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This work quantifies the uncertainty in Stevens Mark VII Perceived Level of sonic booms
due to uncertainties in atmospheric profiles. The influence of temperature, humidity, and
wind profiles, at six cities around the globe, on the sonic boom loudness is calculated.
The flow field around an aircraft was obtained by solving the three-dimensional (3D),
compressible Euler equations using the UNS3D solver. The near-field pressure signature
is then propagated through the atmosphere by solving the augmented Burgers equation

using the sSBOOM solver. The uncertainty is modeled using a nonintrusive polynomial
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1 Introduction

Since the advent of supersonic flight, much effort has been
dedicated to achieve a quieter flight. Prather et al. [1] presents cur-
rent methods for operating supersonic transport (SST), which
include limiting supersonic flights to specific corridors over land.
Recent efforts have demonstrated the possibility of quieter super-
sonic flight [2], which has spawned multiple research efforts [3.,4]
toward lessening the negative impacts of sonic booms. While
there were several optimization studies [5-7] that have been
performed to design a low-boom supersonic aircraft, only one
publicly available effort [8] has been made to design a robust low-
boom aircraft considering impacts from effects of uncertainty in
many atmospheric profiles on its sonic boom level. It is well
known that the atmospheric conditions significantly influence the
sonic boom propagation and the Perceived Level (PL) at the
ground level. Little effort has been dedicated toward quantifying
the uncertainty in PL due to atmospheric uncertainties.

Previous work of West et al. [9] investigated the uncertainty in
the near-field and ground noise signature due to aleatory and epis-
temic uncertainty. Their work developed a computationally effi-
cient framework for uncertainty quantification and sensitivity
analysis. Fujino et al. [10] investigated the effects of atmospheric
conditions on the peak pressure of the ground signature. However,
their atmospheric data only considered the atmospheric profiles at
three different times on a single day. Shimoyama et al. [11] and
Jeong et al. [12] used polynomial chaos to compute the uncer-
tainty in the pressure signature due to temperature, humidity, and
wind profiles. Their study only considered the atmospheric profile
at the Esrange Space Center between 2000 and 2009. Their
research does not however provide numerical values of uncer-
tainty, and comment only on the pressure signature and not the
Perceived Level. Previous investigations in this field do not pro-
vide a quantifiable measure of the uncertainty in loudness. This
study not only quantifies the uncertainty in sonic boom PL but
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chaos approach. A sensitivity analysis is performed to identify the altitude range and the
atmospheric variable to which the Perceived Level is most sensitive. It was shown that
the Perceived Level is not sensitive to any particular altitude but rather the atmospheric
profiles. It was also seen that the Perceived Level is highly sensitive to humidity and tem-
perature profiles and less sensitive to the wind profiles. [DOI: 10.1115/1.4049688]

also quantifies the extent to which each atmospheric variable
influences the sonic boom loudness.

This study addresses these issues by considering Stevens Mark
VII Perceived Level [13-15], which has been shown to correlate
with human perception of sonic boom. It should also be men-
tioned that previous works only considered and drew their conclu-
sions from the atmospheric conditions at one location. The
atmospheric profiles used are also from relatively diverse climates
and relatively recent. The atmospheric profiles during the year
2017 from six different cities from around globe are considered.
The augmented Burgers equation is solved to propagate the near-
field pressure wave to the ground using NASA’s sBOOM solver
[16]. A nonintrusive polynomial chaos approach is used to propa-
gate the uncertainty through the system. The uncertainty in under-
track PL due to uncertainties in temperature, relative humidity,
x-directional winds, and y-directional winds are quantified for an
aircraft heading east, in the positive x direction. The sensitivity of
PL to the atmospheric variables within an altitude range is also
studied. Results show that the PL is most sensitive to humidity
followed by temperature and x-directional winds. It is not sensi-
tive to y-directional winds. It should be noted that the aircraft was
assumed to be traveling in an easterly direction, where east and
south are in the x and y direction, respectively. It is also shown
that the atmospheric variables have more influence in a particular
geographic region than another. This is due to the large variation
in the atmospheric profile from one region to another. In previous
studies, it was shown that the wind direction and velocity have
negligible effect on the sonic boom loudness. In this work, how-
ever, it was seen that in certain cities, they are equally as impor-
tant as temperature.

2 Analysis Framework

This section presents the framework and methodologies used to
perform the sensitivity analysis and uncertainty quantification. It
also presents the dataset used to obtain the atmospheric profiles
and the near-field pressure waveform.

2.1 Fluid Dynamics Model. The velocity and pressure field
near the aircraft was obtained using a cell-centered finite volume
solver, UNS3D, developed at Texas A&M University [17]. Due to
the high flight Reynolds number expected, the flow was assumed
to be inviscid. The UNS3D solver was used to solve the
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three-dimensional (3D), steady-state, compressible Euler equa-
tions. The mass, momentum, and energy balance in the Euler sys-
tem of equations are given as

dp

o V(o) =0 )
Jpu I
W—FV (puu)—i—Vp:O 2)
X V- uE+p) =0 3)

where p, u, p, T are the density, velocity, pressure, and tempera-
ture, E = pe +%pu2 is the total energy per unit volume and is
composed of the kinetic energy per unit volume (% pu?) and the
internal energy per unit volume (pe). Here, e is the internal energy
per unit mass.

The UNS3D solver computes the convective fluxes using Roe’s
approximate Riemann solver [18] in conjunction with Harten’s
entropy fix [19]. Second-order spatial accuracy was obtained
using piecewise-linear reconstruction to obtain the left and right
states (solution to the left and right side of the interface) when
computing the convective fluxes. The Green-Gauss gradient
reconstruction method [20] was used to compute the flow field
gradients needed for piecewise-linear reconstruction. A steady-
state solution was obtained by integrating the Euler system for-
ward in pseudo-time using the General Minimal Residual Method
(GMRES) [21]. Steady-state convergence was accelerated by
employing local time-stepping.

2.2 Atmospheric Profiles. The atmospheric profiles used in
this work were obtained from the National Oceanic and Atmos-
pheric Administration (NOAA) [22,23] and are the weather bal-
loon soundings from the Integrated Global Radiosonde Archive
(IGRA). A total of six cities around the globe with diverse cli-
mates and weather profiles are considered: Miami, Las Vegas,
Oslo, Glasgow, Mumbai, Shanghai, and a fictional city Combined
is also considered. That is, the database of soundings for the
“Combined” city contains the soundings from the remaining six
cities. The distribution of variables for the Combined city is then
obtained using this combined dataset of soundings. Only weather
recordings at these cities during the year 2017, and only the varia-
bles that affect the sonic boom propagation, such as temperature,
humidity, and winds, were considered. The soundings were often
taken two to four times each day throughout the year. It should be
mentioned that the database does not contain measurements for
every day of the year, but is still sufficiently large.

Each atmospheric variable, at each city, was sampled through-
out the year for a set of ten uniformly distributed altitude values.
Preliminary studies showed that ten uniformly distributed points
were sufficient to describe the complete atmospheric profile. The
near-field and ground signatures were defined using 6340 and 40
000 points, respectively. The mean and standard deviation of
each variable at each city as a function of altitude is shown in the
Appendix. Finally, each atmospheric variable for a combined
dataset of all cities was also sampled throughout the year at a set
of 10 uniformly distributed altitudes. The uncertainty quantifica-
tion is performed using the atmospheric profile at each city and
the profile of the combined set, while the altitude sensitivity study
is only performed using the profile of the combined set.

2.3 Sonic Boom Propagation. The sonic boom propagation
in this work is performed using sSBOOM [16] (Version 1 - NASA
Ref. ID: LAR-18012-1). It solves the augmented Burgers equation
[24], Eq. (4), in the time domain.

o _ o v, 30,
ox  pocy of 2(38t/2

" Pp vy
4 L @
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Here, [ is the coefficient of nonlinearity, p is the pressure, pq is
the ambient density, ¢, is the ambient speed of sound, ¢’ is the
retarded time coordinate, and 0 is the diffusion parameter. The
augmented Burgers equation accounts for nonlinearity, thermovis-
cous absorption, and any number of molecular relaxation phenom-
ena (losses from O, and N,) during the propagation of waveforms
through the atmosphere.
Equation (4) can be converted to a dimensionless form

oP aP 1 9%P 9%/07% OA/OA
0o ToTroe ZC1+0 oot " t
P)
n (POCO)/ GP )

2poco

where P(o,1) = p/po, po is the reference pressure and T = wo?’ is
the dimensionless time. The nondimensional distance is given as
¢ = x/X, where X = pocj / Bwopo is the shock formation distance of
a plane wave with an angular frequency wy. In Eq. (5), I' = 1/ofx
is the dimensionless thermoviscous parameter, o) = dw3/2c} is the
attenuation coefficient, 6, = wot, is the dimensionless relaxation
time parameter, C, = (m,7,w3/2co)x is the dimensionless disper-
sion parameter and m, is the dispersion parameter. The reference
pressure is obtained from the hydrostatic balance.

The sBOOM program solves this dimensionless version of the
Burgers equation using an operator splitting approach. Given the
temperature, relative humidity, and wind profiles, sSBOOM com-
putes the ground pressure signature. The Perceived Level, com-
monly referred to as PL or PLdB, of the ground pressure signature
is then computed using the Stevens Mark VII procedure [13]. Sul-
livan [25] indicated that the PLdB metric is a more appropriate
measure of loudness than the overpressure and the unweighted
sound pressure level. The PLdB was computed using the open
source package PyLdB [26]. The pressure wave that is propagated
was obtained using the UNS3D solver from the NASA C25D
geometry from the 2nd AIAA Sonic Boom Prediction Workshop
[27]. It is the pressure signature created by a low-boom concept
NASA C25D aircraft cruising at Mach 1.6 at an altitude of
approximately 15600 meters. The ground reflection factor in
sBOOM was held constant at 1.9. Each of the seven cities in this
study was assumed to be at sea level (i.e., the ground elevation is
held constant at Om). All atmospheric profiles were linearly
extrapolated, from 200 m down to O m, in order to obtain their val-
ues at attitudes where measurements were not available. Since
only the effects of atmospheric uncertainty are considered, all
other parameters were held constant.

The augmented Burgers equation is a popular model for acous-
tic wave propagation. The model, however, does have some limi-
tations. The viscous and nonlinear terms in the augmented Burgers
equation are derived from one-dimensional form of the
Navier—Stokes equations (NSE). In standard application of the NSE,
the Stokes’ hypothesis of bulk viscosity (1) being zero is used [28].
This leads to the second coefficient of viscosity value of { = —%,
where  is the dynamic viscosity. Using the kinetic theory of gasses,
this value was determined to be true for most of monatomic gasses.
For air, the value of the bulk coefficient of viscosity is practically
zero. Hence, Stokes hypothesis was assumed valid in these studies.

Gad-el-Hak [29] stated that in the case of flow of a polyatomic
gas through a shock wave, the bulk viscosity is proportional to the
longer relaxation time. This would lead to larger values for the
second coefficient of viscosity. Dulikravich [30] and Dulikravich
and Kennon [31] investigated the effects of the second coefficient
of viscosity greater than the one given by the Stokes hypothesis
and its effect viscosity on the strength of the shock and showed
that a positive value of bulk viscosity lead to weaker shocks than
the Rankine—Hugoniot shocks, which correspond to Stokes
hypothesis only [30,31].

Landau and Lifshitz [28] showed that the intensity of the dissi-
pative processes, and therefore the value of { depends on the
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relation between the rate of compression/expansion and the relax-
ation time. Therefore, in the case of compression/expansion due
to a sound wave, the second coefficient of viscosity might depend
on the wave frequency. In traditional models, the second coeffi-
cient of viscosity is treated as a constant when in reality it is
frequency-dependent [32]. The dependence of { on frequency is
called its dispersion. Since the exact value of bulk viscosity for air
is not known, it was assumed to be zero. Similarly, since the rela-
tionship between the second coefficient of viscosity and frequency
is not known, it was assumed to be constant at { = —%. Since
sBOOM solves the simplified model, these effects are not consid-
ered in the boom propagation.

2.4 Sensitivity Analysis Using Radial Enhanced Sampling
for Uniformity. A popular screening type sensitivity analysis
technique is Elementary Effects (EE) method [33-35]. It has been
used in various areas of research ranging from the modeling of
air-to-launch orbit separation [36], water quality [37], building
energy analysis [38] to alloy solidification [39]. The EE method
calculates local derivatives at points chosen by multivariate sam-
pling in the input space to calculate global measurement of impor-
tance at a lower cost compared to other variance-based methods.

The elementary effects are calculated using Eq. (6) for a model
with k input parameters, where A is the perturbation in the param-
eter i and r is the number of trajectories considered in sampling.
Here, A is a multiple of 1/(n — 1), usually set to n/(2(n — 1)),
where 7 is the number of levels along any input factor axis.

YUy ooy X132 DX 1o X)) = V(XL e X 15X X 1 -5k )

EE;=
A

(6)
A total of r x (k+ 1) model runs are required to calculate r ele-
mentary effects per parameter. The mean y;, mean of absolute val-
ues of elementary effects u; and standard deviation o; of the

elementary effects for each parameter for all trajectories is calcu-
lated using Eqgs. (7), (8), and (9), respectively.

1<

m=;§?mu )
1<

W= ;; |EE;,| ®)

©)

Parameters are plotted in u* — ¢ space to identify model behavior
related to them and to segregate them into important and unimpor-
tant classes. The parameters closely clustered toward the origin
are considered unimportant and the ones well-separated away
from the origin are considered important. The parameters far from
the origin and closer to the p* axis are considered to have high lin-
ear impact whereas the ones far from the origin and closer to the ¢
axis are considered to have high interaction effect [34]. Variables
above the u* = ¢ line are considered to have some degree of inter-
action effect.

To avoid sparse representation of the input space and to
improve quality of the screening process, a sampling strategy with
the ability to produce a well-representative sample is of immense
importance. The development in the sampling strategies for EE
method has ranged from winding stair-case type trajectory-based
strategies such as Optimized Trajectories (OT) [40], Sampling for
Uniformity (SU) [41], and enhanced SU (eSU) [42] to radial or
star shaped design-based strategies such as Radial Sampling [35]
and Radial Quasi-Random Sampling [43]. Campolongo et al. [35]

Journal of Fluids Engineering

compared performance of radial and winding staircase type trajec-
tories and concluded radial to be a better design. They suggested
using Sobol quasi-random sequences to build a variable step -
radial OAT sample to conduct EE analysis. Xiao et al. [43] dem-
onstrated that radial design with fixed step size performed better
than variable step type design. From the perspective of sample
design, radial design has proven to be better than winding stair-
case design. Principle of uniformity states that the trajectories
must be selected in such a way that the entire design space is cov-
ered. The sampling strategy used in this work, Radial enhanced
Sampling for Uniformity (ReSU) combines the principle of uni-
formity with radial design.

2.5 Point-Collocation Nonintrusive Polynomial Chaos
Expansion. In recent works, polynomial chaos expansion (PCE)
has been the preferred method for quantifying uncertainty in a
system over other methods such as Monte Carlo sampling
[44—47]. The PCE approach decouples the system response, which
is a function of a deterministic parameter D, and a stochastic
parameter ¢, into a deterministic component and a stochastic com-
ponent, Eq. (10),

o0

f(&D) = a(D)¥i(¢) (10)
i=0

where « are the coefficients representing the deterministic compo-

nent and ¥ are the basis functions representing the stochastic

component, such that the basis functions are orthonormal with

respect to the probability distribution of &, (&).

J%(é)%(é)n(é)dé s (11

All variables in this work were assumed to be normally distrib-
uted, as stated by the central limit theorem. Therefore, the corre-
sponding basis functions ‘¥ for such a distribution are the Hermite
polynomials [48]. Here, the n-D basis functions ¥ are defined as a
tensor product of one-dimensional basis functions ¢.

To guarantee convergence in the expansion, the series given in
Eq. (10) should be infinite (P = oo). The series is however trun-
cated at some finite number to be computationally feasible. For a
polynomial order n and the number of random variables s, the
series truncation scheme is defined by Xiu and Karniadakis [48]

(n+s)!

N=P+1=
nls!

12)

where N, is the total number of terms and s is the number of ran-
dom variables. A polynomial of second-order (n=2) is used
throughout this work. Reddy [49] showed that a second order
polynomial approximation was sufficient to accurately recover the
probability distribution obtained using Monte Carlo sampling
with a large number of samples.

The PCE framework present can be used in an intrusive or a
nonintrusive fashion. The intrusive PCE approach requires modifi-
cation to the numerical solver by incorporating the PCE in
Eq. (10) directly into the governing equations or discretized equa-
tions. This has shown to be computationally expensive [44].

The nonintrusive PCE approach constructs a surrogate model
by fitting the PCE expansion in Eq. (10) to a sequence of gener-
ated samples. A total of N, samples are generated by obtaining the
response of the system at various randomly generated values of
input parameters. These random values of the variables are drawn
from the probability distribution of those variables. A linear sys-
tem of size N, can be formulated, Eq. (13), and solved to obtain
the coefficients of the deterministic component. It should be noted
that if exactly N, samples are available, then the surrogate con-
struction becomes an interpolation problem. If the number of sam-
ples is greater than NV, then the least-squares approach is needed to
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(a)

(b)

Fig. 1 (a) Rendering of the NASA Concept 25D low-boom supersonic aircraft and (b) Symmet-
ric computational mesh domain for supersonic CFD simulations [57]

solve the system of equation. The number of samples over the
required minimum, N, is represented by the oversampling ratio
(OSR). Hosder et al. [50] determined that an optimal value of
OSR is 2.0. Therefore, twice the number of minimum required
samples were generated in each uncertainty quantification (UQ)
study, and the system was solved using a least-squares approach.

‘I"o(fo) \Pl(fo) \Pp(éO) %)) f(me)
Wo(&) Yi(&) Wy (&) o f(&,D)
Woler) WilE) - W) \w)  \S(ERD)

13)

Once the system in Eq. (13) is solved, the mean and variance can
be obtained using Egs. (14) and (15), respectively. The uncer-
tainty quantification using PCE was done using the Chaospy
toolbox [51].

b= ()~ > w(D)H() = 2 (a4

P 2 P

af = ((f — )*) = << ai(D)\Pi(‘f)> > =Y % (D) (¥} (9)
=0 i=1

(15)

The global sensitivity of the response to variables can also be rep-
resented by computing the Sobol’s indices. Once the PCE coeffi-
cients are computed, they can be used to analytically compute the
Sobol’s indices [52,53], from this equation

Z “12¢<q}k7 \Ijk>

o kek,

5=
Z OC% <\Pk7 \Pk>
k=0

16)

where
|u

Ki={k€{1,...P}¥u(&) = [[ $u (&)t >0} (D)

i=1

041504-4 / Vol. 143, APRIL 2021

The total Sobol’s indices can then be computed as

Sr=Y_ S, (18)

usi

3 Computational Fluid Dynamics Analysis of C25D
Aircraft

The sonic boom pressure signature was obtained by solving the
Euler equations around the aircraft geometry using UNS3D. The
aircraft geometry in this work was the NASA Concept 25D
(C25D), Fig. 1(a). This aircraft was designed to achieve an under-
track sonic boom loudness of 74.2 PLdB [54], and the design was
further refined to reduce the sonic boom signature of the entire
boom carpet [55]. The C25D configuration features a reference
length of 32.92 m and a reference half-span area of 37.16 m>. The
aircraft was assumed to be traveling at a Mach number of 1.6 at an
altitude of 15.76 km [56] under standard atmospheric conditions.
The computational mesh was taken from the Second AIAA Sonic
Boom Prediction Workshop (SBPW2) [56]. The mesh contained
3,419,776 nodes defining 5,564,030 tetrahedral and 4,810,500
prism elements. The computation domain is shown in Fig. 1(b).

Figure 2(a) shows the convergence history of the field varia-
bles. A steady, stable convergence in the residual is seen. The con-
vergence of the integrated forces and moments was also found to
be well-behaved. The convergence history for the lift-to-drag ratio
(L/D) in Fig. 2(b) shows that a converged value for the integrated
forces was reached after only 200 iterations.

Table 1 shows the aerodynamic coefficient of lift ¢;, coefficient
of drag c,, and coefficient of moment c,, computed using UNS3D
and the mean and standard deviation of the coefficients computed
in the SBPW2. It can be seen that PLdB computed using near-
field signature calculated by UNS3D is in good agreement (within
1% relative error) to that obtained in the SBPW2.

Figure 3(a) shows the location of the pressure extraction sensor
relative to the aircraft geometry. Figure 3(b) shows the near-field
pressure (red dashed-line), extracted along the undertrack of the
aircraft at a distance R of five body lengths L, plotted against the
mean workshop data (black dotted-line) from the SBPW2
obtained using various Euler-based CFD computations. It should
be mentioned that the near-field pressure is computed as Ap/po,
where p., is the freestream pressure and Ap = p — poo. It was
found that the current prediction matched well with the workshop
data, roughly falling within a standard deviation of the ensemble
data. This pressure signature was then propagated using sBOOM
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Fig.2 Convergence histories for the baseline aircraft simulation showing: (a) residual of field variables and (b)

lift-to-drag coefficient

Table 1 Comparison of predicted aerodynamic coefficients and undertrack PLdB with SBPW2 data

C

Cy Cm PLdB

UNS3D 0.0687
SBPW2 (u*a) 0.0680 = 0.0001
UNS3D/SBPW2-1 1.04%

0.00874
0.00900 * 0.00001
—2.88% 0.95% 0.78%

—0.0523 80.86
—0.0518 = 0.0001 80.23 = 0.57

0.005

0.004
0.003 |
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0.000 |—-
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Fig. 3 (a) Sensor location from a head-on view and (b) comparison of the current near-field pressure signature
compared against the mean and standard deviation of all Euler solutions submitted to SBPW2

and was used for all sensitivity analysis and uncertainty quantifi-
cation studies.

4 Sensitivity Analysis

4.1 Sensitivity of Perceived Level to Altitude. A prelimi-
nary sensitivity analysis was performed to identify the altitude
range that contribute most to the change in sonic boom loudness.
This can be done using the sensitivity coefficients of the PL. The
sensitivity of Y to changes in parameter 7" can be defined using the
sensitivity coefficient, X given by

Zr(Y) = (19)

ar
Using this definition of sensitivity coefficients, the sensitivity of

PL due to each atmospheric variable at various altitudes is
obtained. The sensitivity study is performed about the mean of
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Fig. 4 Sensitivity of coefficient of sonic boom loudness at var-

ious altitudes with respect to temperature, relative humidity, x-
directional winds, and y-directional winds
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variables of the combined set containing profiles for all six cities.
Figure 4 shows the sensitivity coefficients of ground PL to various
altitudes due to each of the four atmospheric variables. It is imme-
diately evident that the overall loudness is not sensitive to any par-
ticular altitude. It can be seen that the loudness metrics are least
sensitive to the y-directional winds for an aircraft heading in the
positive x direction. Figure 4 shows that the boom propagation
might be more sensitive to the complete atmospheric profile than
to any particular range of the profile. This assumption is further
validated by performing the uncertainty quantification studies.
Since the y-directional wind does not contribute much to the sonic
boom loudness, it was removed from the set of variables in the

UQ study presented in Sec. 5.

® Temperature

A x-Directional Wind

4.2 Sensitivity Analysis of Perceived Level Due to Atmos-
pheric Variables. The atmospheric profiles for the year 2017 for
six cities around the world is used for sensitivity analysis. The
cities, namely, Miami, Mumbai, Oslo, Glasgow, Shanghai, and
Las Vegas are well diversified in terms of their geographical loca-
tion and weather conditions year-round. The distributions for tem-
perature, humidity, x and y directional wind for all the six cities
can be found in the Appendix. The variables that affect propaga-
tion of the sonic boom and its PL, such as relative humidity, tem-
perature, x-directional wind velocity, and y-directional wind
velocity are chosen as input parameters for the sensitivity analy-
sis. The pressure profile was again obtained by imposing the
hydrostatic balance. The raw data captured values of all the input
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Fig. 5 The mean and standard deviation of the elementary effects of the four variables for: (a) Miami, (b) Las
Vegas, (c) Oslo, (d) Glasgow, () Mumbai, and (f) Shanghai
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Fig. 6 Mean (black) and standard deviation (red) of the PL at each of the six cities and combined set
of cities due to: (a) temperature profile, (b) humidity profile, (c) x-directional winds, and (d) complete

atmospheric profile

Table 2 Mean and standard deviation (in brackets) of sonic boom loudness due to uncertainty in all atmospheric variables

Variable Miami Las Vegas Oslo Glasgow Mumbai Shanghai Combined
Temperature 77.0 (2.2) 76.7 (0.5) 78.7(0.7) 78.0 (0.9) 76.6 (0.2) 77.6 (0.7) 77.3 (1.1)
Humidity 76.6 (5.5) 76.4 (4.2) 78.6 (0.8) 779 (1.4) 76.0 (6.1) 76.9 (4.0) 76.7 (3.8)
x-Directional winds 76.6 (0.2) 76.6 (0.1) 78.8 (0.1) 78.0 (0.1) 76.5(0.4) 77.4(0.4) 77.1(0.4)
Complete profile 77.0 (2.7) 76.5 (0.8) 78.7(0.8) 78.2(1.2) 76.5(0.3) 77.5(0.8) 77.0 (1.5)

variables at ten different altitudes uniformly spaced from 200 to
16,200 m, noting that 16,200 m is above the C25D’s cruising alti-
tude. The raw data contained different number of profiles at each
day of the year. Monthly averages were calculated for all four var-
iables at each altitude. Atmospheric profiles from IGRA are typi-
cally available at 0:00 and 12:00 UTC, however data was
occasionally missing or available at other times and months. One
profile was defined for each city for each month. The profile for a
given variable is comprised of one monthly average value for
each altitude. Twelve unique profiles each for Mumbai, Shanghai,
Glasgow, and Las Vegas, eleven unique profiles for Oslo and ten
unique profiles for Miami were defined for each variable.

Unique combinations or samples are generated using ReSU
sampling strategy. Nominal distribution with number of categories
equal to number of months were assigned to all the variables. The
number of trajectories selected to generate a sample for Mumbai,
Shanghai, Glasgow, and Las Vegas are 66, for Oslo are 55 and for
Miami are 45. The number of samples generated for Mumbai,
Shanghai, Glasgow, and Las Vegas are 330, for Oslo are 275 and
for Miami are 225. A total of 1820 runs of the sSBOOM model

Journal of Fluids Engineering

were conducted. The value of the PL was recorded for each of the
samples, and sensitivity measures are calculated based on them.
Categorization of input parameters into important and unimpor-
tant model parameters is achieved through plotting 1" versus .
The absolute mean and standard deviation of the elementary
effects for each city are presented in Fig. 5. In the u* versus ¢
space, y-directional wind is very close to the origin for all six
cities indicating that it is an unimportant parameter and has little
effect on the loudness. The magnitude of the y component of wind
speed is typically lower than the x component and, therefore, it
has minimal impact on the model output in part, due to the choice
of the aircraft’s heading for this analysis. Relative humidity is
well-separated from the u* = ¢ line and farthest from the origin,
identifying it as the most important model parameter to affect the
PL for all six cities. Temperature is the second model parameter
well-separated from the origin in all cities except Mumbai and
Shanghai. Hence, temperature can be attributed the status of sec-
ond most important model parameter. x-directional wind is the
third model parameter in terms of separation from the origin at
Miami, Glasgow, Oslo, and Las Vegas. In the case of Mumbai
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Fig. 7 Normalized total Sobol’s indices at each of the six cities and combined set of cities due to: (a)
temperature profile, (b) humidity profile, (¢) x-directional winds, and (d) complete atmospheric profile

and Shanghai, the sensitivity of PL on temperature is nearly
equivalent to that of the x-directional wind. Also, both tempera-
ture and x-directional wind velocity are very close to the u* = ¢
line indicating they have both linear impact as well as interactions
effect for Mumbai and Shanghai.

5 Uncertainty Quantification of Perceived Level Due
to Atmospheric Profile

An uncertainty quantification study was performed to identify
the effects of atmospheric profiles on sonic boom loudness. The
UQ was performed using data for each of the six cities and using
the data of the combined set of the six cities. The distribution of
each variable at each city is given in Appendix. The profile
defined its value at ten different altitudes, uniformly distributed
from 200 to 16,200 m. Therefore, s=10 in Eq. (12) for each
uncertainty quantification study, since the value of the parameter
at each of the ten altitudes is considered an uncertain parameter. It
should be mentioned that only the uncertain variables are sampled
from their probability distribution, while the remaining variables
are constrained to their mean values. For example, UQ of loudness
due to temperature profile only deals with sampling the tempera-
ture profile from its given distribution and constraining the humid-
ity and wind profiles to their mean values.

The uncertainty in sonic boom loudness due to uncertainty in
temperature profile is calculated using the nonintrusive PCE
approach. Figure 6(a) shows the mean and the standard deviation

041504-8 / Vol. 143, APRIL 2021

in loudness for each of the seven data sets. The uncertainty in
loudness is not consistent in each of the seven data sets.
Figure 6(a) and Table 2 show that there is greater uncertainty due
to temperature in Miami followed by Glasgow. Loudness values
in Las Vegas and Mumbeai are least affected by uncertainty in tem-
perature since the temperature profiles at these locations have lit-
tle variation throughout the year. The difference between the
maximum loudness (Oslo) and minimum loudness (Mumbai) is
approximately 2.1 PLdB. This suggests that different atmospheric
variables influence the loudness more, depending on the profile of
the remaining atmospheric variables. This is investigated by com-
puting the influence of the remaining atmospheric variables.

The uncertainty in sonic boom loudness due to uncertainty in
relative humidity profile is calculated. Figure 6(b) shows the mean
and the standard deviation in loudness at each of the seven data
sets. Comparing Figs. 6(a) and 6(b) shows that the pattern for
mean loudness is similar in both cases. Oslo remains the city with
the highest PL and Mumbai remains the lowest. The difference
between maximum loudness and minimum loudness is approxi-
mately 2.6 PLdB. Figure 6(b) and Table 2 show that the uncer-
tainty in PL is greatly influenced by the uncertainty in relative
humidity. It is evident in the higher standard deviation values as
compared to those due to temperature. It shows that humidity has
greater influence than temperature on the PL. Both loudness val-
ues in Oslo and Glasgow are least affected by the humidity. This
is mainly due to the small variation in their humidity profiles
throughout the year as shown in the Appendix.
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The uncertainty in sonic boom loudness due to uncertainty in
x-directional wind profile is calculated. Figure 6(c) shows the
mean and the standard deviation in loudness at each of the seven
data sets. It can be seen that the mean loudness for each of the
seven data sets in Fig. 6(c) is similar to that of Fig. 6(a) and also
follows similar patterns as Fig. 6(b). Since mean loudness in Fig.
6(c) are similar to those in Fig. 6(a), it indicates that the large dif-
ferences between Figs. 6(b) and 6(c) are primarily due to the
uncertainty in humidity. Oslo again experiences a higher PL and
Mumbai the lowest PL with a difference of 2.3 PLdB between
them. The relatively small standard deviations in PL indicate the
small influence of uncertainty in x-directional winds on the loud-
ness, despite each of the seven data sets having a large variation
in x-directional wind profile. It should however be mentioned that
in certain cities (Mumbai and Shanghai), the effects of x-
directional winds are equally as important as temperature.

Thus far, the uncertainties in a profile of a single variable at a
time are considered to identify the variables that most influence
the PL. Here, the uncertainty quantification is performed using all
three variable profiles for each of the seven data sets. In this
study, the total number of uncertain parameters is s =30; 10 alti-
tudes for each of the three variables. Figure 6(d) shows that mean
and standard deviation of PL for each of the seven data sets. The
mean values continue to follow similar trend as before. It shows
the large changes in PL that are possible as an aircraft flies from
one location to another. Mumbai experiences a lower variability
in boom loudness.

Figure 7(d) shows the total Sobol’s indices normalized between
0.1 and 1.0. It can be seen that the temperature profile has a sig-
nificant effect on the PL in Miami. The x-directional wind and
humidity profiles greatly influence the PL in Mumbai. Similar
trends were seen in Fig. 6.

6 Conclusion

The effects of uncertainty in atmospheric profile on perceived
sonic boom loudness are examined. Sensitivity analysis was also

performed to investigate the effects of altitude range and atmos-
pheric variables on sonic boom loudness. The uncertainties in
atmospheric profiles of temperature, relative humidity, and wind
are propagated through the sonic boom propagation software
sBOOM using nonintrusive polynomial chaos. It was shown that
sonic boom loudness is most influenced by the humidity profile
followed by the temperature and x-directional wind profiles. Sen-
sitivity analysis showed that y-directional winds do not contribute
much to the ground loudness. It also showed that there is no par-
ticular altitude range that significantly contributes to the overall
loudness. This study shows that the wind profiles can be
neglected, in some but not all cities, during low-boom aircraft
optimization under atmospheric uncertainty without significantly
compromising the accuracy.
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Appendix

This section shows the atmospheric profiles for each of the four
atmospheric variables in each of the six cities (Figs. 8—11).
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Fig. 8 Mean (black) and standard deviation (red) of temperature profiles for: (a) Miami, (b) Las Vegas, (c) Oslo, (d) Glasgow,
(e) Mumbai, and (f) Shanghai. The mean x and standard deviation ¢ is given in the parenthesis as (g, o).
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