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ABSTRACT

An increase in computing power available from modern processors and GPUs has allowed more
complex design optimization problems to be solved. This increase in complexity typically results in
a difficult optimization problem with a highly non-linear objective function topology. In this work
a robust optimization algorithm is presented capable of efficiently traversing higher-dimensional
objective function space to find Pareto optimal solutions. It is well known that no single optimization
algorithm performs best for all problems. Therefore, the developed method, a many-objective hybrid
optimizer (MOHO), uses five constitutive algorithms and actively switches among them throughout
the optimization process to accelerate the convergence, avoid local minima and arrive at a diverse set
of optimal designs. MOHO monitors the progress made by each of the five algorithms and allows
the best performing algorithm more attempts at finding the optimum. The MOHO algorithm was
tested on 13 unconstrained and five constrained analytical test problems, of up to 15 objectives,
from the DTLZ and WFG test suite. The MOHO algorithm performed, on average, better than the
five constitutive algorithms in 52% of the unconstrained DTLZ+WFG problems and in 70% of the
constrained DTLZ test problems.

1 Introduction

Before the advent of multi-objective optimization algorithms, a multi-objective design problems were typically solved
by converting it to a single-objective problem using a linear combination of multiple objectives. The development of
non-dominated approach for optimization made it possible to solve multi-objective problems in their true essence. The
optimization problems faced today require the solution of five to 10+ objectives [1, 2].

Whereas, optimization problems with two to three objectives are commonly referred to as multi-objective optimization
problems, optimization problems with four or more objectives are referred to as many-objective optimization problems.
These types of optimization problems pose additional difficulties and are an active field of research. Traditional multi-
objective optimization algorithms are not able to efficiently solve many-objective problems. This is due to the difficulty
in quantifying the dominance of one solution over another in such a high dimensional objective function space. They
also struggle to preserve diversity in the population. Much effort has been dedicated to develop algorithms that are
capable of solving such large optimization problems. This area of research is constantly updated with newer, faster,
more robust and efficient optimization algorithms that outperform their predecessors [3, 4, 5, 6]. These algorithms
are often classified as domination-based [7, 8], decomposition-based [9, 10] or indicator-based [11, 12]. In addition
to complete algorithms, much work as also been dedicated to devise methods for quantifying superiority of Pareto
solutions in such a large dimensional space. Such efforts yielded ε-dominance [13, 14], θ-dominance [7], fuzzy
dominance [15] and L-optimality [16]. Li et al. [17] and Zhao et al. [18] performed a thorough comparison of several
evolutionary many-objective algorithms on various test problems. However, they were not able to identify a single
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superior algorithm. This suggests that an algorithm, although superior for a particular test problem, might be inferior
for another test problem.

It is well known that no single optimization algorithm performs best for all conceivable problems. Since the objective
function topology is not known in advance, selecting an appropriate optimization algorithm can be difficult, if not
impossible. One approach to overcome this lack of knowledge is to employ several different optimization algorithms
and actively switch among them based on their performance. This hybridization of algorithms can allow the better
performing algorithm, for the current test problem, more attempts at locating the optimum. Talbi [19] defined two
forms of hybridization techniques: relay and teamwork. The teamwork hybridization approach uses several algorithms
simultaneously to solve a problem, whereas the relay approach actively switches back-and-forth among algorithms
based on some switching criteria. This study develops a high level relay-type hybrid optimization algorithm capable
of solving different types of optimization problems.

1.1 Relevant Works

One of the early examples of high-level relay type hybrid algorithm is the work of Lin et al. [20], which combines the
genetic algorithm (GA) and simulated annealing (SA) algorithms. The optimization starts with the SA algorithm and
uses the GA algorithm to enrich the solutions found. In the work of Talbi et. al [21], tabu search algorithm was used to
improve the population obtained by a GA. Like Lin et al. [20], Mahfoud and Goldberg [22] also used the GA to enrich
the solution obtained using SA. These works, however, do not actively switch between the two algorithms. For such an
approach, one must look at the work of Foster and Dulikravich [23, 24]. They used several gradient and non-gradient
based algorithms with active switching among them to accelerate the convergence to the global minimum. This active
switching also helped avoid premature convergence to the local minimum. Their single objective hybrid optimizer
uses eight switching criteria to determine when an algorithm prematurely converges and automatically switches to
another algorithm. Poloni et al. [25] hybridized the genetic algorithm with a conjugate gradient method. Their work
made use of a Neural Network surrogate to analytically compute the derivatives needed by the gradient based method.
The work of Emmerich et al. [26] employed a hybrid gradient descent coupled with a GA to perform multi-objective
optimization. Their work first used GA to perform a global search followed by the gradient descent to perform the
local search. This makes their hybridization sequential. The work of Satoru et al. [27] investigated the performance
of a hybrid GA-SQP approach also in a sequential manner. The GA was first used to conduct a broad design space
search followed by the Sequential-Quadratic-Programming (SQP) algorithm to refine the local search. A hybrid global
and local search approach was used by Balsa-Canto et al. [28] to perform parameter estimation in dynamical systems.
Their work determined whether a local minimum was approached to switch between the differential evolution (DE)
algorithm and the multiple shooting algorithm. Drawback of the sequential method is that each algorithm only gets
one attempt at locating the optimum. Because an algorithm might perform better in one region of the design space
than another, it might not get enough attempts in its dominant region to exhaustively perform the search.

The global-local search approach was also investigated by Kelner et al. [29], but within the multi-objective
optimization framework. Their work utilized both the evolutionary and gradient based algorithms at each iteration
to refine the Pareto front. The work of Moral [30] developed a multi-objective hybrid optimization algorithm by
combining the SPEA [31], MOPSO [32] and NSDE [33] algorithms. It continuously switched among constitutive
algorithms, thereby avoiding local Pareto fronts. Their work outlines five criteria for switching, based on the
convergence and diversity of the population. Although, these three algorithms and the five switching criteria might
work for multi-objective optimization (three or less objectives), they are not suited for many-objective optimization.
These five criteria will be discussed further. Colaco et al. [34] also used a similar strategy to switch between
constitutive algorithms. Their work approximates the single objective function using radial basis functions and then
performs the optimization using this approximation. This constant switching among algorithm alleviates the drawback
experienced in sequential switching. The continuous switching allows each constitutive algorithm an attempt at finding
an optimum in the region of current search. Once the search region changes, an algorithm that best performs on the
current objective function topology can be selected. This approach was developed by Dulikravich et al. [35]. The
single-objective hybrid algorithm suite of Dulikravich et al. [24, 34, 35] used several non-gradient and gradient based
constitutive optimization algorithms. Their work uses a search-vector concept to control the switching. The search-
vector and an algorithm’s population centroid are used to determine the algorithm that should be used. This approach
works well for single-objective optimization problem. For the many-objective problems, the search vector is often
difficult, if not impossible, to obtain.

The adoption of relay-type hybridization for solving multi-objective optimization problems is scarce. This is mainly
due to the difficulty in determining appropriate switching criteria. Nonetheless, efforts have been made to improve
multi-objective optimization using a relay-type hybridization. A hybrid framework was developed by Sindhya et
al. [36] that combined an evolutionary algorithm with a local search algorithm. Their work utilized the NSGA-
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II [37] and the MOEA/D [38] algorithms to perform the global search and an SQP algorithm to perform the local
search. Automatic switching was used based on a metric of diversity in the population. This approach only takes into
account the diversity of the Pareto optimal solutions, but not the convergence. For optimal results, both diversity and
convergence should be taken into account.

Wang et al. [39] also used a global-local search approach without switching. Bosman [40] used an efficient gradient-
based and evolutionary algorithm combination to develop a real-valued multi-objective hybrid optimizer. The solution
of a multi-objective optimization problem using gradient based methods typically requires a weighted sum of all
objectives to form a single objective. Bosman’s work performs this gradient-based optimization without constructing
a single objective function.

An alternate approach to hybridization is presented by Sekhar and Devi [41] where a GA-PSO hybrid and a DE-
PSO hybrid is used to solve a single-objective transmission system design problem. Their work used a divide-and-
conquer approach where each algorithm in the hybridization was used to solve a separate sub-problem. This is known
as teamwork hybridization. A thorough review of a PSO-DE hybridization is performed by Xin et al. [42]. The
work of Liu and Yang [43] developed a hybrid particle swarm optimization (PSO) - Nelder-Mead (NM) algorithm.
Their approach uses both the PSO and NM algorithms at each iteration. Although this approach guarantees that
each algorithm attempts the optimization at each iteration, it also requires excessive number of objective function
calculations. This is because the objective function has to be calculated even for the algorithm that is under performing.

Reddy et al. [44, 45] accelerated the parameter estimation in Lithium-Ion batteries using a relay-type single objective
hybrid optimizer. Their switching strategy randomly selected among NSGA-III, MOEA/DD and NSDE-R if the
current algorithm failed to improve in its objective function. Their work reduced the time required to solve the
problem from three weeks, when a non-hybrid algorithm was used, to 14 hours using the hybrid approach. Lepagnot
[46] developed a multi-objective high-level relay hybrid algorithm consisting of a local search, differential evolution
and particle swarm algorithms. Their approach first used the local search algorithm, followed by the differential
evolution and particle swarm algorithm in a sequential manner. Recently, the area of hyper-s has also been garnering
attention. Drake et al. [47] performed a review of various hyper-heuristics frameworks. Mashi et al. [48] and
Li et al. [49] presented a hyper-heuristic algorithm for multi-objective optimization. Their algorithm combined the
NSGA-II, SPEA-2 and the IBEA algorithm and showed better performance than the individual constitutive algorithms.
However, it is well known that these multi-objective optimization algorithms do not perform well for many-objective
optimization problems. This is seen in the work of Li et al. [49] where only three-objective optimization problems are
solved.

It is well known that with an increase in the number of objectives, an increasingly larger percent of the total population
becomes non-dominated [50, 31]. Since most algorithms use the non-domination criteria to compare superiority of
designs, no new information is obtained if the entire population is non-dominated. Figure 1 shows the percent of
the population that is non-dominated for a typical optimization problem, for different number of objectives, as the
optimization procedure continues for longer generations. It can be seen that for optimization problems with five
objectives or more, almost 100% of the population becomes non-dominated in the early phase of the search.

Figure 1: Percent of population that is non-dominated at each generation of the NSGA-III algorithm on the DTLZ1 problem with
varying number of objectives, M. (population size was set to 100 members)
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A successful optimization yields Pareto designs that are both well converged and uniformly distributed on the
analytical Pareto front. This uniform distribution is referred to as diversity preservation. Many-objective optimization
problems also pose a difficulty with diversity preservation. All hybrid multi-objective optimization algorithms thus
far do not perform well for problems with more than four to five objectives. These types of problems, named many-
objective optimization problems, pose great difficulty in preserving diversity in the Pareto solution.

This work develops a Many-Objective Hybrid Optimizer (MOHO) that actively switches among five constitutive
algorithms to accelerate convergence and preserve diversity. The MOHO algorithm is able to use a single performance
metric and a single switching criteria to select the algorithms with the highest probability of accelerating convergence,
preserving diversity and solving the optimization problem. This allows for any number of constitutive algorithms to be
used within the MOHO framework without requiring additional performance metrics and switching criteria. Despite
the presence of suboptimal consitutive algorithms in the suite, MOHO is able to outperform its constitutive algorithms
in several test problems. The inner workings of this algorithm will be outlined in the following sections. The work
also presents the effectiveness of the consitutive algorithms on test problems with different characteristics.

The manuscript is structured as follows. Section 2 presents the MOHO algorithm along with its constitutive algorithms,
rules for switching among these consititutive algorithms and methods for handling constraints. Section 3 presents
problem formulation for benchmarking MOHO against several algorithm. It describes the characteristics of test
problems investigated, the parameters for optimization and the metrics of comparison. Section 4 presents the results of
the benchmarking study on unconstrained test problems (DLTZ and WFG test problems). It discusses the converged
Pareto fronts, the metrics of performance and the algorithms favored by MOHO during the optimization process.
Section 5 presents the benchmarking results in a similar fashion as in Section 4, but on the constrained DTLZ problem
set.

2 Many Objective Hybrid Optimization (MOHO)

There exist several optimization concepts, each using a different update and selection procedure. It is also known
that the objective function topology is dependent on the input variables and the analysis code. It is therefore safe to
assume that there is no single algorithm that can outperform all other algorithms for every conceivable optimization
problem. This is apparent in the “No Free Lunch Theorem for Search” proposed by Wolpert and Macready [51]. The
theorem states

“... all algorithms that search for an extremum of a cost function perform exactly the same, when averaged over all
possible cost functions. In particular, if algorithm A outperforms algorithm B on some cost functions, then loosely
speaking there must exist exactly as many cost functions where B outperforms A.”

Therefore, intuitively speaking, the probability of converging to the optimum designs can be increased by combining
several algorithms into a single suite. This hybridization of several algorithms and controlled switching among the
algorithms can increase the convergence speed to optimum design on the Pareto front. This work develops a Many-
Objective Hybrid Optimizer (MOHO) to address these key issues. Several attempts have been made to hybridize
particular algorithms by combining the update and selection procedure, but this is a lower level hybridization. The
hybridization in this work is a high-level relay since MOHO does not alter the individual algorithms. This combination
of several algorithms into a single suite leads to MOHO’s performance to be heavily dependent on not only the
individual constitutive algorithms, but also the switching logic used. Figure 2 shows the workflow used in the MOHO
algorithm.

4
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Figure 2: The workflow of the MOHO algorithm

The pseudocode for the MOHO algorithm using an arbitrary set of constitutive algorithms and performance metrics is
given in Algorithm 1, where Pi is the population at the ith generation, A ∈ S is an algorithm in the set of algorithms
S, and ∈R S denotes a uniform random sample from set S. For an algorithm A, POSA is its Probability of Success,
N S
A andN T

A are the number of successful and total runs, respectively, of the algorithm, PA denotes the population set
obtained by applying the algorithm to another population set, andMA is a metric of performance of the population
PA (i.e. MA :=M(PA)). The constitutive set of algorithms S used in this work is presented in Section 2.1 and the
metric of performanceM is taken to be the hypervolume and is discussed in Section 2.2.

Algorithm 1 Pseudocode for the MOHO algorithm

Input: Algorithm set S, initial population P0

Output: Pareto set PN

1: Initialize: A ∈R S,Mbest =M(P0), POSB = 1 ∀B ∈ S, i = 1
2: for i < N do
3: Pi = A(Pi−1) Obtain updated population by running algorithm A
4: MA =M(Pi) Compute performance metric for updated population
5: N T

A = N T
A + 1 Update number of total runs of algorithm

6: ifMA ≥Mbest then Pareto set improved: successful run
7: N S

A = N S
A + 1 Update number of successful runs of algorithm

8: Mbest =MA Update the best value of the performance metric
9: POSA = POS(N S

A ,N T
A ) Update POS for current algorithm

10: else No improvement in Pareto set: failed run
11: POSA = POS(N S

A ,N T
A ) Update POS for current algorithm

12: A := argmax
B∈S

(POSB) Select algorithm with highest POS

13: end if
14: i = i+ 1 Increment counter for number of generations
15: end for

2.1 Constitutive Algorithms in MOHO

Since the topology of the objective function is not known a priori, it is impossible to select the correct algorithm for
that particular problem. Therefore, the MOHO suite should include a selection of algorithms that perform differently
in their update and selection procedures. The MOHO suite currently contains five constitutive algorithms. Due to the
large number of established algorithms in the MOHO suite, the inner workings of the individual algorithms are not
presented. The reader is referred to the algorithm’s respective reference. The MOHO suite contains the following
algorithms:

1. NSGA-III [52]: The Non-Dominated Sorting Genetic Algorithm-III (NSGA-III) is a third-generation genetic
algorithm developed for many-objective optimization problems. It uses a combination of Simulated Binary
Crossover (SBX) [53] and polynomial mutation [50] to produce a candidate design from randomly selected
parent designs. The candidate designs are then evaluated and a non-dominated sorting is performed. A
reference point based niching is performed to select the designs to be carried into the next generation.

5
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2. MOEA/DD [54]: The Many-Objective Evolutionary Algorithm Based on Dominance and Decomposition
(MOEA/DD) is an evolutionary algorithm that uses similar recombination operators as NSGA-III. Whereas
the NSGA-III selects its parent designs randomly, the MOEA/DD algorithm selects the parent design from
its immediate neighborhood. The MOEA/DD uses a penalty-boundary-intersection metric (PBI) to select the
designs to be carried into the next generation.

3. SPEA/R [55]: The Strength Pareto Evolutionary Algorithm Based on Reference Point (SPEA/R) is also an
evolutionary algorithm that uses the same recombination operators as MOEA/DD. It, however, prioritizes
diversity preservation in the Pareto front before the convergence to the Pareto front.

4. NSDE-R1B [56]: The Non-Dominated Sorting Differential Evolution (NSDE) algorithm uses the same
selection operator as NSGA-III, but a different recombination operator. Whereas the previous three
algorithms combine two parent designs to create candidate designs, the NSDE-R1B algorithm uses the
“rand/1/bin” (R1B) mutation operator to create a candidate design from three parent designs.

5. NSDE-D3 [56]: The Non-Dominated Sorting Differential Evolution algorithm uses the same selection
operator as NSGA-III, but a different recombination operator. The NSDE-D3 uses the “donor3” (D3)
mutation operator that performs a weighted combination of three parent designs. The random weights can be
generated using any distribution, but are uniformly distributed in this work.

The NSDE-R1B and NSDE-D3 algorithms were recently developed for use in MOHO. The NSDE-R1B and NSDE-
D3 algorithms showed an increased rate of convergence. Li et al. [17] performed a thorough comparison of 13
different algorithms covering various categories such as decomposition-based, indication-based and reference-point-
based algorithms. Although they could not champion one single algorithm that outperforms all other algorithms
(as stated by the No-Free-Lunch Theorem), they showed a strong performance by the NSGA-III and MOEA/DD
algorithms. They also showed that different types of algorithms perform well on different test problems. This was
seen in the case of NSDE-R1B and NSDE-D3, where NSDE-R1B performed better on the DTLZ test suite, while
NSDE-D3 performed better on the WFG test suite [56]. It should be mentioned that the source code of the constitutive
algorithms used within/by MOHO were not taken from an existing framework. However, the NSGA-III, MOEA/DD
and SPEA/R algorithms used to generate solutions/data for comparison and benchmarking purposes on the analytical
test problems, were taken from the PlatEMO framework [57].

2.2 Switching Rules

Although the MOHO suite contains a diverse set of optimization algorithms, its performance is also dependent on the
switching criteria used. The switching criteria for a single-objective optimization problem is simple since it is easy to
monitor the progress of the algorithm. In single objective optimization, an algorithm has made progress if it found a
point at the current iteration that is better than the best known point at the previous iteration. This approach cannot be
used for many-objective optimization problems since the solution of the optimization problem is now a set of designs.

The multi-objective hybrid optimizer developed by Moral [30] assigned a score (zero to five) to each constitutive
algorithm at each generation. If the total scored by an algorithm was less than two, another algorithm was selected at
random for the next generation. An algorithm is assigned a score of one for each of the following criteria it fulfills:

1. Change in non-dominated set size

2. A point from the new generation dominates

3. Change in dominated hypervolume

4. Average distance change between the designs in objective function space

5. Spread of non-dominated set

These criteria, which were used for multi-objective problems, fail when used in a many-objective optimization
framework. As shown in Fig. 1, as the number of objectives increases, a greater percent of the population becomes
non-dominated. This very quickly leads to all the population members becoming non-dominated and the change in
non-dominated set size from generation to generation becomes zero. For this reason, neither the first nor the second
criteria used by previous versions of MOHO can be applied to many-objective problems. Computing the average
distance of the designs in objective function space with respect to some reference point (e.g. Nadir point [58] or the
worst-case point) provides incomplete information about the Pareto solution. It is possible that all designs converge to
a single point that is farthest away from this reference point. In this case, the average distance metric will indicate that
the Pareto set of the current population is better, when actually the Pareto designs fail to preserve diversity. Similarly,
this is true for the spread metric since it only considers the extreme values of the objectives on the Pareto front.

6
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Hypervolume is a metric that can quantify both the convergence and diversity of the Pareto front [59]. Hypervolume
measures the size of the objective function space dominated by solutions S and bounded by zr where zr is the reference
point dominated by all Pareto optimal solutions. Therefore, the hypervolume metric does not require the analytical
Pareto front to be known. The hypervolume is computed as

HV (S) = V ol (x∈S [f1 (x) , z
r
1 ]× . . . [fM (x) , zrM ]) (1)

where V ol (·) is the Lebesgue measure. A larger value of HV indicates a better converged and more diversified
solution set. Ishibuchi presented an approach to specify a reference points when computing hypervolume [60]. In
this work, the reference point is taken as the worst-case point from the initialization population. The worst-case point
is the worst-case objective vector where the worst value of each objective function from the entire population set
is collected into a single vector. Unlike in previous attempts at multi-objective hybridization where the alternative
algorithm is selected at random, the current MOHO uses a more deterministic criteria, Probability of Success (POS),
for selecting the next algorithm. During the optimization process, the number of attempts made by each algorithm and
the number of successful attempts of each algorithm are monitored and updated at each generation. The POS value is
then computed as

POS (·) = Nsuccess (·)
Ntotal (·)

(2)

where · is a particular algorithm,Nsuccess are the number of successful attempts, andNtotal are the total attempts made
by the algorithm. Here, a successful attempt is one where the hypervolume increases from the current maximum value.
It should be mentioned that after each successful attempt, the worst-case point is updated and selected from the current
population, and the current maximum value of the hypervolume is recomputed. At initialization, each algorithm in the
MOHO suite is given a POS value of one. This value is updated at each generation for each algorithm. The algorithm
with the largest POS is selected for the next generation. If multiple algorithms have the same largest POS value, one
is selected at random. This switching criteria allows the algorithm that is performing best for the current problem to
be selected and the algorithm performing worst to not be selected.

2.3 Constraint Handling

The typical multi-objective optimization problem can be stated as

min ~f (~x)

subject to : xi ∈ [ai, bi] , i = 1, . . . ,m

hj (~x) = 0, j = 1, . . . , n

gk (~x) ≤ 0, k = 1, . . . , o

(3)

where ~x is the vector of design variables, ~f is the vector of objectives, hj is the jth equality constraint and gk is the
kth inequality constraint.

When solving an unconstrained optimization problem, the standard non-domination criteria can be used to judge the
superiority of one solution over another. When constraints are incorporated, additional approaches are needed to
quantify the degree to which the constraints are violated. This work uses the constraint violation value approach to
incorporate constraints within the optimization framework. The constraint violation value of a solution x, denoted by
CV (x) is calculated as

CV (x) =

n∑
j=1

|hj(x)|+
o∑

k=1

〈gk(x)〉 (4)

where the bracket operator 〈α〉 returns the absolute value of α if α > 0 and return 0 otherwise. A lower value of
CV (x) is indicative of a smaller constraint violation. A CV (x) value of 0 indicates that all constraints are satisfied
and the solution is feasible. This constraint violation value is used to modify both the non-domination criteria and the
mating selection procedure.

2.3.1 Updated Mating Selection

The individual algorithms inside MOHO use various mate selection operators. These operators must be controlled
when solving a constrained problem. It is possible for the entire population of the algorithm to be infeasible,
especially in early generations. Therefore, preference to mate should be given to those solutions that least violate
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the constraints in an effort to drive the search to the feasible region. For this reason the binary tournament selection
[61], given in Algorithm 2, is introduced. This approach gives the feasible solutions a higher chance of mating than
the infeasible solutions. It should be mentioned that candidate solutions x(1) and x(2) in Algorithm 2 are obtained
using the constitutive algorithm’s specific selection operator.

Algorithm 2 Binary Tournament Selection

Input: candidate solutions x(1), x(2)
Output: mating parent x′

1: if CV (x(1)) < CV (x(2)) then
2: x′ = x(1)
3: else if CV (x(1)) > CV (x(2)) then
4: x′ = x(2)
5: else
6: x′ = random(x(1), x(2))
7: end if

2.3.2 Updated Domination Principle

The standard non-dominated sorting uses only the objective function values to rank the solution according to different
non-domination levels. The inclusion of the constraints requires that the domination criteria be updated using the
constraint violation value. The constraint-domination principle is stated as [62, 37]

Definition A solution x(1) is said to constraint-dominate another solution x(2), if any one of the following conditions
is true:

1. if x(1) is feasible and x(2) is infeasible

2. if x(1) and x(2) are infeasible and x(1) has a smaller constraint violation value

3. if x(1) and x(2) are both feasible and x(1) dominates x(2) with the usual domination principle

Thus, the standard domination criteria is only used if both designs are feasible.

2.4 Computational Complexity

The computational complexity of MOHO is dictated by the computational complexity of the constitutive
algorithms. The worst-case computational complexity of one generation of NSGA-III was shown to be
max

(
O(N2 logM−2N), O(N2M)

)
[52], assuming that the number of reference points are approximately equal to

the number of population members. The first term accounts for the worst case complexity of the sorting algorithm
whereas the second term accounts for the reference point association. The worst-case computational complexity of the
NSDE-R1B and NSDE-D3 is also max

(
O(N2 logM−2N), O(N2M)

)
since the algorithms are similar to NSGA-III

and only differ in their mutation operators. The worst-case computational complexity of MOEA/DD can be shown as
max

(
O(MN3), O(N2M)

)
. The average complexity of SPEA/R algorithm is O(MN2) [55].

3 Benchmarking MOHO

Each optimization algorithm in the MOHO suite was analyzed on a family of test problems for which the analytical
Pareto front is known. The test problems vary in degree of difficulty and number of variables, objectives and
constraints.

3.1 Test Problems for Many-Objective Optimization

The test problems used to evaluate the performance of MOHO were taken from the DTLZ [63] and WFG [64] test
suites. 1 These test suites were chosen because they can be scaled up to any number of design variables N and any

1The MOHO algorithm was also benchmarked against results from the Two Arch2 [65] and RVEA algorithms [10]. This data
is provided in the appendix.
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number of objectives M . It should be mentioned that the test suites only contain unconstrained problems. The test
suites contain problems of varying difficulty, each with different properties (linear, concave, etc.). They provide a
diverse set of objective function topologies that the optimization algorithm can be validated against. Table 1 shows
these properties. Their analytical Pareto fronts are also known, which allow for the convergence analysis of the
algorithms. The Pareto front for the DTLZ1 problem is a half-unit-hyperplane, while for DTLZ2 to DTLZ4, the
Pareto front is a unit hypersphere. The WFG4 to WFG9 test problems have a hyperelliptic Pareto front with radii
ri = 2i where i ∈ {1 . . .M}.
The total number of design variables for the DTLZ cases is N = M + k − 1. For DTLZ1, k = 5 and for DTLZ2,
DTLZ3 and DTLZ4, k = 10. The total number of variables for the WFG suite is N = k + l, where l = 20 and
k = 2× (M − 1). The algorithms were investigated on problems having three, five, eight, 10 and 15 objectives.

Table 1: Properties of DTLZ and WFG test problems used to validate the optimization algorithms
Test problem Properties

DTLZ1 Linear, multi-modal
DTLZ2 Concave
DTLZ3 Concave, multi-modal
DTLZ4 Concave, biased
WFG1 Mixed, biased
WFG2 Convex, disconnected, multi-modal, non-separable
WFG3 Linear, partially degenerate, non-separable
WFG4 Concave, multi-modal
WFG5 Concave, deceptive
WFG6 Concave, non-separable
WFG7 Concave, biased
WFG8 Concave, biased, non-separable
WFG9 Concave, biased, multi-modal, deceptive, non-separable

The constrained test problems were obtained by incorporating constraints to the original DTLZ problems. In
particular, the C1-DTLZ1, C1-DTLZ3 and C3-DTLZ4 [61] test problems were considered to evaluate the algorithms
on constrained test problems. The C1 constrained test problems maintain the same optimal Pareto front as their
unconstrained version, but the feasible search space is greatly reduced. The C3 constrained test problems alter the
unconstrained Pareto front by placing it in an infeasible region. The Pareto front for the C3 type constrained problems
is the constraint boundary itself.

3.2 Indicator of Performance

This work utilizes two metrics to quantify the performance of the optimization algorithms: inverted generalized
distance (IGD) and hypervolume (HV).

Because all algorithms in the MOHO suite are reference point-guided algorithms, only the analytical Pareto points
closest to these reference points, called targeted Pareto points, should be used to construct the accuracy measure.
Since the analytical Pareto front is known, the targeted Pareto points, Ztar, can be obtained by finding the intersection
between the analytical Pareto front and the ray connecting the reference point and the origin. The accuracy measure
should then use these targeted Pareto points and the converged Pareto point obtained from the optimization algorithms.
This work makes use of the inverted generalized distance (IGD) metric [66] given by

IGD (P,Ztar) =
1

|Ztar|

|Ztar|∑
i=1

|P |
min
j=1

d (zi,pi) (5)

where d (zi,pi) = ||zi,pi||2. The IGD measures both convergence to the analytical Pareto front and the diversity
of the Pareto solution, if the targeted Pareto points are well distributed. The smaller the value of IGD, the better the
approximated Pareto solution.

The IGD metric is only used for the DTLZ test problems because of their well defined Pareto front. It is difficult
to generate the targeted Pareto points for the WFG problems, due to their complicated Pareto fronts. Therefore,
the hypervolume is used instead of the IGD metric for the WFG problems. The reference points required for the
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hypervolume calculations in Eq. (1) are given in Table 2. The hypervolume is normalized to [0, 1] by dividing by
z =

∏M
i=1 z

r
i . For three to 10-objective test problems, the exact hypervolume is calculated using the WFG algorithm

[67] . For problems with greater than 10 objectives, the hypervolume is approximated using Monte Carlo sampling
[68]. The sampling size was held constant, as recommended, at 10, 000 samples [68].

Table 2: The reference point used in the computation of Hypervolume for each problem
Test problem Reference point

DTLZ1 (1.0, . . . , 1.0)
T

DTLZ2 to DTLZ4 (2.0, . . . , 2.0)
T

WFG1 to WFG9 (3.0, . . . , 2.0×M + 1.0)
T

3.3 Algorithm Parameter Settings

The algorithm and test problem-specific parameters are presented in this section.

Due to the stochastic nature of the optimization, each algorithm was run 20 times on each test problem. Due to the
varying degree of difficulty of problems in the test suites, the number of generation and population size were made
test problem specific. Table 3 shows the population size and the number of generations for each test problem.

Table 3: Population sizes and number of generations for each test problem
Number of generations

M Population size DTLZ1 DTLZ2 DTLZ3 DTLZ4 WFG
3 92 400 250 1000 600 400
5 212 600 350 1000 1000 600
8 156 750 500 1000 1000 750

10 276 1000 750 1500 2000 1000
15 136 1500 1000 2000 3000 1500

The parameters that control the recombination operator of the algorithm are kept constant for all test problems. The
properties for each algorithm are as follows:

• NSGA-III [52]: The crossover probability, pc, and the mutation probability, pm are 1.0 and 1/N respectively.
The crossover distribution index, ηc, and mutation distribution index, ηm, are set to 30 and 20 respectively.

• MOEA/DD [54]: The crossover and mutation parameters are the same as those for the NSGA-III algorithm.
The penalty parameter θ in PBI is set to 5.0. The neighborhood size, T, is set to 20 and the probability, δ,
used to select in the neighborhood is chosen to be 0.9.

• SPEA/R [55]: The crossover and mutation parameters are the same as those for the NSGA-III algorithm.

• NSDE-R1B [56]: The scale factor F is held constant at 0.5 and the crossover probability Cr is also held
constant at 0.7.

• NSDE-D3 [56]: The scale factor and crossover probability are the same as those for the NSDE-R1B
algorithm.

4 Performance of MOHO on Unconstrained Test Problems

The performance of MOHO was investigated on analytical unconstrained test problems with three, five, eight, 10 and
15 objectives. Sections 4.1 and 4.2 present the results of the benchmarking study on the unconstrained DTLZ and WFG
problem sets, respectively. Table 4 and Table 5 show the IGD values for the DTLZ test problems and hypervolume
values for the WFG test problems, respectively. They also provide the results of the Wilcoxson’s rank-sum test [69] (for
a significance level of 5%) which is used to identify whether the performance of a particular algorithm is significantly
better than, worse than or similar to MOHO.

One main issue when solving optimization problems with more than three objectives, is the visualization of the Pareto
front. In this work, the higher dimensional Pareto fronts are shown using a parallel coordinate graph, e.g. Fig. 4,
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where each line represents a Pareto design. The minimum and maximum values of the parallel coordinate graph
should coincide with the ideal point and the Nadir point of the analytical Pareto front. For example, in the case of the
DTLZ1 problem, Fig. 4, the ideal point has a value of zero for all the objectives and the Nadir point has a value 0.5 for
all the objective. Therefore, the value of each objective for each design in parallel coordinate graph should be between
0.0 and 0.5. Similarly, the value of each objective for each design in parallel coordinate graph should be between 0.0
and 1.0 for the DTLZ2 to DTLZ4 test problems. The distribution of the parallel coordinates indicates the distribution
of the Pareto design through the objective function space. A uniform, structure parallel coordinate graph indicates a
uniformly distributed Pareto front.

4.1 DTLZ Test Problems

Due to the regular Pareto fronts of the DTLZ problems, it is relatively easier to create the reference analytical Pareto
points that correspond to the reference points. For this reason, the IGD metric is used to quantify the performance of
the optimization algorithms.

The IGD values of the algorithms on the DTLZ problems are given in Table 4. It shows that the MOHO algorithm
outperforms the best of the five constitutive algorithms in 60% of the DTLZ test cases. The success rate of NSGA-III,
MOEA/DD, SPEA/R, NSDE-R1B and NSDE-D3 is 20%, 10%, 0%, 10% and 0%, respectively. MOHO outperforms
the other algorithms in all of the DTLZ1 problems, 60% of the DTLZ2 problems and 80% of the DTLZ3 problems. For
the cases where MOHO was not the best performing, it only slightly underperformed compared to the best performing
algorithm. This can be seen in the similar IGD values. Although not the best for the DTLZ4 problem, MOHO was
consistently on par with the best performing algorithm. Table 4 also shows that MOHO consistently has low standard
deviation of IGD, indicating a robust and consistently well-performing algorithm. The results of the Wilcoxon’s rank-
sum test on the DTLZ test problems demonstrate that the MOHO algorithm significantly outperforms the constitutive
algorithms in majority of the test problems and is on par with its constitutive algorithms in several of remaining test
cases.

Table 4: Mean and standard deviation of the IGD obtained by each algorithm for the DTLZ problems. Best mean
performance is coloured in red. According to Wilcoxon’s rank-sum test (with a significance level of 5%), ↑, ↓ and ≈
indicate that the performance of the corresponding algorithm is significantly better than, worse than or similar to that
of MOHO .

Problem M NSGA-III MOEA/DD SPEA/R NSDE-R1B NSDE-D3 MOHO
DTLZ1 3 2.29E-3 (2.72E-3) ≈ 1.09E-2 (3.96E-4) ↓ 4.07E-1 (4.74E-1) ↓ 1.83E-3 (1.68E-3) ↓ 6.05E-1 (3.74E-1) ↓ 1.72E-4 (7.45E-5)

5 1.99E-3 (1.86E-3) ≈ 3.33E-2 (3.62E-4) ↓ 2.21E0 (1.28E0) ↓ 1.20E-3 (6.82E-4) ↓ 7.96E-2 (1.22E-1) ≈ 2.37E-5 (1.61E-5)
8 6.28E-3 (2.25E-3) ≈ 7.30E-2 (7.82E-4) ↓ 1.12E1 (5.85E0) ↓ 5.57E-3 (1.47E-3) ↓ 2.51E-1 (1.92E-1) ↓ 3.42E-3 (1.50E-3)

10 5.97E-3 (2.83E-3) ≈ 9.44E-2 (9.01E-4) ↓ 9.34E0 (3.51E0) ↓ 5.47E-3 (1.08E-3) ↓ 2.06E-1 (2.34E-1) ↓ 3.39E-3 (8.23E-4)
15 9.19E-3 (7.44E-3) ≈ 1.64E-1 (2.47E-3) ↓ 1.32E1 (4.00E0) ↓ 8.87E-3 (5.18E-3) ↓ 4.61E-1 (2.69E-1) ↓ 3.46E-3 (1.54E-3)

DTLZ2 3 3.27E-3 (1.51E-3) ≈ 3.59E-2 (4.47E-4) ↓ 1.60E-2 (3.98E-3) ↓ 3.24E-3 (2.24E-3) ↑ 3.73E-3 (2.22E-4) ↓ 4.41E-3 (2.45E-4)
5 9.56E-3 (1.79E-3) ≈ 5.29E-2 (4.63E-4) ↓ 4.45E-2 (6.50E-3) ↓ 9.12E-3 (1.33E-3) ↓ 8.55E-3 (4.04E-4) ≈ 8.25E-3 (6.00E-4)
8 2.50E-2 (2.11E-3) ≈ 3.75E-2 (1.09E-3) ↓ 8.19E-2 (8.15E-3) ↓ 2.56E-2 (2.10E-3) ↓ 1.94E-2 (9.80E-4) ↓ 1.92E-2 (1.46E-3)

10 2.89E-2 (2.44E-3) ≈ 3.32E-2 (5.84E-4) ↓ 7.38E-2 (8.28E-3) ↓ 3.02E-2 (3.11E-3) ↓ 1.80E-2 (6.94E-4) ↓ 1.76E-2 (1.11E-3)
15 3.64E-2 (3.43E-3) ≈ 1.09E-2 (8.73E-4) ↑ 1.28E-1 (1.40E-2) ↓ 3.64E-2 (2.69E-3) ↓ 1.16E-2 (4.96E-4) ↓ 1.68E-2 (1.23E-3)

DTLZ3 3 5.99E-3 (2.98E-3) ↑ 3.67E-2 (8.10E-4) ↑ 1.04E0 (1.16E0) ↓ 6.22E-3 (2.55E-3) ↑ 8.46E0 (5.49E0) ↓ 4.21E-1 (5.37E-1)
5 2.47E-2 (2.68E-2) ↓ 5.36E-2 (5.71E-4) ↓ 5.05E1 (1.95E1) ↓ 2.53E-2 (2.46E-2) ↓ 3.71E0 (2.15E0) ↓ 3.41E-3 (3.20E-4)
8 6.45E-2 (2.10E-2) ≈ 5.07E-2 (5.07E-3) ↓ 1.12E2 (3.68E1) ↓ 6.45E-2 (1.66E-2) ↓ 4.01E0 (1.84E0) ↓ 1.49E-2 (9.23E-4)

10 4.28E-2 (1.33E-2) ≈ 3.71E-2 (1.86E-3) ≈ 1.00E2 (2.88E1) ↓ 4.14E-2 (6.48E-3) ↓ 2.99E0 (1.44E0) ↓ 1.32E-2 (5.64E-4)
15 5.98E-2 (2.94E-2) ↓ 1.48E-2 (1.46E-3) ≈ 8.23E1 (2.64E1) ↓ 1.46E-1 (1.45E-1) ↓ 7.47E0 (3.53E0) ↓ 1.41E-2 (9.99E-4)

DTLZ4 3 5.27E-4 (3.23E-4) ↑ 3.60E-2 (8.49E-3) ↓ 9.93E-3 (1.83E-3) ↓ 1.06E-1 (2.15E-1) ↓ 2.56E-3 (1.92E-4) ≈ 3.00E-3 (1.78E-4)
5 1.81E-3 (4.78E-4) ≈ 5.24E-2 (3.76E-4) ↓ 2.09E-2 (3.31E-3) ↓ 1.83E-3 (4.53E-4) ≈ 5.29E-3 (4.50E-4) ≈ 5.89E-3 (5.58E-4)
8 7.93E-3 (1.02E-3) ↑ 3.27E-2 (7.92E-4) ↓ 4.65E-2 (7.12E-3) ↓ 8.10E-3 (1.15E-3) ↑ 1.65E-2 (9.98E-4) ≈ 2.33E-2 (1.20E-3)

10 9.78E-3 (8.33E-4) ≈ 2.98E-2 (5.20E-4) ↓ 5.60E-2 (6.41E-3) ↓ 9.71E-3 (8.53E-4) ↑ 1.54E-2 (6.76E-4) ≈ 2.03E-2 (8.41E-4)
15 1.30E-2 (1.41E-3) ≈ 8.82E-3 (9.96E-4) ↑ 9.49E-2 (7.12E-3) ↓ 1.35E-2 (1.29E-3) ≈ 1.26E-2 (6.60E-4) ≈ 1.35E-2 (6.32E-4)

Figure 3 shows the Pareto fronts obtained for the three-objective DTLZ1 problem where the grey surface represents
the analytical Pareto front, the half-unit hyperplane. It can be seen that the SPEA/R algorithm is unable to properly
converge to the analytical Pareto front or preserve diversity. The MOEA/DD algorithm also is not able to properly
preserve the diversity, whereas the other algorithms are able to both converge and preserve diversity. It can be seen
that even with such an under performing algorithm, MOHO is able to produce good results.

11



A PREPRINT - AUGUST 21, 2022

(a) (b) (c)

(d) (e) (f)

Figure 3: The Pareto fronts for a three-objective DTLZ1 problem, obtained using: a) NSGA-III, b) MOEA/DD, c) SPEA/R, d)
NSDE-R1B, e) NSDE-D3 and f) MOHO

Figure 4 shows the Pareto fronts for a 10-objective DTLZ1 problem. The structured arrangement of the designs
indicate a good convergence to the analytical Pareto front and to the reference points. The MOEA/DD and SPEA/R
again fail to produce good results for the 10-objective DTLZ1 test problem, whereas the remaining algorithms all
produce good convergence. This suggests that the MOEA/DD and SPEA/R algorithms are non-ideal for the linear
multi-modal problems.

(a) (b) (c)

(d) (e) (f)

Figure 4: Parallel coordinates plot showing the Pareto front for a 10-objective DTLZ1 problem, obtained using: a) NSGA-III, b)
MOEA/DD, c) SPEA/R, d) NSDE-R1B, e) NSDE-D3 and f) MOHO
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Figure 5 shows the Pareto fronts for a 10-objective DTLZ3 problem. The analytical Pareto front for this problem is a
unit hypersphere. Unlike the DTLZ1 problem, the MOEA/DD algorithm performs well for the DTLZ3 problem while
the SPEA/R algorithm continues to under perform. This suggests that the MOEA/DD algorithm is better suited for
concave problems rather than linear problems. The remaining algorithms also perform well for the DTLZ3 problem.
Again, MOHO is able to produce good convergence and preserve diversity despite the presence of SPEA/R in its
switching suite. Like the DTLZ1 problem, the DTLZ3 test problem is also multi-modal, again indicating that the
SPEA/R algorithm is unable to converge well for multi-modal DTLZ problems.

(a) (b) (c)

(d) (e) (f)

Figure 5: Parallel coordinates plot showing the Pareto front for a 10-objective DTLZ3 problem obtained, using: a) NSGA-III, b)
MOEA/DD, c) SPEA/R, d) NSDE-R1B, e) NSDE-D3 and f) MOHO

Figure 6 shows the Pareto fronts for a 15-objective DTLZ4 problem. The analytical Pareto front for this problem is
also a unit hypersphere. It can be seen that the SPEA/R algorithm performs better for the DTLZ4 problem than the
DTLZ1 and DTLZ3 problems, but still under performs when compared to the other five algorithms. This is because
the DTLZ4 problem is not multimodal. The MOHO algorithm continues to produce stable results.
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(d) (e) (f)

Figure 6: Parallel coordinates plot showing the Pareto front for a 15-objective DTLZ4 problem, obtained using: a) NSGA-III, b)
MOEA/DD, c) SPEA/R, d) NSDE-R1B, e) NSDE-D3 and f) MOHO

Figure 7 shows the percent usage for each constitutive algorithm in MOHO for a typical run of the four DTLZ
problems. It can be seen that the percent usage of each algorithm is relatively uniform for each DTLZ test problem
and for increasing number of objectives. For problems with fewer objectives, the NSGA-III and NSDE-R1B show a
slightly higher percent usage. In the case of five-objective DTLZ2 problems, the NSGA-III has the highest percent
usage. This is because the NSGA-III algorithm did not stall until the later stages of the solution process. The DTLZ2
problem is a relatively simple problem and, therefore, has a lower probability of an algorithm stalling in the earlier
generations. The uniformity of the percent usage demonstrates that some algorithms are more effective at different
stages in the solution process than others. This could be due to the change in objective function topology as the
population converges.
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(a) (b)

(c) (d)

Figure 7: Percent usage for each of the five constitutive algorithms in MOHO for a random run of: a) DTLZ1, b) DTLZ2, c) DTLZ3
and d) DTLZ4 test problems

4.2 WFG Test Problems

Due to the irregular Pareto fronts of the WFG problems, it is relatively difficult to create the reference analytical Pareto
points that correspond to the reference points. Although the WFG4 to WFG9 problem feature a regular, hyperelliptic
Pareto front, the fronts of WFG1 to WFG3 are irregular. For this reason and for consistency, the hypervolume instead
of the IGD metric, is used to quantify the performance of the optimization algorithms.

The HV values of the algorithms on the WFG problems are given in Table 5. It shows that the MOHO algorithm
outperforms the other five in 47% of the WFG test cases. The success rate of NSGA-III, MOEA/DD, SPEA/R,
NSDE-R1B and NSDE-D3 is 7%, 2%, 29%, 11% and 4% respectively. MOHO outperforms the other algorithms in
majority of the WFG1, WFG4 and WFG6 problems. Its performance on the WFG2, WFG7 and WFG9 is on par
with the best performing algorithm. For the WFG3, WFG5 and WFG8, MOHO is on par with the best performing
algorithm for lower dimensional problems, but slightly decreases for higher dimensional problems. The results of the
Wilcoxon’s rank-sum test on the WFG test problems demonstrate that the MOHO algorithm significantly outperforms
the constitutive algorithms in several test problems. There are also test problems where the constitutive algorithms
perform better than MOHO. In many of these cases, the constitutive algorithms only slightly outperform MOHO. This
lack of underwhelming performance demonstrates the robust nature of MOHO.
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Table 5: Mean and standard deviation of the hypervolume obtained by each algorithm for the WFG problems. Best
mean performance is coloured in red. According to Wilcoxon’s rank-sum test (with a significance level of 5%), ↑, ↓
and ≈ indicate that the performance of the corresponding algorithm is significantly better than, worse than or similar
to that of MOHO.

Problem M NSGA-III MOEA/DD SPEA/R NSDE-R1B NSDE-D3 MOHO
WFG1 3 0.4821 (0.0028) ≈ 0.4612 (0.0037) ↓ 0.4584 (0.0018) ↓ 0.4695 (0.0021) ↓ 0.4824 (0.0033) ↓ 0.4979 (0.0022)

5 0.4245 (0.0019) ≈ 0.4164 (0.0018) ↓ 0.4017 (0.0019) ↓ 0.4005 (0.0013) ↓ 0.4235 (0.0024) ≈ 0.4208 (0.0018)
8 0.3517 (0.0025) ≈ 0.3440 (0.0037) ↓ 0.3365 (0.0031) ↓ 0.3252 (0.0059) ↓ 0.3521 (0.0021) ↓ 0.3613 (0.0068)

10 0.3227 (0.0036) ↓ 0.3362 (0.0046) ≈ 0.3075 (0.0021) ↓ 0.2951 (0.0019) ↓ 0.3232 (0.0033) ↓ 0.3379 (0.0060)
15 0.2714 (0.0090) ↓ 0.2856 (0.0052) ↓ 0.2698 (0.0022) ↓ 0.2528 (0.0054) ↓ 0.2665 (0.0085) ↓ 0.2913 (0.0131)

WFG2 3 0.9134 (0.0580) ↓ 0.9314 (0.0049) ↓ 0.8643 (0.0634) ↓ 0.9512 (0.0021) ≈ 0.9001 (0.0662) ↓ 0.9514 (0.0038)
5 0.9777 (0.0016) ↓ 0.9214 (0.0036) ↓ 0.9565 (0.0048) ↓ 0.9814 (0.0026) ↓ 0.9779 (0.0020) ↓ 0.9894 (0.0030)
8 0.9752 (0.0036) ↑ 0.9270 (0.0071) ↓ 0.9481 (0.0401) ↓ 0.9896 (0.0156) ↑ 0.9582 (0.0554) ≈ 0.9597 (0.0406)

10 0.9792 (0.0027) ≈ 0.9445 (0.0048) ↓ 0.9672 (0.0042) ↓ 0.9997 (0.0006) ↑ 0.9793 (0.0032) ≈ 0.9755 (0.0050)
15 0.9101 (0.0515) ≈ 0.9101 (0.0402) ≈ 0.9758 (0.0033) ↑ 0.9289 (0.0247) ↑ 0.9302 (0.0131) ↓ 0.9133 (0.0417)

WFG3 3 0.6869 (0.0057) ↓ 0.6780 (0.0132) ↓ 0.6606 (0.0048) ↓ 0.6752 (0.0063) ↓ 0.6895 (0.0042) ↓ 0.7007 (0.0067)
5 0.6479 (0.0096) ↑ 0.6502 (0.0051) ↑ 0.6365 (0.0115) ↑ 0.5941 (0.0102) ↓ 0.6478 (0.0073) ↑ 0.6239 (0.0093)
8 0.4942 (0.0222) ↑ 0.5566 (0.0122) ↑ 0.5641 (0.0189) ↑ 0.4600 (0.0150) ↓ 0.4896 (0.0264) ↑ 0.4797 (0.0202)

10 0.4732 (0.0455) ↑ 0.5459 (0.0087) ↑ 0.5542 (0.0165) ↑ 0.4500 (0.0160) ↑ 0.4687 (0.0403) ↑ 0.4316 (0.0418)
15 0.3371 (0.0442) ↓ 0.2104 (0.0250) ↓ 0.4760 (0.0144) ↑ 0.3085 (0.0401) ↓ 0.3179 (0.0392) ↓ 0.3419 (0.0474)

WFG4 3 0.7027 (0.0026) ≈ 0.7043 (0.0031) ≈ 0.6938 (0.0040) ↓ 0.7031 (0.0038) ≈ 0.7046 (0.0044) ≈ 0.7058 (0.0039)
5 0.8291 (0.0029) ↓ 0.8211 (0.0036) ↓ 0.8381 (0.0036) ↓ 0.8435 (0.0028) ↓ 0.8283 (0.0042) ↓ 0.8521 (0.0029)
8 0.8421 (0.0062) ↓ 0.7769 (0.0093) ↓ 0.8707 (0.0064) ↓ 0.8772 (0.0033) ↓ 0.8441 (0.0078) ↓ 0.8821 (0.0200)

10 0.8733 (0.0064) ↓ 0.7729 (0.0077) ↓ 0.9141 (0.0059) ↑ 0.9011 (0.0041) ≈ 0.8761 (0.0053) ↓ 0.9054 (0.0173)
15 0.8554 (0.0106) ↑ 0.6599 (0.0437) ↓ 0.9205 (0.0039) ↑ 0.9308 (0.0042) ↑ 0.8489 (0.0123) ≈ 0.8400 (0.0373)

WFG5 3 0.6782 (0.0050) ↓ 0.6759 (0.0046) ↓ 0.6709 (0.0040) ↓ 0.6826 (0.0047) ≈ 0.6785 (0.0037) ↓ 0.6831 (0.0036)
5 0.8077 (0.0040) ↓ 0.7877 (0.0037) ↓ 0.8035 (0.0028) ↓ 0.8155 (0.0035) ≈ 0.8076 (0.0034) ↓ 0.8106 (0.0057)
8 0.8291 (0.0056) ↑ 0.7033 (0.0094) ↓ 0.8230 (0.0047) ↑ 0.7601 (0.0153) ↑ 0.8288 (0.0050) ↑ 0.7484 (0.0139)

10 0.8496 (0.0053) ↑ 0.6898 (0.0128) ↓ 0.8608 (0.0041) ↑ 0.7412 (0.0176) ↓ 0.8483 (0.0046) ↑ 0.7574 (0.0212)
15 0.8053 (0.0241) ↑ 0.4431 (0.0435) ↓ 0.8401 (0.0044) ↑ 0.7076 (0.0194) ↑ 0.8117 (0.0180) ↑ 0.6549 (0.0425)

WFG6 3 0.6777 (0.0041) ↓ 0.6724 (0.0096) ↓ 0.6636 (0.0043) ↓ 0.6781 (0.0126) ↓ 0.6794 (0.0041) ↓ 0.7161 (0.0047)
5 0.8079 (0.0069) ↓ 0.7849 (0.0068) ↓ 0.8070 (0.0035) ↓ 0.7797 (0.0180) ↓ 0.8097 (0.0062) ↓ 0.8680 (0.0038)
8 0.8505 (0.0102) ↓ 0.7280 (0.0153) ↓ 0.8460 (0.0053) ↓ 0.8323 (0.0386) ↓ 0.8490 (0.0093) ↓ 0.9106 (0.0072)

10 0.8774 (0.0059) ↓ 0.7199 (0.0157) ↓ 0.8814 (0.0040) ↓ 0.8718 (0.0015) ↓ 0.8750 (0.0070) ↓ 0.9423 (0.0044)
15 0.8879 (0.0112) ↓ 0.4973 (0.0684) ↓ 0.8844 (0.0060) ↓ 0.8682 (0.0005) ↓ 0.8898 (0.0103) ↓ 0.9152 (0.0319)

WFG7 3 0.7145 (0.0037) ↓ 0.7032 (0.0156) ↓ 0.6831 (0.0160) ↓ 0.7239 (0.0030) ≈ 0.7147 (0.0034) ↓ 0.7272 (0.0039)
5 0.8558 (0.0031) ↓ 0.8338 (0.0036) ↓ 0.8425 (0.0048) ↓ 0.8593 (0.0038) ↓ 0.8552 (0.0033) ↓ 0.8721 (0.0044)
8 0.8897 (0.0040) ↓ 0.8004 (0.0063) ↓ 0.8990 (0.0041) ↑ 0.8555 (0.0078) ↓ 0.8907 (0.0048) ↓ 0.8965 (0.0131)

10 0.9195 (0.0034) ↓ 0.8025 (0.0079) ↓ 0.9460 (0.0022) ≈ 0.8884 (0.0062) ↓ 0.9208 (0.0037) ↓ 0.9439 (0.0039)
15 0.9348 (0.0036) ↓ 0.7094 (0.0336) ↓ 0.9636 (0.0024) ↑ 0.9812 (0.0031) ↑ 0.9348 (0.0034) ↓ 0.9556 (0.0101)

WFG8 3 0.6659 (0.0043) ↓ 0.6614 (0.0179) ↓ 0.6594 (0.0061) ↓ 0.6725 (0.0036) ↑ 0.6662 (0.0039) ↓ 0.6740 (0.0041)
5 0.7784 (0.0046) ↓ 0.7815 (0.0052) ↓ 0.7887 (0.0044) ≈ 0.7670 (0.0027) ↓ 0.7781 (0.0034) ↓ 0.7857 (0.0057)
8 0.7660 (0.0098) ≈ 0.7205 (0.0287) ↓ 0.8074 (0.0046) ↑ 0.7198 (0.0082) ↓ 0.7665 (0.0072) ≈ 0.7641 (0.0144)

10 0.7902 (0.0093) ↓ 0.7045 (0.0395) ↓ 0.8582 (0.0048) ↑ 0.7219 (0.0070) ↓ 0.7918 (0.0105) ↓ 0.8027 (0.0155)
15 0.8202 (0.0082) ↑ 0.5248 (0.0572) ↓ 0.8588 (0.0106) ↑ 0.7738 (0.0217) ≈ 0.8210 (0.0097) ↑ 0.7770 (0.0203)

WFG9 3 0.6596 (0.0171) ↓ 0.6571 (0.0211) ↓ 0.6313 (0.0038) ↓ 0.6397 (0.0029) ↓ 0.6468 (0.0161) ↓ 0.6724 (0.0215)
5 0.7395 (0.0096) ↓ 0.7532 (0.0051) ≈ 0.7278 (0.0093) ↓ 0.7428 (0.0050) ↓ 0.7360 (0.0107) ↓ 0.7583 (0.0237)
8 0.7244 (0.0118) ≈ 0.6352 (0.0187) ↓ 0.6815 (0.0230) ↓ 0.7231 (0.0094) ≈ 0.7332 (0.0216) ↑ 0.7231 (0.0156)

10 0.7499 (0.0207) ↑ 0.6250 (0.0123) ↓ 0.7131 (0.0194) ↓ 0.7248 (0.0054) ↓ 0.7428 (0.0184) ↑ 0.7389 (0.0143)
15 0.6914 (0.0190) ↑ 0.4780 (0.0361) ↓ 0.6717 (0.0221) ↓ 0.6615 (0.0112) ↓ 0.7029 (0.0190) ↑ 0.6749 (0.0239)

Figure 8 shows the Pareto fronts obtained for the three-objective WFG4 problem where the grey surface represents the
analytical Pareto front, a hyperellipse. It can be seen that the final Pareto front obtained by MOEA/DD converges to a
particular area of the objective function space, rather than uniformly over the entire hyperellipse. The WFG4 problem
like the DTLZ3 problem is concave and multi-modal, however, unlike previous cases, the SPEA/R algorithm is able to
both converge to the analytical Pareto front and preserve diversity. For the WFG test suite, the MOEA/DD algorithm
under performs compared to the remaining five. It can be seen that even with an under performing algorithm, MOHO
is able to produce good results.
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Figure 8: The Pareto front for a three-objective WFG4 problem, obtained using: a) NSGA-III, b) MOEA/DD, c) SPEA/R, d)
NSDE-R1B, e) NSDE-D3 and f) MOHO

Figure 9 shows the Pareto fronts for a 15-objective WFG5 problem. The analytical Pareto front for this problem
is also a unit hypersphere. The WFG5 problem features a concave, deceptive topology. It can again be seen that
the MOEA/DD algorithm under performs when compared to the remaining five. The NSDE-R1B and NSDE-D3
algorithms also are not able to produce Pareto solutions in the lower bound of the first few objectives. Like the NSGA-
III algorithm, they converge well to the analytical front, but are unable to preserve diversity. Despite having four
algorithms not suited for the WFG5 test problem, MOHO is still able to produce a Pareto front that both converges to
the analytical Pareto front and satisfies diversity.

(a) (b) (c)

(d) (e) (f)

Figure 9: Parallel coordinates plot showing the Pareto front for a 15-objective WFG5 problem, obtained using: a) NSGA-III, b)
MOEA/DD, c) SPEA/R, d) NSDE-R1B, e) NSDE-D3 and f) MOHO
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Figure 10 shows the Pareto fronts for a 15-objective WFG6 problem. The WFG6 is a concave, non-separable problem
with a hyperelliptic Pareto front. It can again be seen that the MOEA/DD algorithm under performs significantly. The
NSDE-R1B and NSDE-D3 algorithms for the WFG6 problem produce Pareto solutions comparable to those obtained
by NSGA-III, SPEA/R and MOHO.

(a) (b) (c)

(d) (e) (f)

Figure 10: Parallel coordinates plot showing the Pareto front for a 15-objective WFG6 problem, obtained using: a) NSGA-III, b)
MOEA/DD, c) SPEA/R, d) NSDE-R1B, e) NSDE-D3 and f) MOHO

Figure 11 shows the percent usage for each constitutive algorithm in MOHO for a typical run of the nine WFG
test problems. Immediately, the sub-par performance of the MOEA/DD algorithm is clearly evident. Although this
algorithm under performs on the WFG test suite, it is on par with the remaining four algorithms for the DTLZ test
suite. This suggests that MOHO can be made more robust by incorporating other constitutive algorithms. The NSGA-
III, NSDE-R1B and NSDE-D3 show a higher percent usage across the WFG test suite. The SPEA/R algorithm is
seen to perform better for problems with more objectives. This does not necessarily indicate that SPEA/R under
performs when compared to the NSGA-III, NSDE-R1B and NSDE-D3 algorithms. Since the SPEA/R algorithm
prioritizes diversity over convergence, it is possible that it was mostly used to prevent the degradation of diversity in
the population or restore the diversity to the population.
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Figure 11: Percent usage for each of the five constitutive algorithms in MOHO for a random run of: a) WFG1, b) WFG2, c) WFG3,
d) WFG4, e) WFG5, f) WFG6, g) WFG7, h) WFG8 and i) WFG9 test problems

5 Performance of MOHO on Constrained Test Problems

The performance of MOHO is now investigated on analytical constrained test problems. Table 6 shows the
hypervolume values of the five algorithms on the C-DTLZ test problems. It can be seen that MOHO performs
best on the C1-DTLZ1, C1-DTLZ3, C2-CDTLZ2 and C3-DTLZ1 test problems, but underperforms for the C3-
DTLZ4 test problem. It is interesting to see that MOHO performs well for those constrained problems where it
also performed well on unconstrained versions. MOHO performed best on 70% of the constrained test problems. The
results of the Wilcoxon’s rank-sum test on the constrained DTLZ test problems demonstrate that the MOHO algorithm
again significantly outperforms the constitutive algorithms in majority of the test problems. The superiority of the
constitutive algorithms is only seen in the C3-DTLZ4 test problem. For higher dimensional problems, MOHO is on
par with the constitutive algorithms.
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Table 6: Mean and standard deviation of the hypervolume obtained by each algorithm for the C-DTLZ problems. Best
mean performance is coloured in red. According to Wilcoxon’s rank-sum test (with a significance level of 5%), ↑, ↓
and ≈ indicate that the performance of the corresponding algorithm is significantly better than, worse than or similar
to that of MOHO.

Problem M NSGA-III MOEA/DD SPEA/R NSDE-R1B NSDE-D3 MOHO
C1-DTLZ1 3 0.9631 (0.0072) ≈ 0.9663 (0.0036) ≈ 0.9225 (0.0228) ↓ 0.9363 (0.4300) ↓ 0.0879 (0.2721) ↓ 0.9666 (0.0047)

5 0.9952 (0.0035) ≈ 0.9907 (0.0031) ↓ 0.9755 (0.0131) ↓ 0.9951 (0.0040) ≈ 0.4980 (0.4997) ↓ 0.9989 (0.0002)
8 0.9913 (0.0058) ≈ 0.9900 (0.0041) ≈ 0.9800 (0.0079) ↓ 0.9665 (0.1498) ↓ 0.2108 (0.4062) ↓ 0.9931 (0.0066)

10 0.9948 (0.0045) ↓ 0.9886 (0.0046) ↓ 0.9910 (0.0049) ↓ 0.9966 (0.0021) ↓ 0.4643 (0.4886) ↓ 1.0000 (0.0000)
15 0.9927 (0.0043)) ≈ 0.9865 (0.0077) ↓ 0.9910 (0.0054)) ≈ 0.9632 (0.2780) ↓ 0.2609 (0.4008) ↓ 0.9942 (0.0040)

C1-DTLZ3 3 0.0925 (0.2847) ↓ 0.0000 (0.0000) ↓ 0.0000 (0.0000) ↓ 0.0923 (0.2842) ↓ 0.0000 (0.0000) ↓ 0.4750 (0.4032)
5 0.2965 (0.4648) ↓ 0.0000 (0.0000) ↓ 0.0000 (0.0000) ↓ 0.2947 (0.4619) ↓ 0.0495 (0.2212) ↓ 0.7923 (0.4064)
8 0.4881 (0.5027) ↓ 0.1499 (0.3660) ↓ 0.0000 (0.0000) ↓ 0.3991 (0.5016) ↓ 0.0040 (0.0179) ↓ 0.6947 (0.4594)

10 0.7497 (0.4441) ↓ 0.3000 (0.4701) ↓ 0.0000 (0.0000) ↓ 0.8000 (0.4104) ↓ 0.0355 (0.0630) ↓ 0.9995 (0.4328)
15 0.1500 (0.3663) ↓ 0.0500 (0.2236) ↓ 0.0000 (0.0000) ↓ 0.1000 (0.3078) ↓ 0.0001 (0.0006) ↓ 0.2982 (0.4675)

C2-CDTLZ2 3 0.9748 (0.0012) ≈ 0.9713 (0.0013) ↓ 0.9732 (0.0015) ↓ 0.9751 (0.0010) ≈ 0.9746 (0.0008) ≈ 0.9747 (0.0007)
5 0.9998 (0.0001) ≈ 0.9970 (0.0006) ↓ 0.9996 (0.0002) ↓ 0.9998 (0.0001) ≈ 0.9998 (0.0001) ≈ 0.9998 (0.0001)
8 1.0000 (0.0000) ≈ 0.9999 (0.0000) ≈ 1.0000 (0.0000) ≈ 1.0000 (0.0000) ≈ 1.0000 (0.0000) ≈ 1.0000 (0.0000)

10 1.0000 (0.0000) ≈ 1.0000 (0.0000) ≈ 1.0000 (0.0000) ≈ 1.0000 (0.0000) ≈ 1.0000 (0.0000) ≈ 1.0000 (0.0000)
15 1.0000 (0.0000) ≈ 0.9999 (0.0001) ≈ 1.0000 (0.0000) ≈ 1.0000 (0.0000) ≈ 1.0000 (0.0000) ≈ 1.0000 (0.0000)

C3-DTLZ1 3 0.7889 (0.0025) ≈ 0.7742 (0.0032) ↓ 0.6964 (0.0534) ↓ 0.7878 (0.0041) ≈ 0.5473 (0.3090) ↓ 0.7866 (0.0048)
5 0.4043 (0.0083) ↓ 0.3988 (0.0212) ↓ 0.0276 (0.0297) ↓ 0.4038 (0.0116) ↓ 0.4059 (0.0073) ↓ 0.4442 (0.0039)
8 0.0062 (0.0033) ↓ 0.0033 (0.0018) ↓ 0.0000 (0.0000) ↓ 0.0043 (0.0030) ↓ 0.0046 (0.0046) ↓ 0.1305 (0.0024)

10 0.0000 (0.0000) ↓ 0.0000 (0.0001) ↓ 0.0000 (0.0000) ↓ 0.0000 (0.0000) ↓ 0.0000 (0.0001) ↓ 0.0558 (0.0031)
15 0.0000 (0.0000) ≈ 0.0000 (0.0000) ≈ 0.0000 (0.0000) ≈ 0.0000 (0.0000) ≈ 0.0000 (0.0000) ≈ 0.0007 (0.0007)

C3-DTLZ4 3 0.3756 (0.0102) ≈ 0.4072 (0.0043) ↑ 0.3833 (0.0761) ↑ 0.3839 (0.0066) ↑ 0.3840 (0.0089) ↑ 0.3666 (0.0463)
5 0.1267 (0.0195) ≈ 0.2927 (0.0037) ↑ 0.2693 (0.0073) ↑ 0.2174 (0.0138) ↑ 0.1943 (0.0520) ↑ 0.1135 (0.0239)
8 0.0103 (0.0039) ↑ 0.0513 (0.0017) ↑ 0.0358 (0.0047) ↑ 0.0418 (0.0041) ↑ 0.0156 (0.0111) ↑ 0.0091 (0.0024)

10 0.0082 (0.0020) ≈ 0.0000 (0.0000) ↓ 0.0060 (0.0020) ≈ 0.0005 (0.0009) ≈ 0.0038 (0.0031) ≈ 0.0070 (0.0023)
15 0.0000 (0.0000) ≈ 0.0000 (0.0000) ≈ 0.0000 (0.0000) ≈ 0.0000 (0.0000) ≈ 0.0000 (0.0000) ≈ 0.0000 (0.0000)

Figure 12 shows the Pareto fronts obtained for the three-objective C1-DTLZ1 problem where the grey surface
represents the analytical Pareto front, the half-unit hyperplane. The C1-DTLZ1 problem features only a small feasible
region close to the analytical Pareto front. It can be seen that the SPEA/R algorithm again fails to properly converge
to the analytical Pareto front or preserve diversity, drawing the search to the upper region of the Pareto front. The
remaining five algorithms all produce accurate results for this test problem.

(a) (b) (c)

(d) (e) (f)

Figure 12: The Pareto front for a three-objective C1-DTLZ1 problem, obtained using: a) NSGA-III, b) MOEA/DD, c) SPEA/R, d)
NSDE-R1B, e) NSDE-D3 and f) MOHO
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Figure 13 shows the Pareto fronts obtained for the three-objective C1-DTLZ3 problem where the grey surface
represents the analytical Pareto front, the unit hypersphere. The C1-DTLZ3 problem features a banded infeasible
region adjacent to the Pareto front. For this case, the MOEA/DD, SPEA/R and NSDE-D3 algorithms all fail to
converge to the Pareto front. Those that converge, NSGA-III, NSDE-R1B and MOHO, all show good convergence
to the Pareto front and to the reference points. Again, it can be seen that despite having under performing algorithms
available in its switching pool, MOHO is still able to produce converged results.

(a) (b) (c)

(d) (e) (f)

Figure 13: The Pareto front for a three-objective C1-DTLZ3 problem, obtained using: a) NSGA-III, b) MOEA/DD, c) SPEA/R, d)
NSDE-R1B, e) NSDE-D3 and f) MOHO

Figure 14 shows the Pareto fronts obtained for the three-objective C3-DTLZ4 problem where the grey surface
represents the analytical Pareto front. The C3-DTLZ4 test problem completely redefines the original Pareto front.
The original hyperspherical Pareto front now lies in the infeasible region therefore making the new Pareto front, the
surface of the constraint boundary. It can be seen that all six algorithms converge to the Pareto front and preserve
diversity satisfactorily. The algorithms that feature the best convergence and diverse populations are the MOEA/DD
and MOHO algorithms.
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Figure 14: The Pareto front for a three-objective C3-DTLZ4 problem, obtained using: a) NSGA-III, b) MOEA/DD, c) SPEA/R, d)
NSDE-R1B, e) NSDE-D3 and f) MOHO

Figure 15 shows the percent usage for each constitutive algorithm in MOHO for a typical run of the nine WFG test
problems. Similar to the percent usage of algorithms on the unconstrained DTLZ problems, the percent usage of the
five algorithms on the constrained DTLZ test suite is also relatively uniform. This indicates that each algorithm was
used at a different stage in the optimization processes. For problems with fewer objectives (five or less), the MOHO
slightly favors the NSGA-III and NSDE-R1B algorithms. Unlike in the case of the WFG test problem, it can be seen
that the performance of MOEA/DD algorithm is on par with the remaining four algorithms.

(a) (b) (c)

(d) (e)

Figure 15: Percent usage for each of the five constitutive algorithms in MOHO for a random run of: a) C1-DTLZ1, b) C1-DTLZ3,
c) C2-CDTLZ2, d) C3-DTLZ1 and e) C3-DTLZ4 test problems
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Conclusion

This work presents a robust many-objective hybrid optimization (MOHO) algorithm that actively switches between
constitutive algorithms to accelerate convergence to the Pareto front. The MOHO suite consists of the NSGA-III,
MOEA/DD, SPEA/R, NSDE-R1B and NSDE-D3 algorithms. The MOHO algorithm monitors the performance of
each constitutive algorithm and the fitness of the non-dominated solutions, and automatically selects the constitutive
algorithm that has a higher probability of improving the non-dominated solutions.

It was shown that MOHO performed better than the other five algorithms in approximately 50% of the unconstrained
analytical test cases and no worse for the other test cases. It also outperformed the five constitutive algorithms in
70% of the constrained analytical test cases. The percent usage of each algorithm on the DTLZ, WFG and CDTLZ
test suite shows that some algorithms in the MOHO suite under perform for certain test cases, yet MOHO itself
is able to select the best performing algorithm for the current test problem. The relative uniformity in the percent
usage of each algorithm suggests that different algorithms were optimal at different stages in the optimization process.
When ran for benchmarking, the MOEA/DD and SPEA/R algorithms consistently underperformed for the DTLZ test
problems, whereas the remaining three algorithms performed consistently well. The SPEA/R algorithm was shown to
underperform for multimodal test problems such as DTLZ1 and DTLZ3. It performed significantly better on the WFG
test problems, whereas the MOEA/DD algorithm continued to underperform. This was seen by the fact that MOHO
never severely under performed on any test problem. MOHO was shown to perform well for problems with constraints
and several objectives despite having underperforming algorithms in its suite of algorithms.
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A Comparison of MOHO Against Two Additional State-of-the-Art Algorithms

This section shows the performance metrics (IGD and HV) of Two Arch2 [65], RVEA [10] and MOHO on the DTLZ
test problem (Table 7) and the WFG test problems (Table 8). The Two Arch2 and RVEA algorithms were taken from
the PlatEMO framework [57]. It should be mentioned that all analysis settings (number of generations, population size,
etc.) were the same as those presented above in Table 3. Tables 7 and 8 show that the MOHO algorithm outperforms
the Two Arch2 and RVEA algorithms in majority of the DTLZ and WFG test cases.

Table 7: Mean and standard deviation of the IGD obtained by each algorithm for the DTLZ problems. Best mean
performance is coloured in red. According to Wilcoxon’s rank-sum test (with a significance level of 5%), ↑, ↓ and ≈
indicate that the performance of the corresponding algorithm is significantly better than, worse than or similar to that
of MOHO.

Problem M Two Arch2 RVEA MOHO
DTLZ1 3 2.67E-2 (1.37E-2) ↓ 2.06E-2 (2.12E-3) ↓ 1.72E-4 (7.45E-5)

5 5.24E-2 (1.40E-2) ↓ 5.27E-2 (3.37E-2) ↓ 2.37E-5 (1.61E-5)
8 9.86E-2 (4.65E-3) ↓ 9.69E-2 (4.24E-2) ↓ 3.42E-3 (1.50E-3)

10 1.07E-1 (5.41E-2) ↓ 1.08E-1 (3.86E-2) ↓ 3.39E-3 (8.23E-4)
15 1.86E-1 (2.34E-2) ↓ 1.70E-1 (2.35E-2) ↓ 3.46E-3 (1.54E-3)

DTLZ2 3 5.81E-2 (6.43E-2) ↓ 5.49E-2 (8.23E-3) ↓ 4.41E-3 (2.45E-4)
5 1.70E-1 (4.56E-2) ↓ 1.65E-1 (6.86E-2) ↓ 8.25E-3 (6.00E-4)
8 3.78E-1 (6.86E-2) ↓ 3.15E-1 (1.24E-2) ↓ 1.92E-2 (1.46E-3)

10 4.41E-1 (9.56E-2) ↓ 4.20E-1 (6.45E-2) ↓ 1.76E-2 (1.11E-3)
15 6.21E-1 (1.24E-1) ↓ 6.23E-1 (9.86E-2) ↓ 1.68E-2 (1.23E-3)

DTLZ3 3 5.97E-2 (3.12E-2) ↑ 5.44E-2 (2.23E-3) ↑ 4.21E-1 (5.37E-1)
5 1.65E-1 (6.34E-2) ↓ 1.65E-1 (5.32E-2) ↓ 3.41E-3 (3.20E-4)
8 3.61E-1 (8.63E-2) ↓ 3.15E-1 (8.56E-2) ↓ 1.49E-2 (9.23E-4)

10 4.26E-1 (1.86E-1) ↓ 4.19E-1 (3.43E-2) ↓ 1.32E-2 (5.64E-4)
15 1.29E+0 (6.32E-1) ↓ 6.23E-1 (9.54E-2) ↓ 1.41E-2 (9.99E-4)

DTLZ4 3 6.15E-2 (5.23E-2) ↓ 5.44E-2 (2.26E-2) ↓ 3.00E-3 (1.78E-4)
5 1.69E-1 (3.34E-2) ↓ 1.65E-1 (8.26E-2) ↓ 5.89E-3 (5.58E-4)
8 3.77E-1 (4.16E-2) ↓ 3.15E-1 (9.42E-2) ↓ 2.33E-2 (1.20E-3)

10 4.31E-1 (9.56E-2) ↓ 4.21E-1 (1.79E-1) ↓ 2.03E-2 (8.41E-4)
15 6.30E-1 (1.97E-1) ↓ 6.22E-1 (3.91E-1) ↓ 1.35E-2 (6.32E-4)
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Table 8: Mean and standard deviation of the hypervolume obtained by each algorithm for the WFG problems. Best
mean performance is coloured in red. According to Wilcoxon’s rank-sum test (with a significance level of 5%), ↑, ↓
and ≈ indicate that the performance of the corresponding algorithm is significantly better than, worse than or similar
to that of MOHO.

Problem M Two Arch2 RVEA MOHO
WFG1 3 0.4715 (0.0076) ↓ 0.4824 (0.002) ↓ 0.4979 (0.0022)

5 0.4187 (0.0077) ↓ 0.4243 (0.0016) ≈ 0.4208 (0.0018)
8 0.3358 (0.0137) ↓ 0.352 (0.0027) ↓ 0.3613 (0.0068)

10 0.3061 (0.014) ↓ 0.3226 (0.0043) ↓ 0.3379 (0.0060)
15 0.2604 (0.0088) ↓ 0.2702 (0.0076) ↓ 0.2913 (0.0131)

WFG2 3 0.8865 (0.0671) ↓ 0.9063 (0.0606) ↓ 0.9514 (0.0038)
5 0.9651 (0.0154) ↓ 0.9777 (0.0023) ↓ 0.9894 (0.0030)
8 0.9498 (0.0383) ↓ 0.9399 (0.0727) ↓ 0.9597 (0.0406)

10 0.9682 (0.0133) ↓ 0.9782 (0.0031) ↑ 0.9755 (0.0050)
15 0.938 (0.0093) ↑ 0.9305 (0.011) ↑ 0.9133 (0.0417)

WFG3 3 0.6873 (0.0057) ↓ 0.6882 (0.0046) ↓ 0.7007 (0.0067)
5 0.611 (0.008) ↓ 0.605 (0.0076) ↓ 0.6239 (0.0093)
8 0.4191 (0.0303) ↓ 0.4298 (0.0196) ↓ 0.4797 (0.0202)

10 0.415 (0.0451) ↓ 0.4251 (0.0406) ↓ 0.4316 (0.0418)
15 0.3456 (0.0495) ≈ 0.3098 (0.0356) ↓ 0.3419 (0.0474)

WFG4 3 0.6978 (0.0103) ↓ 0.7036 (0.0036) ≈ 0.7058 (0.0039)
5 0.8252 (0.0069) ↓ 0.8272 (0.0045) ↓ 0.8521 (0.0029)
8 0.8369 (0.0162) ↓ 0.8439 (0.0081) ↓ 0.8821 (0.0200)

10 0.8406 (0.0232) ↓ 0.8748 (0.0058) ↓ 0.9054 (0.0173)
15 0.8059 (0.0413) ↓ 0.8476 (0.0156) ↑ 0.8400 (0.0373)

WFG5 3 0.671 (0.0098) ↓ 0.6787 (0.0032) ≈ 0.6831 (0.0036)
5 0.8012 (0.0123) ↓ 0.8092 (0.0034) ≈ 0.8106 (0.0057)
8 0.8187 (0.0131) ↑ 0.8281 (0.0041) ↑ 0.7484 (0.0139)

10 0.7444 (0.0128) ↓ 0.7474 (0.005) ↓ 0.7574 (0.0212)
15 0.7156 (0.124) ↑ 0.808 (0.0164) ↑ 0.6549 (0.0425)

WFG6 3 0.6694 (0.0133) ↓ 0.6767 (0.0049) ↓ 0.7161 (0.0047)
5 0.7873 (0.0179) ↓ 0.8076 (0.0052) ↓ 0.8680 (0.0038)
8 0.8372 (0.0161) ↓ 0.8481 (0.0076) ↓ 0.9106 (0.0072)

10 0.8532 (0.0244) ↓ 0.8734 (0.0087) ↓ 0.9423 (0.0044)
15 0.8284 (0.0426) ↓ 0.8864 (0.0131) ↓ 0.9152 (0.0319)

WFG7 3 0.7075 (0.0102) ↓ 0.7148 (0.0029) ↓ 0.7272 (0.0039)
5 0.8373 (0.0155) ↓ 0.8572 (0.0031) ↓ 0.8721 (0.0044)
8 0.8838 (0.0121) ↓ 0.8894 (0.0032) ≈ 0.8965 (0.0131)

10 0.9034 (0.0139) ↓ 0.9202 (0.0028) ↓ 0.9439 (0.0039)
15 0.9107 (0.0328) ↓ 0.9336 (0.0062) ↓ 0.9556 (0.0101)

WFG8 3 0.655 (0.0127) ↓ 0.6664 (0.0038) ↓ 0.6740 (0.0041)
5 0.7602 (0.0237) ↓ 0.777 (0.0028) ↓ 0.7857 (0.0057)
8 0.7243 (0.0323) ↓ 0.7583 (0.0076) ↓ 0.7641 (0.0144)

10 0.7497 (0.0383) ↓ 0.7934 (0.0121) ↓ 0.8027 (0.0155)
15 0.7968 (0.0314) ↑ 0.8207 (0.0115) ↑ 0.7770 (0.0203)

WFG9 3 0.6496 (0.0153) ↓ 0.6516 (0.0176) ↓ 0.6724 (0.0215)
5 0.7388 (0.0127) ↓ 0.7416 (0.0132) ↓ 0.7583 (0.0237)
8 0.7335 (0.0175) ↑ 0.7285 (0.0144) ≈ 0.7231 (0.0156)

10 0.7191 (0.0149) ↓ 0.7249 (0.0189) ↓ 0.7389 (0.0143)
15 0.6646 (0.0319) ↓ 0.6647 (0.0235) ↓ 0.6749 (0.0239)
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