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Abstract: In this work, we studied a Ti-Nb-Zr-Sn system for exploring novel composition and tem-
peratures that will be helpful in maximizing the stability of β phase while minimizing the formation
of α” and ω-phase. The Ti-Nb-Zr-Sn system is free of toxic elements. This system was studied
under the framework of CALculation of PHAse Diagram (CALPHAD) approach for determining the
stability of various phases. These data were analyzed through artificial intelligence (AI) algorithms.
Deep learning artificial neural network (DLANN) models were developed for various phases as a
function of alloy composition and temperature. Software was written in Python programming lan-
guage and DLANN models were developed utilizing TensorFlow/Keras libraries. DLANN models
were used to predict various phases for new compositions and temperatures and provided a more
complete dataset. This dataset was further analyzed through the concept of self-organizing maps
(SOM) for determining correlations between phase stability of various phases, chemical composition,
and temperature. Through this study, we determined candidate alloy compositions and temperatures
that will be helpful in avoiding/minimizing formation of α” andω-phase in a Ti-Zr-Nb-Sn system.
This approach can be utilized in other systems such asω-free shape memory alloys. DLANN models
can even be used on a common Android mobile phone.

Keywords: Ti-based biomaterials; biocompatibility; toxicity; β-phase;ω-phase; CALPHAD; artificial
intelligence; deep learning artificial neural network (DLANN); self-organizing maps (SOM)

1. Introduction

Titanium-based alloys have been widely accepted for biomedical applications due to
comparatively superior biocompatibility and anti-corrosion properties [1–5]. Efforts are
being made to explore new alloys that contain elements that are not toxic, as well as develop
alloys with Young’s modulus comparable to human bone to avoid stress shielding [2].
Young’s modulus (YM) of common implant materials varies between 100–230 GPa, which is
significantly higher when compared with that of bone, which is between 10 and 40 GPa [1].
This difference in YM results in non-uniform distribution of stress in the implant materials
and the surrounding bone structure. This can result in the failure of an implant [1]. Titanium
alloys containing β-phase as the predominant phase are known to have lower values of
Young’s modulus [2–9]. Thermodynamically, α and β are stable phases, while α” and
ω-phase are metastable phases [2]. Composition and processing of alloys play an important
role in determining the concentrations of various phases, which directly affect mechanical
properties of these alloys [6–9].

During processing or heat-treatment of Ti-based alloys, they are subjected to cooling
from an elevated temperature at various cooling rates [10–14]. The cooling rate can affect
the stability of β-phase and it can transform into α, α˝ or ω-phase, while ω-phase can
also form isothermally during ageing [12]. Among these phases, ω-phase possesses the
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highest modulus value. Precipitation of α and ω-phase can result in an increase in the
Young’s modulus of the alloy [12,13]. Regarding α”-phase, it is a desired phase in shape
memory alloys [12]. In Ti-based biomaterials, precipitation of α, α˝ orω-phase can lead to
degradation of mechanical properties, specifically Young’s modulus [2,10–14]. In titanium
alloys, experiments show thatω-phase can be stabilized and has been observed at cryogenic
temperatures [15]. From first-principle calculations, researchers have demonstrated the
scope of development ofω-phase free Ti-Ta-X shape memory alloys [16].

In this work, we chose the Ti-Nb-Zr-Sn system, which is free of toxic chemical el-
ements [17] such as aluminum [18] and vanadium [19]. Niobium is a strong β-phase
stabilizer [9]. In the presence of Nb, Zr also becomes a strong β-phase stabilizer [1]. Addi-
tionally, Nb and Zr are biocompatible and demonstrate excellent resistance to corrosion [20].
Sn is also biocompatible and has been used as an alloying element in small amounts [21].
The addition of Sn leads to a decrease in elastic modulus of Ti-based biomaterials [22].
Sn addition can help in suppressing precipitation of α˝ and ω-phase for lower and higher
cooling rates, respectively [22]. One of the aims is to optimize the alloy composition so that
an optimum amount of Sn addition can prove to be beneficial in the lowering of the elastic
modulus and in the suppression of precipitation of α˝ andω-phase [22].

The Ti-Nb-Zr-Sn system was studied under the framework of CALculation of PHAse
Diagram (CALPHAD) approach through Thermo-Calc software [23]. It was used for
determining concentrations of various stable and metastable phases for a large set of
compositions and temperatures, and thus generating a dataset suitable enough for applying
artificial intelligence (AI) algorithms, including deep learning [24] and self-organizing
maps (SOM) [25]. These data were then used for developing deep learning artificial
neural network (DLANN) models for various phases as a function of alloy composition
and temperature. Software for developing the DLANN model was written in Python
programming language using TensorFlow [26] and Keras [27] libraries. DLANN models
were used as a predictive tool for predicting the concentrations of metastable phases for new
compositions and temperatures. This resulting dataset was then analyzed by the concept of
self-organizing maps (SOM) [25] for determining various patterns and correlations within
the dataset among alloying elements, temperatures, and stable and metastable phases.

Through this work, we were able to identify the composition and temperature regimes
that will provideω-phase free Ti-based alloys with a minimal amount of α” phase. We have
reported chemical compositions of several candidate alloys along with temperatures that
will be helpful in achieving ω-phase free Ti-based alloys (Ti-Nb-Zr-Sn system). Our re-
search team has significant experience in designing alloys by application of artificial
intelligence (AI) algorithms on data generated from experiments and data generated under
the framework of the CALPHAD approach. We have successfully designed titanium al-
loys [28], aluminum alloys [29,30], hard magnets (AlNiCo) [31,32], soft magnets (FINEMET
type) [33,34], and Ni-based superalloys [35]. Thus, we propose this computational design
approach, which can be easily adopted in other alloy systems and can help in developing
ω-phase free Ti-based biomaterials with improved mechanical properties.

2. Materials and Methods

As mentioned, we chose the Ti-Nb-Zr-Sn system for this work. Bounds for concen-
trations for each of the four alloying elements were defined on the basis of available
literature [1–21]. Bounds for temperature include cryogenic temperature [15] for determin-
ing the amount ofω-phase in the presence and absence of thermodynamically stable phases.
Variable bounds for the chemical composition of the Ti-Nb-Zr-Sn system are presented in
Table 1. Chemical compositions are in atomic %, while the temperature is in degrees Kelvin.
Phase stability calculations for approximately 3000 candidate alloys were performed for
random values of concentrations and temperatures within theranges reported in Table 1.
There is no correlation between the minimum and maximum values of composition with
the minimum and maximum values of temperature reported in Table 1. Combinations
of alloy composition and temperature are randomly generated in five-dimensional (5-D)
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space for achieving a uniform distribution of support points in 5-D space shown in Table 1.
Uniform distribution of support points is helpful in improving the accuracy of prediction
for models developed through AI algorithms.

Table 1. Concentration bounds for alloying elements (atomic %) for the Ti-Nb-Zr-Sn system and
temperature range (K) chosen for study.

Nb Zr Sn Ti Temp. (K)

Minimum 0.03 0.02 0.01 58.9 50.0

Maximum 31.6 9.95 4.95 97.7 1526.0

2.1. Identification of Stable and Metastable Phases

We used commercial software Thermo-Calc [23,36] along with thermodynamic database
TCTI2 [37] for titanium alloys for performing phase stability calculations. In the Ti-Nb-
Zr-Sn system, α and β are stable phases, while α” and ω-phase are metastable phases.
Regarding the crystal structure, α phase has a hexagonal close packed (HCP) structure,
while β phase is body centered cubic (BCC). In the TCTI2 database [37], HCP_A3 is the
notation for α phase. Regarding β phase, it exists in two forms: BCC_B2 and BCC_B2#2.
Metastable phase α” is denoted by ALTI3_D019, while metastable phase ω is denoted by
OMEGA in TCTI2 database [37]. These notations were also mentioned in our previous
publication on titanium-based alloys [28], which is featured on Thermo-Calc’s website [38].
We have provided our previous publication on titanium alloys as a reference since the
titanium database was recently launched by Thermo-Calc in 2018. There are only a few
references on thorough studies of various stable and metastable phases in titanium alloys
using Thermo-Calc. While performing phase stability calculations, metastable phases
are unstable in the presence of stable phases and thus are absent from phase stability
data. However, these metastable phases have been observed in the microstructure ob-
tained after performing experiments [39]. Among α, β, α˝ and ω-phase, α and β are
thermodynamically stable, while α˝ andω phases are metastable [2].

For multi-component systems, several equilibria exist for a given composition and
temperature. The CALPHAD approach works on the principles of Gibbs energy min-
imization. Phases that have the lowest Gibbs energy of formation values are thermo-
dynamically stable, and other phases are deemed unstable or metastable. Through the
CALPHAD approach, only the thermodynamically stable phases will be shown on the
phase diagram. Metastable phases cannot be shown on the phase diagram, nor is there
any estimate of the amount (mole) of these phases. Metastable phases can be preferen-
tially stabilized by suppressing/removing a set of stable phases while performing phase
stability calculations [29,33,34,40]. Once a set of thermodynamically stable phases are
suppressed/removed, we are left with the remaining phases of that system. In the absence
of thermodynamically stable phases, few metastable phases become stable as now these
phases possess the lowest Gibbs energy of formation values among the remaining phases.
Through this preferential stabilization, one can obtain an estimate of the concentrations
of metastable phases that can exist under equilibrium conditions for a given composition
and temperature. A brief understanding of the formation of metastable phases for a given
system can be helpful while designing experiments including heat treatment protocols.
We have published articles on stabilizing metastable phases in aluminum alloys [29] and
soft magnetic FINEMET-type alloys [33,34]. In soft magnetic alloys, we even performed
heat treatment simulations for studying the nucleation and growth of metastable phases
and some of the results were experimentally verified using advanced diagnostic tools such
as atom probe tomography [34]. Thus, in this work, we were able to generate a large
dataset comprised of about 3000 randomly selected candidate alloy compositions and
temperatures along with various stable and metastable phases.



Metals 2021, 11, 15 4 of 15

2.2. Deep Learning Artificial Neural Network (DLANN) Model

We developed DLANN models within the framework of deep learning [24].
These models were coded in Python programming language and used TensorFlow [26]
and Keras [27] libraries for developing this code. For visualization, we used Tensor-
board [41]. DLANN models were developed separately for each of the phases. A separate
dataset was prepared for each phase and the data were scaled between 0 and 1. These scaled
data were randomly divided into training and testing sets where 33% data were assigned
to the testing set while the remaining 67% were included in the training set. DLANN
architecture includes 4 hidden layers. The number of neurons in the initial hidden layer
was fixed at 50, 60, 70, 80, 90, and 100, while the number of neurons in the other three
hidden layers was fixed at 100, 120, 140, 160, 180 and 200 neurons. In short, the number of
neurons in the initial layer was half of the number of neurons in each of the other three
layers. Activation function was Rectified Linear Unit (ReLU) and optimizer was “Adam”
which stands for Adaptive Moment Estimation, while number of epochs was fixed at 100.
Tensorboard was used for visualizing the DLANN performance [41]. One of the criteria
for the selection of a model was its performance on validation set, which was determined
through error metrics such as mean squared error (MSE) and mean absolute error (MAE).
One has to be careful while relying on error metrics such as MAE and MSE alone as we are
dealing with ANN models that are susceptible to “overfitting”. Although we are dealing
with a large dataset, there are still many “missing” points. Therefore, we used statistical
terms for guidance, while we gave priority to physical metallurgy of titanium alloys for
DLANN model selection. These DLANN models can be used on a personal computer
and even on an Android mobile phone to predict various metastable and stable phases,
and thus provide us with a dataset with additional support points for determining various
patterns and correlations within this dataset.

2.3. Self Organizing Maps (SOM)

Data obtained from CALPHAD-based calculations and predicted through DLANN
models were further studied by the concept of self-organizing maps (SOM) [25,28,31,42].
SOM maps are known for preserving topology of the data, which is helpful in determining
various correlations in the dataset among concentrations of alloying element, temperature,
and stability of various stable and metastable phases. Regarding prediction via SOM,
one must be careful while drawing conclusions as SOM values over a hexagonally-shaped
cell are the average value of candidates positioned at the vertices of the hexagonally-shaped
cells. Thus, for prediction we used DLANN models, while for determining correlations
over a large dataset of about 3000 candidate alloys, we considered SOM. Through this
study, we identified several candidate alloys that are free ofω-phase. For SOM analysis,
we used a commercial software ESTECO-modeFRONTIER, version 4.5, Trieste, Italy [42].

2.4. Computational Infrastructure
2.4.1. CALPHAD-Based Work

Thermo-Calc version 2019b [23,37] was installed on a desktop computer in a computer
lab. The operating system was Windows 10, Core i7 processor (CPU) with 16 GB RAM.
Phase transformation calculation time varied between 20 and 30 min.

2.4.2. Artificial Intelligence-Based Work

AI-based work was performed on a laptop. The operating system was Windows 10,
Core i7 processor (CPU) with 32 GB RAM. DLANN model development took about 20
to 30 min. Once the model was developed, prediction was completed in a few seconds.
DLANN models were also used on an Android phone with 6 GB RAM and octa-core
processor (CPU). Prediction time is a few seconds on the Android phone. SOM model
development took about 20–30 min for each case.
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3. Results
3.1. Stability of Stable and Metastable Phases

From CALPHAD-based calculations, one can observe the OMEGA (ω) phase at cryo-
genic temperatures as low as 50 K [15]. At these temperatures, phase stability calculations
provided a high amount of the OMEGA (ω) phase (above 0.8 mole fraction). With a rise
in temperature, the OMEGA (ω) phase decreased and reached zero even below room
temperature. In order to stabilize the OMEGA (ω) phase, few phases including HCP_A3
(α), BCC_B2 (β) and ALTI3_D019 (α”) were suppressed/removed while performing phase
stability calculations. This stabilized the OMEGA (ω) phase, and we were able to sta-
bilize the OMEGA (ω) phase at higher temperatures through the CALPHAD approach.
From experiments, it has been confirmed that the OMEGA (ω) phase is present in the
same amount after processing/heat treatment [8–15]. Thus, it was important to stabilize
the OMEGA (ω) phase for better understanding of its formation and stability over a large
temperature range.

Figure 1 shows the relative comparison of the occurrence of the OMEGA (ω) phase
over a large range of temperature (0–1500 K). In Figure 1, the entire temperature range was
divided into five parts. About 3000 candidate alloy compositions were analyzed in this
temperature range. The number of cases was recorded for which the OMEGA (ω) phase
was observed in each of these temperature ranges. Regarding legends, “α and β stable”
means HCP_A3 (α) and BCC_B2 (β) were included in the phase stability calculations and
both phases were stable. Legend “α” only” means that in this case, both HCP_A3 (α)
and BCC_B2 (β) were removed while performing equilibrium calculations for stabilizing
ALTI3_D019 (α”) phase. Legend “ω only” means that HCP_A3 (α), BCC_B2 (β) and
ALTI3_D019 (α”) phases were removed while performing phase stability calculations for
stabilizing the OMEGA (ω) phase.
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Figure 1. Occurrence (%) of the OMEGA (ω) phase for different temperature ranges for three separate
equilibrium calculations.

From Figure 1, we can see that the OMEGA (ω) phase can be stabilized at elevated tem-
peratures through the CALPHAD approach as observed through experiments [8–15]. In or-
der to stabilize the OMEGA (ω) phase at elevated temperatures through the CALPHAD
approach, one needs to remove HCP_A3 (α), BCC_B2 (β) and ALTI3_D019 (α”) phases
along with a few other phases while performing phase stability calculations. Through the
CALPHAD approach, a user needs to perform separate calculations each time they need
to analyze a particular composition or temperature for determining metastable phases.
This approach is time consuming as a user needs to have access to the computer on which
CALPHAD-based software is installed.

Next, we move forward to application of AI algorithms on phase stability data gen-
erated through the CALPHAD approach. AI algorithms will be helpful in developing
accurate predictive models that can capture trends and patterns within a large dataset.
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3.2. DLANN Model

As mentioned before, DLANN models were selected on the basis of physical metal-
lurgy of titanium alloys as well as on error metrics. DLANN architecture and error metrics
(MSE and MAE) over the validation set are listed in Table 2. From Table 2, one can notice
that values of MSE are acceptable, but values of MAE are a bit high. The amount of phase
varied between zero and one for each of the stable and metastable phases included in this
work, while MAE varies between 0.01783 to 0.03574. Thus, MAE for this work is between
approximately 1.8% and 3.6% of the maximum amount of any phase. We have mentioned
before that 67% of data were assigned to the training set and 33% of data were included in
the testing or validation set. Thus, there is room for improvement in prediction accuracy
(error metrics) by increasing the amount of data in the training set. However, while work-
ing on accuracy, we must be careful as ANN models are susceptible to “overfitting”. Thus,
based upon physical metallurgy of titanium alloys, error metrics in the present case and
our own experience in handling such problems, we selected the models listed in Table 2 for
further analysis.

Table 2. Performance metrics for deep learning artificial neural network (DLANN) models for
various phases for the Ti-Nb-Zr-Sn system.

Phase DLANN
Architecture

Error Metrics (Validation Set)

Mean Absolute Error
(MAE)

Mean Squared Error
(MSE)

ALTI3_D019(α”) 50-100-100-100 0.03286 0.00549

BCC_B2 (β) 80-160-160-160 0.03182 0.00608

BCC_B2#2 90-180-180-180 0.03574 0.00916

HCP_A3(α) 90-180-180-180 0.01783 0.00135

OMEGA (ω) 70-140-140-140 0.01922 0.00248

DLANN models were used as a predictive tool and can be used on a computer
and even on an Android device. As mentioned before, metastable phases are absent in
the presence of stable phases while performing phase stability calculations under the
framework of the CALPHAD approach [29,33,34,39]. We used the alloy composition and
temperatures included in the dataset obtained from initial calculations containing only
stable phases and then predicted metastable phases for these alloy compositions and
temperatures through DLANN models. Thus, DLANN models were used to obtain an
improved dataset for further analysis through SOM.

3.3. Self-Organizing Maps (SOM)

SOM analysis [25,28,31,42] was performed on the data obtained through the CAL-
PHAD approach and DLANN models. From CALPHAD and DLANN analysis, we have
a matrix of 3000 rows and nine columns. Here, rows are 3000 candidate alloys. Columns
are alloy compositions (Ti, Nb, Zr, Sn), temperature and the phases BCC_B2, HCP_A3,
ALTI3_D019, and the OMEGA phase. Thus, we included all the design variables and
the objectives. Calculations were performed in batch mode, where all the designs are
introduced to the SOM algorithm with value of X unit set at 15 and Y unit assigned a
value of 18 [28,31]. Thus, there are 270 map units on a SOM map. Each map unit is in
the form of a hexagonal cell and candidate alloys are positioned at the vertices of the
hexagonal units. The 3000 candidate alloys along with temperature and concentration
of phase values are arranged over 270 units on the SOM maps on the basis of algorithm
setting. Other parameters were optimized so that SOM maps are able to capture trends in
the dataset [28,31,42].

In this work, we used a commercial software ESTECO-modeFRONTIER for SOM
analysis [42]. This software provides a user with two types of error values: quantization
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error and topological error. Quantization refers to the ability of the SOM algorithm to
learn from data distribution. As mentioned, about 3000 candidate alloy compositions and
temperatures and amounts of stable and metastable phases are presented in batch mode.
These 3000 candidates are positioned at the vertices of 270 hexagonal unit cells on SOM
maps. SOM analysis provides these candidates with new prototype positions on the SOM
map. Quantization error is an estimate of the average distance between the initial position
of a candidate and its prototype position assigned through SOM analysis.

The SOM algorithm is known for preserving the topology of the dataset. As mentioned,
there are 270 hexagonal map units and candidates are arranged on each of these units.
Through topology error, the algorithm checks for the relative position of a candidate with
respect to candidates positioned in adjacent hexagonal map units. Thus, initially all the
candidates are positioned on the SOM maps and as per SOM algorithm settings, all of
these candidates are assigned new prototype positions. Through topology error, the SOM
algorithm determines the relative distance between initial and prototype positions of
candidates in the neighboring hexagonal units. This way, all the candidates positioned on
the SOM maps are checked.

The SOM model was chosen on the basis of error metrics of a model and capability
of a model to mimic trends shown in the literature for Ti-based biomaterials. Physical
metallurgy of Ti-based alloys was given a priority while error metrics acted as a guiding
tool. SOM error metrics have been reported in Table 3. Here, we can observe that model
error for SOM is quite low. Hence, we moved ahead with analyzing the SOM maps for
understanding patterns within the dataset.

Table 3. Self-organizing maps (SOM) error metrics for the Ti-Nb-Zr-Sn system.

Quantization Error Topological Error

0.064 0.028

Figure 2 shows the SOM component plot for the Ti-Nb-Zr-Sn system. For SOM analy-
sis, BCC_B2#2 phase was not included as there were too many missing points and also due
to the fact that it is another form of same BCC_B2 phase included in the TCTI2 [37] database.
From Figure 2, we can observe that BCC_B2(β) and HCP_A3(α) are positioned together.
Components positioned together are correlated in SOM maps. From physical metallurgy
of titanium alloys, we know that titanium alloys in practice are either predominantly α or
β, or a mixture of both in different proportions [2,28]. Thus, the stability of α and β phases
is correlated from a metallurgical point of view. The SOM algorithm was able to determine
correlations that can be verified from reported works on titanium alloys, even though the
SOM algorithm is an unsupervised machine learning approach and does not work on the
principle of Gibbs energy minimization [25,28,31].

ALTI3_D019 (α”) is close to HCP_A3 (α) and can be correlated. The OMEGA (ω)
phase is far enough from other cells so we cannot confirm that it is correlated with the other
components. Temperature is below BCC_B2 (β) and HCP_A3 (α) and close to Sn and Zr.
Temperature is not close enough to these components and we cannot provide a concluding
remark on the correlation between temperature and other components. Elements Ti and Nb
are clustered together similar to Zr and Sn. The OMEGA (ω) phase is close to Ti and Nb,
but not close enough to point towards strong correlation. Thus, SOM analysis provided us
with vital information on various strong and weak correlations among alloying elements,
stable and metastable phases, and temperature for the Ti-Nb-Zr-Sn system. Now, we will
proceed further to analyze each of these components.



Metals 2021, 11, 15 8 of 15
Metals 2021, 11, x FOR PEER REVIEW 8 of 16 
 

 

 
Figure 2. SOM components plot for the Ti-Nb-Zr-Sn system. 

ALTI3_D019 (α”) is close to HCP_A3 (α) and can be correlated. The OMEGA (ω) 
phase is far enough from other cells so we cannot confirm that it is correlated with the 
other components. Temperature is below BCC_B2 (β) and HCP_A3 (α) and close to Sn 
and Zr. Temperature is not close enough to these components and we cannot provide a 
concluding remark on the correlation between temperature and other components. Ele-
ments Ti and Nb are clustered together similar to Zr and Sn. The OMEGA (ω) phase is 
close to Ti and Nb, but not close enough to point towards strong correlation. Thus, SOM 
analysis provided us with vital information on various strong and weak correlations 
among alloying elements, stable and metastable phases, and temperature for the Ti-Nb-
Zr-Sn system. Now, we will proceed further to analyze each of these components. 

Figure 3 shows the SOM maps for HCP_A3 (α), BCC_B2 (β), ALTI3_D019 (α”) and 
OMEGA (ω) phases along with chemical concentrations of Nb, Zr and Sn and tempera-
ture. From Figure 3, one can observe that for temperature the lowest value on the color 
bar is 645 K and the highest value is 1232 K, while in Table 1, the range of temperature 
was between 50 K and 1526 K. The reason for this is that we have analyzed about 3000 
candidate alloys through SOM. As mentioned before, each candidate is placed on the ver-
tices of hexagonal cells on SOM maps. The SOM algorithm is used for pattern recognition 
in small to large and often multi-dimensional datasets. In SOM maps, various regions are 
marked on the bases of average values of candidate alloys placed on the vertices of a hex-
agonal cell. Thus, a region marked 645 K in the figure consists of six candidate alloys for 
which the average temperature is about 645 K. 

Figure 2. SOM components plot for the Ti-Nb-Zr-Sn system.

Figure 3 shows the SOM maps for HCP_A3 (α), BCC_B2 (β), ALTI3_D019 (α”) and
OMEGA (ω) phases along with chemical concentrations of Nb, Zr and Sn and temperature.
From Figure 3, one can observe that for temperature the lowest value on the color bar
is 645 K and the highest value is 1232 K, while in Table 1, the range of temperature was
between 50 K and 1526 K. The reason for this is that we have analyzed about 3000 candidate
alloys through SOM. As mentioned before, each candidate is placed on the vertices of
hexagonal cells on SOM maps. The SOM algorithm is used for pattern recognition in small
to large and often multi-dimensional datasets. In SOM maps, various regions are marked
on the bases of average values of candidate alloys placed on the vertices of a hexagonal
cell. Thus, a region marked 645 K in the figure consists of six candidate alloys for which
the average temperature is about 645 K.
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From literature, we know that HCP_A3 (α) is stable at lower temperatures and BCC_B2
(β) is stable at higher temperatures [2,28]. In Figure 3, we can observe that same pattern
for HCP_A3 (α) and BCC_B2 (β) phases. At higher temperatures, one can fully stabilize
BCC_B2 (β) phase, while suppressing formation of HCP_A3 (α), ALTI3_D019 (α”) and
OMEGA (ω) phase. With respect to composition, one needs to design compositions in a
way that Nb is between average to low value, Sn is below average value and Zr is average
and below average. Here, the average value refers to the color bar for the compositions
in Figure 3.

Figure 4 shows the distribution for titanium and temperature along with BCC_B2 (β),
HCP_A3 (α), ALTI3_D019 (α”) and OMEGA (ω) phase. From Figure 4, one can observe
that a user must maintain titanium at average composition as shown through color bar in
the figure. At the average titanium composition, along with elevated temperature, a user
can design compositions that will be predominantly the BCC_B2 (β) phase and these
candidates are expected to be free from the HCP_A3 (α), ALTI3_D019 (α”) and OMEGA
(ω) phase.
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phases for the Ti-Nb-Zr-Sn system.

From Figures 3 and 4, one can observe that OMEGA (ω) predicted through the
DLANN model is stable for a wide range of temperatures and compositions. Figure 1
shows a similar trend of occurrence of the OMEGA (ω) phase over a wide temperature
range. Figure 1 was plotted using data from CALPHAD-based calculations, where a
user needs to perform calculations separately for stabilizing metastable phases. Through
AI algorithms, all of this can be achieved at the same instant. AI-based predictions can
be performed on a normal computer for free as we have developed our code in Python
language, which is free.

From this work, five candidate alloy compositions and temperatures were identified
(Table 4). These alloys are expected to have a fully stabilized BCC_B2 (β) phase and to be
free from other phases such as HCP_A3 (α), ALTI3_D019 (α”), and OMEGA (ω) phase.
For these select alloys, the amount of OMEGA (ω) phase obtained through phase stability
calculations, stabilizing OMEGA (ω) phase and value of OMEGA (ω) phase predicted
through DLANN models and SOM maps were all zero.
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Table 4. Candidate alloys predicted through CALculation of PHAse Diagram (CALPHAD), DLANN
models and SOM approach, with zero concentrations of HCP_A3 (α), ALTI3_D019 (α”), and OMEGA
(ω) phases.

Alloy No. Ti (Mole %) Nb (Mole %) Zr (Mole %) Sn (Mole %) Temp. (K)

1 63.11244 29.85438 5.11341 1.91977 641.7

2 65.56413 27.26226 6.32562 0.84798 807.825

3 65.44534 27.15556 6.62609 0.77301 955.644

4 64.15603 26.81113 7.31843 1.71441 989.739

5 73.28298 23.13284 1.39528 2.1889 1024.94

4. Discussion

This research problem had the main goal of determining the compositions and temper-
atures for Ti-Nb-Zr-Sn alloys, which will provide an alloy that is predominantly BCC_B2
(β) phase and free from other phases such as HCP_A3 (α), ALTI3_D019 (α”), and OMEGA
(ω) phase. In this work, this task was accomplished through combined CALPHAD and
artificial intelligence (AI).

We identified one publication [2] on thermodynamic modeling on Ti-based biomateri-
als, which can be compared with our current work. In that work [2], the author performed
first-principle calculations along with thermodynamic modeling within the framework of
the CALPHAD approach for predicting metastable phases in the Ti-Nb-Zr-Sn-Ta system [2].
The author listed as his future work that he will work on the development of models based
on first-principle calculations for predicting the α” andω phase [2] and indicated plans to
study the effect of Sn addition in larger amounts in order to study its effect on the stability
of the β phase [2]. Another work [16] based on shape memory alloys can also be compared
with the present work. In their work [16], the authors performed first-principle calculations
for developing ω-phase free Ti-Ta-X systems. Both of these references are thorough works
and have included results from first-principle calculations [2,16]. Density functional theory
(DFT) or first-principle calculations are computationally expensive, and a user needs to
have access to supercomputers for performing DFT-based study. Additionally, one of these
works [2] was performed in 2017 when Thermo-Calc did not have a commercially available
database for Ti-based alloys. In the last few years, there has been significant development
in improving the database of Ti-based alloys [23,36–39]. The Ti-based alloy database now
includes several new elements, which means several new equilibriums [37]. Many new
models have been included for predicting various stable and metastable phases [37]. Thus,
in the current work, it was possible to address a few of the limitations mentioned in these
references [2].

In this work, we used Thermo-Calc [23,36] along with the TCTI2 database [23,36–39].
Our objective was to accelerate the process of discovery of new alloy compositions for
Ti-based biomaterials and temperatures at which the β phase is fully stabilized. Thus,
we relied on existing CALPHAD-based models and generated data for stability of various
stable and metastable phases. Thereafter, we chose to develop models for various stable
and metastable phases through the application of artificial intelligence algorithms.

Notice that no work was presented on improving the models for α” and ω-phase
through first-principle calculations, as this was not within the scope of the present work.
The purpose was to develop models that can be used for predicting the concentrations of
stable and metastable phases in a few seconds. Consequently, DLANN models developed
in this work can be used on a personal computer and even on a normal Android phone.

The SOM algorithm was further helpful in determining various correlations among
chemical compositions, temperatures, and concentrations of stable and metastable phases.
Determining these correlations were mentioned in the future work of one of the articles
that dealt with thermodynamic modeling [2]. The current work demonstrates that it is
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possible to efficiently predict a few candidate alloys that are expected to meet requirements
regarding the stability of β phase.

Future Work

Regarding future work, we plan to work on the following topics:

• Expanding the scope of study regarding working with new alloying elements that are
biocompatible and non-toxic [2,13,43] by applying CALPHAD and AI approaches for
exploring new compositions and temperatures of new alloys.

• Develop predictive models for Young’s modulus of new proposed alloys through the
CALPHAD approach and AI algorithms.

• Study kinetics of precipitation of various stable and metastable phases within the
framework of the CALPHAD approach and work with solidification simulation to
have a better understanding of precipitation of various stable and metastable phases
for different cooling rates. Thereafter, study precipitation kinetics of nucleation and
growth of various phases.

# This study will be helpful for understanding micro-segregation, especially
for cast prosthetics [13,44–46]. Studies have shown that during solidifica-
tion, it is difficult to avoid composition variation in the inter-dendritic region
due to solute entrapment, which thus makes the casting composition non-
homogeneous [44]. Micro-segregation can be controlled by properly choosing
the cooling rate [13,44]. Thus, solidification simulation will be helpful in under-
standing the temperature regimes where a certain desired or undesired phase
is stable [44]. This way, one should be able to design a cooling rate that is fast
enough to avoid ageing in the temperature regimes where undesired phases
are unstable.

# Heat-treatment simulations are equally important [46]. Some of these alloys
are subjected to ageing at a defined temperature for a prolonged time (several
hours). Through heat treatment simulations, one can obtain an estimate of the
grain size and volume fractions of a desired phase and observe its growth over
time. Grain size and volume fraction affect the Young’s modulus of an alloy,
so this study is important.

• Simulate microstructure evolution, micro-segregation, composition variation in the
inter-dendritic regions [47–49] under the framework of the CALPHAD and phase field
approach [47–49].

# The phase field approach is a popular approach for simulating microstructure
evolution. A user can get insights required for the understanding of the so-
lidification process and can study the growth of dendrites and composition
variation in inter-dendritic regions, which is important for addressing micro-
segregation [47–49]. The CALPHAD approach will be used for providing vital
information on thermodynamics and kinetics to the phase-field models espe-
cially regarding the sequence of precipitation of a phase as well as stability of
various phases [49]. The CALPHAD approach also provides the grain size, and
this information can be used to calibrate the phase field model [49].

• Design new manufacturing protocols with special emphasis on additive manufactur-
ing [50–56].

# Manufacturing of parts via additive manufacturing is a viable method,
especially for users who need custom made implants [50–57]. The additive
manufacturing route is also helpful in developing implants with lower Young’s
modulus and improved biocompatibility [51].

# Several modes of designing new parts through additive manufacturing exist,
such as selective laser beam, electron beam, etc. [50–52,56]. All of these methods
have advantages and limitations [50–52,56]. Optimization of operation param-
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eters plays a vital role in achieving targeted properties of a prosthetic/implant
manufactured by additive manufacturing [50,53].

# CALPHAD, and the phase field approach have been used for studying mi-
crostructure evolution for additively manufactured parts [47–49]. AI algo-
rithms have been used to study data and develop inexpensive predictive
models within the framework of additive manufacturing [57]. We plan to work
on these topics.

• Finally, the most important characteristic of an implant is its biocompatibility, and
osteointegration [55,58–62]. Several coatings have been developed and there is always
room for improvement [55,58–62]. We plan to use AI-based tools to understand
these coatings and possibly design new coatings with enhanced biocompatibility and
osteointegration.

5. Conclusions

In this work, we proposed a novel, computationally efficient approach for accelerating
the discovery of new compositions and process parameters for Ti-based biomaterials that
will help in achieving fully stabilized β-phase, which is required for improving multiple
desired properties of existing biomaterials. This work utilizes the information reported in
literature to generate data for various stable and metastable phases under the framework
of the CALPHAD approach. AI algorithms were used to accelerate the discovery of new
compositions and temperatures.

This work can be summarized as follows:

• Data for various stable and metastable phases were generated for about 3000 com-
position and temperature values of a Ti-Nb-Zr-Sn system through the commercial
software Thermo-Calc and TCTI database for titanium alloys.

• Phase stability data were used for developing deep learning artificial neural network
(DLANN) models for various phases as a function of alloy composition and temper-
ature. DLANN models were used to predict the concentrations of phases for new
compositions and temperatures. DLANN models can be used on a personal computer
and even on an Android phone.

• The SOM algorithm was used to determine correlations among alloying elements,
temperature, and various stable and metastable phases.

• Finally, we predicted compositions of five select alloys that are expected to meet our
expectations regarding the phase stability of β phase.
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