements, and critical phases in 6XXX series of Al-based alloys

along with Sc and temperature

Figure 2 shows the distribution of Sc, temperature, and a few critical phases for 6XXX
series. SOM maps consist of hexagonal cells. Values visible on SOM maps are the
average value over a cell. Hexagonal cells are not visible in Fig. 2 since a significantly
large number of candidate alloys are included in this study; thus, the SOM map looks
pixelated.

Fig. 2
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Amount of critical phases (mole) in 6XXX series of Al-based alloys along with Sc (wt%) and

temperature (°C)

In Fig. 2, BETA_PRIME (β′) and BETA_DPRIME (β”) exist in the lower temperature regime
(∼180 °C) and is nonexistent at elevated temperature (540 °C). Additionally, MG2SI_C1
(β) phase exists in a larger amount in a lower temperature regime (∼180 °C). From the
physical metallurgy of aluminum alloys, BETA_PRIME (β′) and BETA_DPRIME (β″) are the
metastable phases that finally transform into the thermodynamically stable MG2SI_C1
(β) phase [1]. Additionally, MG2SI_C1 (β), BETA_PRIME (β′), and BETA_DPRIME (β″) phases
are stable in the temperature regime around 200 °C and are unstable at elevated
temperatures [1]. SOM maps were able to recognize this pattern and correctly
positioned the candidate alloys on the vertices of hexagonal units in a way that the
predictions can be verified through concepts of physical metallurgy. Even though the
SOM algorithm does not operate on principles of physical metallurgy, still it was able to
mimic these vital correlations. This proves the efficacy of the application of SOM maps
in materials design as in this problem the database contains several missing points,
which is quite common in materials/alloy design problems. In Fig. 2, one can
additionally observe that elements aluminum, scandium, and AL3X phase are
correlated. An increase in aluminum and scandium results in an increase in the AL3X
phase, which can be understood as the Al3X phase, in this case, is Al3Sc.
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One of the goals of this work is to determine the scope of working with small
concentrations of Sc since Sc is expensive. From Fig. 2, it can be observed that it is
possible to work with a lower amount of Sc (<wt. 2%) at lower temperatures since
BETA_PRIME, BETA_DPRIME, and MG2SI_C1 phases are stable. Heat treatment of
aluminum alloys in the case of Sc addition is performed in two stages. The annealing
temperature for precipitating BETA_PRIME, BETA_DPRIME, and MG2SI_C1 phases is
performed at around 100–200 °C, while the annealing temperature for precipitating
AL3X is usually above 300 °C. Thus, SOM maps proved to be helpful in determining
candidates for performing solidification and heat-treatment simulations. Based on the
preceding computational effort, the most promising Al–Sc-based alloy from each of the
three Al-based series (2XXX, 6XXX, and 7XXX) was selected for heat-treatment
simulation as reported in Table 4. Candidates reported in Table 4 are also reported in
Ref. [15], where simulations were performed for solidification and heat treatment for
studying the precipitation kinetics of the Al3Sc phase for these candidate alloys [15].
These compositions were obtained from artificial intelligence-based algorithms.
Practically, it is not possible to achieve similar compositions as shown in Table 4.

Table 4
Compositions (wt%) of three series of Al-based alloys chosen for solidification and heat-treatment simulation in a
previously published work [15] (reprinted with permission from Elsevier)

Alloying element 2XXX Series 6XXX Series 7XXX Series

Si 0.38828 1.5497 0.28606

Fe 0.3919 0.57313 0.21862

Cu 4.95088 0.27893 1.51113

Mn 0.32005 0.63697 0.36188

Mg 0.53321 1.07076 1.05662

Cr 0.04353 0.1437 0.12353

Zn 0.19235 0.11882 3.73898

Ti 0.04297 0.13088 0.15506

V 0.09389 0.0 0.0

Zr 0.21774 0.0 0.17829
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Alloying element 2XXX Series 6XXX Series 7XXX Series

Sc 0.92541 2.60077 0.75953

Al 91.89979 92.89525 91.61031

3.3.1 Heat-Treatment Simulations.

In Ref. [15], simulations were performed where nucleation sites for precipitation of
Al3Sc phases were in the bulk. In the current work, precipitation kinetics simulation of
the Al3Sc phase was at the nucleation site which is at the dislocations. A candidate alloy
corresponding to the 6XXX series from Table 4 was used, and isothermal annealing was
performed at the dislocations at 300 °C. A system of 10 alloying elements, and no
reported information on interfacial energy for such a complex system. In this work, the
reference temperature was chosen as 300 °C. In Ref. [15], temperatures were chosen
between 300 °C and 450 °C, where all the nucleation sites were in the bulk. Figure 3(a)
shows the variation of the mean radius of the grain over the annealing time, which was
set at 1000 h. Figure 3(b) shows the variation of volume fraction over annealing time.
From Figs. 3(a) and 3(b), it can be observed that the mean radius and volume fraction of
Al3Sc crystals increase initially and saturate at about 67 h. After 67 h, there is minimal
change in the growth of Al3Sc crystals. Interfacial energy was optimized by trials and in
this case, it was set at 0.07 J/m2. For the optimal grain size of the Al3Sc phase at
dislocations, available literature [1] was consulted. Depending on the application, Al3Sc
grain size can vary from 2 to 100 nm. Strengthening in aluminum alloys is achieved by
precipitation hardening and also mechanical working. In this work, dislocation density
was fixed at 6.0 × 1012 m−3. The mechanical treatment introduces many dislocations in
the system. Thus, studying the precipitation kinetics of Al3Sc crystals with dislocations
as a nucleation site will be helpful for researchers working on aluminum alloys. In Ref.
[15], the mean radius of the crystals increases continuously when the nucleation sites
were in the bulk. In this work, nucleation sites are at the dislocations. A detailed
analysis at other temperatures will be helpful to quantify the effect of time on overall
grain size.

Fig. 3
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Precipitation kinetics of Al3Sc phase at dislocation for isothermal annealing at 300 °C for 6XXX series

in Table 4: (a) mean grain radius (nm) and (b) volume fraction

4 Discussion
In this work, the research problem was formulated in a way which will be helpful in
expanding the domain of the current state of the art or available literature on
aluminum alloys studied under the framework of the CALPHAD approach.

The novelty of this work can be summarized in a few points as follows:
Literature on aluminum alloys using the CALPHAD approach usually focuses on
compositions which are around the known compositions of standard alloys [25]. In
this work, a framework was developed to predict and test novel compositions
through a thorough investigation based on the CALPHAD and Artificial Intelligence.
Novel compositions can be analyzed through DLANN models and the equilibrium
amount of various stable and metastable phases can be estimated in 2XXX, 6XXX,
and 7XXX classes of aluminum alloys through this approach.
Literature on aluminum alloys using the CALPHAD approach usually focuses on
alloys with 6–8 alloying elements [4–11,25–29]. In this work, 12 alloying elements
were considered for the 2XXX alloy system, 10 alloying elements for 6XXX, and 11
alloying elements for 7XXX series Al-based alloys, which will be helpful for
researchers to utilize the presented approach in their own work, providing room for
the addition of new elements in their existing alloys.
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Scandium is added to aluminum alloys along with zirconium [30,31] and has a
profound effect on mechanical properties in aluminum alloys. Both elements
contribute to improvement in strength, hardness, and stress corrosion resistance.
[30,31]. In a previously published work [15], alloys containing Zr were considered for
Scheil solidification simulation and precipitation kinetic simulation of the Al3Sc
phase [15]. The current work is mainly focused on determining novel compositions
for 2XXX, 6XXX, and 7XXX alloys while determining the scope of Sc addition. Heat-
treatment simulation performed in this work is for the 6XXX alloy in Table 4, which
does not contain any zirconium. This work cannot be compared with Refs. [30,31] as
Zr containing alloy was not considered for heat-treatment simulation. A previously
published work [15] can be compared to some extent.
Solidification and heat-treatment simulations were performed and have been
reported in a previously published work [15]. In the current work, precipitation
kinetics simulation results with the nucleation site at the dislocation have been
included. Isothermal annealing was performed at 300 °C. For the 6XXX alloy in Table
4, interfacial energy was optimized, and the value is 0.07 J/m2. From Fig. 3, it can be
observed that the grain growth occurs in the beginning till about 67 h. After 67 h,
grain size becomes stable as even up to 1000-h annealing time there is minimal
change in grain size.

Heat-treatment simulations require optimized values of interfacial energy between
precipitate and the matrix phase in order to mimic experimental findings, which is a
must from an application point of view. Thus, our planned future work will focus on
optimizing [20] interfacial energy at various nucleation sites for multicomponent
aluminum alloys with scandium addition.

5 Conclusions
This study presents a novel computational approach that can be utilized for screening
candidate alloys prior to performing experiments by estimating the equilibrium
amount of various stable and metastable phases in aluminum alloys containing
scandium. In this work, Deep Learning Artificial Neural Network (DLANN) was
developed by utilizing a database generated for various stable and metastable phases
for aluminum alloys under the framework of the CALPHAD approach. CALPHAD
(Thermo-Calc) databases are created from actual experiments and atomistic
simulations, while DLANN models were developed under the framework of TensorFlow/
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Keras libraries that are known for determining nonlinear and complex correlations. The
presented approach provides predictive DLANN models that can be used for new
chemical compositions and temperatures to determine stable and metastable phases
in the alloys at the same instant, as experimentally these phases coexist, but
thermodynamically stable and metastable phases cannot coexist. Thereafter, data
predicted through DLANN models were utilized to study 2XXX, 6XXX and 7XXX series Al–
Sc-based systems and the stable and metastable phases in each of these systems by
utilizing Self-Organizing Maps (SOMs). SOMs are known for determining complex
correlations between design variables and objectives and also correlations among the
objectives. Models developed through TensorFlow/Keras libraries have low error and
SOM analysis of these alloys also shows low topological error. Based on this work, a few
of the most promising chemical compositions requiring low concentrations of Sc were
developed for performing heat-treatment simulations.

Solidification and heat-treatment simulations were performed on candidate alloys
listed in Table 4 and had been reported [15]. In the current work, heat-treatment
simulations for 6XXX alloy at 300 °C were performed where the nucleation sites were at
dislocations. From the results, it can be observed that the average grain size stabilizes
at about 67 h, and there is minimal change in grain size afterward even when
isothermal simulations were performed for 1000 h. In this case, interfacial energy for
the Al3Sc phase was optimized. The presented work forms the basis for future work on
optimizing interfacial energy for various nucleation sites. Grain-growth simulations
presented in this work are valid for single crystals only.
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Appendix A

2XXX Alloys

Figure 4 shows the component plot for 2XXX alloys, where all the variables
(composition and temperature) and the objectives (critical phases) are positioned in a
way that if any two or more of them are together, it means that they are correlated. This
information is beneficial for an experimentalist in understanding the correlations
between various design variables and objectives simultaneously. In Fig. 1 and Fig. 4,
one can observe that elements Al, Sc, and the phase AL3X are clustered together or are
correlated. This relation can be established as an increase in Al and Sc will lead to an
increase in AL3X (Al3Sc) phase. In Fig. 4, THETA_PRIME (θ′) and THETA_DPRIME (θ″)
phases are clustered together. From the physical metallurgy of aluminum alloys, one
can establish this relation as metastable phase THETA_DPRIME (θ″) transforms into
another metastable phase THETA_PRIME (θ′), which finally transforms into stable
AL2CU_C16 (θ) phase. It should be mentioned that the SOM algorithm has no
information on Gibbs energy minimization, the theory on which these databases
predict a certain phase. Still, the SOM algorithm is able to capture information shown in
the literature [1]. Alloying elements such as Si, Zr, Zn, Mn, Fe, Cr, Ti, and V are present in
small amounts and are clustered together on the map. The alloy system under
consideration is a complex multicomponent system, where the metastable phases were
stabilized by suppressing the stable phases. Still, vital information on the interaction
between components, components and various phases, and interaction between
different phases were obtained through SOM analysis. Thus, it is possible to utilize SOM
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to determine the composition regime where a researcher can study precipitation
kinetics of the Al3Sc phase.

Fig. 4

View large Download slide

SOM plot of components for alloying elements, and critical phases in 2XXX series of Al-based alloys

along with Sc and temperature

Figure 5 shows the distribution of Sc, temperature, and a few critical phases for the
2XXX series. From Fig. 5, one can observe that Sc directly affects the amount of AL3X
phase at all temperatures. Phase AL2CU_C16 is a thermodynamically stable phase,
while THETA_PRIME and THETA_DPRIME metastable phases. In Fig. 5, THETA_PRIME,
THETA_DPRIME, and AL2CU_C16 phases are stable at lower temperatures, which is also
reported in the literature [1]. In Fig. 5, it can be additionally observed that THETA_PRIME
and THETA_DPRIME are stable to a certain extent at moderate temperatures (above 200
°C), while AL2CU_C16 is absent for this temperature regime. Here, 200 °C is the average
temperature of candidate alloys included in those SOM cells. Hexagonal cells are not
visible since there are too many candidate alloys included in this study; thus, the SOM
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map looks pixelated. Any region on the SOM map that is marked above 200 °C consists
of alloys for which the average temperature is above 200 °C. Heat treatment for
precipitating Al3Sc (AL3X) is performed at 300 °C or above, while for precipitating
THETA_PRIME and THETA_DPRIME, heat treatment is performed below 200 °C. Thus, the
occurrence of a few candidate alloys with a significant amount of THETA_PRIME and
THETA_DPRIME will be helpful in designing new heat-treatment protocols for these
classes of alloys. SOM algorithm proved to be useful in understanding various
features/correlations in the dataset that can be validated by concepts of physical
metallurgy of aluminum alloys. This demonstrates the efficacy of pattern recognition
through SOM maps.

Fig. 5
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Amount of critical phases in 2XXX series of Al-based alloys along with Sc and temperature

7XXX Alloys

Figure 6 shows the component plot for 7XXX alloys. It can be observed from Fig. 6 that
AL3X, Sc, and Al are adjacent to each other. Thus, SOM plots were able to detect
correlations between the concentrations of Al, Sc, and stable phase AL3X. One can also
observe that minor elements like Si, Zr, Mn, Fe, Cr, and Ti are clustered together on the
map. There does not seem to be any other strong correlations between design
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variables and desired phases, as C14_LAVES and V_PHASE are close, but not close
enough to draw any definitive conclusion. Figure 7 shows the distribution of Sc,
temperature, and a few critical phases for 7XXX series. From Fig. 7 it can be observed
that Sc directly affects the amount of AL3X phase at all temperatures. C14_LAVES,
V_PHASE and S_PHASE is stable at a lower temperature, marked around 170 °C on the
SOM map. Above 170 °C, stability decreases for these phases. Here 170 °C is the
average temperature for the candidate alloys included in the hexagonal units or cells.
Thus, it can be possible that for a number of candidate alloys there can be traces of
these phases and for a few candidates these phases can be in a larger or acceptable
amount from a metallurgical point of view. This information will be helpful in designing
new chemical compositions and manufacturing protocols for these alloys.

Fig. 6
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SOM plot of components for alloying elements, and critical phases in 7XXX series of Al-based alloys

along with Sc and temperature
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Fig. 7
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Amount of critical phases in 7XXX series of Al-based alloys along with Sc and temperature

Figure 7 shows the distribution of Sc, temperature, and a few critical phases for the
7XXX series. From Fig. 4 it can be observed that Sc directly affects the amount of AL3X
phase at all temperatures. C14_LAVES, V_PHASE, and S_PHASE are stable at a lower
temperature, marked around 170 °C on the SOM map. Above 170 °C, stability decreases
for these phases. Here, 170 °C is the average temperature for the candidate alloys
included in the hexagonal units or cells. Thus, it can be possible that for a number of
candidate alloys, there can be traces of these phases and for a few candidates these
phases can be in a larger or acceptable amount from a metallurgical point of view. This
information will be helpful in designing new chemical compositions and manufacturing
protocols for these alloys.

One of the goals for this work was to explore the possibility of Sc addition in small
amounts (<2 wt%). Through this work, it became possible to find the compositions and
temperature regimes for which Al3Sc (AL3X) and other stable and metastable phases
are stable in significant amounts. Based on the preceding computational effort, the
most promising Al–Sc-based alloy from each of the three Al-based series was selected
for heat-treatment simulation as reported in Table 4 in the main article and also in a
previously published work [15].
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Appendix B

Kampmann–Wagner Numerical Approach

TC-PRISMA module [13] in Thermo-Calc [12] utilizes the KWN approach for simulating
precipitation kinetics of a precipitate which involves nucleation, growth, and coarsening
[32–36]. This section explained the governing equations and lists the parameters used
while simulating precipitation kinetics.

In this work, the matrix is the FCC_L12 phase. The precipitate is AL3X, which is Thermo-
Calc notation for Al3Sc. The molar volume of the precipitate was taken from the
Thermo-Calc database. The grain aspect ratio was fixed at 1.0, while the mobility
enhancement factor was fixed at 5.

An initial number of nucleation sites (N0) were calculated from dislocation density,
which was fixed at 6.0 × 10 12/m3. Interfacial energy was set at 0.07 J/m2.

Time-dependent nucleation rate (J t) can be derived from classical nucleation theory [37]
and is expressed as in Eq. (B1)

(B1)

In Eq. (B1), τ is incubation time which can be further simplified as shown in Eq. (B2), t is
the time and J s is the steady-state nucleation rate as shown in Eq. (B3) [37–40]

(B2)

(B3)

In Eqs. (B2) and (B3), Z which stands for Zeldovich factor,  is the attachment rate of
solute atoms to the precipitate (AL3X), N 0 denotes the number of nucleation sites
available in the beginning,  is the Gibbs energy of formation of a precipitate, k is
Boltzmann’s constant, and T is absolute temperature [12,13,32–38]. In Eq. (B2), θ can
vary but in Thermo-Calc it is fixed at 2 [13].

The number density of precipitates, in the beginning, can be shown as in Eq. (B4), while
the number density (N t) at any instant of time (t) can be expressed as in Eq. (B5) [13]

(B4)

= exp ( )Jt Js
−τ

t

τ =
1

θZ 2β∗
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(B5)

 is the Gibbs energy (or activation energy) of formation of the precipitate can be
expressed as in Eq. (B6).  is the molar Gibbs energy of formation of Al3Sc
nanocrystals from the FCC matrix and  is the molar volume of Al3Sc nanocrystals
[34], while σ is the interfacial energy between the FCC matrix phase and precipitate
Al 3Sc phase

(B6)

Zeldovich factor (Z) and  can be expressed as shown by Eqs. (B7) and (B8),
respectively [13,39–41]

(B7)

(B8)

In Eq. (B8),  and  are the equilibrium composition of element i in the FCC

and in the Al 3Sc phase respectively, while  is the chemical diffusion coefficient of
element i in the FCC phase [39–42].

For Al3Sc crystals, critical radius  [30–33] and time-dependent radius 
[41,42] can be expressed as in Eqs. (B9) and (B10), respectively.

(B9)

(B10)
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In Eq. (B10),  is the composition of the supersaturated FCC matrix phase and

 is the equilibrium composition of the Al3Sc phase. The growth of Al3Sc crystals

is dependent ⁠. Thus, the mass balance equation can be expressed as shown in
Eq. (B11) [40]

(B11)

In Eq. (B10), parameter ξ i,t can be expressed as in Eq. (B12), while parameter λ i,t in Eq.
(B12) can be calculated by solving Eq. (B13) [40–42]

(B12)

(B13)

Coarsening rate of the precipitate can be predicted from the growth equation shown in
Eq. (B14) [42–44]

(B14)

In Eq. (B14),  is the mean atomic volume of the Al3Sc phase, while N A is the
Avogadro's number

(B15)

Time-dependent mean radius and volume fraction of Al3Sc nanocrystals at any time
step can be calculated through Eqs. (B16) and (B17), respectively [39–42]

(B16)

(B17)

Appendix C

Johnson–Mehl–Avrami–Kolmogorov Analysis
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During nucleation and growth, the volume fraction of a precipitate follows the JMAK
equation shown in Eq. (C1) [45]

(C1)

JMAK analysis for estimating the evolution of the Al3Sc phase has been analyzed for a
better understanding of nucleation and growth phenomenon. Figure 8 shows the
relevant plot for volume fraction, while Fig. 9 shows the relevant plot for the mean
radius.

Fig. 8
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JMAK analysis for volume fraction estimations

Fig. 9
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JMAK analysis for estimation of the mean radius of the grain

In Fig. 8, one can observe that a perfect straight line was not obtained as expected. In
Fig. 9, a straight line can be observed.

As mentioned throughout this text, this is a completely new system. It was studied
under the framework of the CALPHAD approach, where usually 3–6 elements are
analyzed at a time. Thus, some discrepancies are unavoidable. Our group is working on
improving model development within the framework of the CALPHAD approach and
expects to improve the models to their maturity and use toward experiments.
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