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Abstract

Drug delivery to tumors suffers from poor solubility, specificity, diffusion
through the tumor micro-environment and nonoptimal interactions with com-
ponents of the extracellular matrix and cell surface receptors. Nanoparticles
and drug-polymer complexes address many of these problems. However, large
size exasperates the problem of slow diffusion through the tumor. Three-
dimensional tumor spheroids are good models to evaluate approaches to miti-
gate these difficulties and aid in design strategies to improve the delivery of
drugs to treat cancer effectively. Diffusion of drug carriers is highly dependent
on cell uptake rate parameters (association/dissociation) and temperature.
Hyperthermia increases molecular transport and is known to act synergisti-
cally with chemotherapy to improve treatment. This study presents a new
inverse estimation approach based on Bayesian probability for estimating
nanoparticle cell uptake rates from experiments. The parameters were com-
bined with a finite element computational model of nanoparticle transport
under hyperthermia conditions to explore its effect on tumor porosity, diffu-
sion and particle binding (association and dissociation) at cell surfaces.
Carboxy-PEG-silane (cPEGSi) nanoparticles showed higher cell uptake com-
pared to methoxy-PEG-silane (mPEGSi) nanoparticles. Simulations were con-
sistent with experimental results from Skov-3 ovarian cancer spheroids.
Amorphous silica (cPEGSi) nanoparticles (58 nm) concentrated at the periph-
ery of the tumor spheroids at 37°C but mild hyperthermia (43°C) increased
nanoparticle penetration. Thus, hyperthermia may enhance cancer treatment
by improving blood delivery to tumors, enhancing extravasation and penetra-
tion into tumors, trigger release of drug from the carrier at the tumor site and
possibly lead to synergistic anti-cancer activity with the drug.
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1 | INTRODUCTION
1.1 | Macromolecule transport in tumor tissues

It is well accepted that despite the many (at least potential) advantages of nanoparticles as drug delivery vehicles, rela-
tively few have advanced to clinical trials and fewer still to full regulatory approval. With the exceptions of liposomal
formulations and Abraxane®, an albumin-bound paclitaxel, the use of nanoparticles for cancer has not served as the
“silver bullet” predicted by many investigators. There are likely many reasons for this. The dependence of nanoparticle
bio-distribution on particle size, shape, charge, and surface coatings has been extensively studied,'™ but remains incon-
clusive due to the variability in cancer biology. It is recognized that the environment in which the nanoparticles must
travel before reaching its site of action is very complex and requires different nanoparticle physical characteristics at dif-
ferent parts of the journey (i.e., while in storage, reconstituted as an injectable form, in the plasma, crossing the capil-
lary wall, transporting through the tumor interstitial space, crossing the cancer cell membrane, and finally in the
intercellular space reaching its intended site of action). Much of the effort toward optimizing nanoparticles as drug
delivery vehicles has concentrated on making the particles stealth while in the plasma, making them small so that they
can easily pass through the capillary barrier, making them targeted so that they can recognize and enter the cancer cell,
as well as the characteristics necessary for drug release and intracellular compartmentalization. Transport within the
tumor extracellular matrix (ECM) is also important, but is less extensively studied.

In tumors with poorly developed vasculature, diffusion is the dominant mode of transport to deliver macromole-
cules into the tumor tissue.*> Macromolecules of large size and high molecular weight have lower diffusion coefficients
and hence diffuse slower than small size molecules. Dreher et al.® showed that dextrans of medium molecular weight
(40-70 kDa) penetrated more efficiently into tumor tissue compared to dextrans of high size (3 MDa), providing an
important drug carrier design criterion. In tumors, however, the diffusion coefficient is further dependent on the avail-
able fraction of fluid space (porosity) to diffuse and the binding affinity of macromolecules with tumor cells and extra-
cellular components. Tumors with high packing density (low porosity) of cells offer more resistance to diffusion
compared to tumors with low packing density (high porosity). Similarly, molecules with high binding affinity to tumor
cells or components of the ECM diffuse slowly into the tissue. Presently, experimental estimation of rate constants
requires expensive instrumentation (such as a flow cytometer or confocal microscope) and is subject to high variability.
This proves to be a bottleneck for high throughput screening of nanoparticle properties for a chosen cancer cell type.
Hence, a reliable estimation framework that can simulate cell uptake from simple experimental data is likely to speed
up the development of personalized nanotherapies. One such inverse estimation approach to predict cell uptake rate
constants from experimental data is presented in this work.

1.2 | Multicellular tumor spheroids

Small in vitro avascular multicellular tumors have been developed for drug screening and to track the transport of
drug-polymer conjugates and nanoparticle drug carriers which can facilitate the evaluation of their efficacy.”'° Tumor
spheroids are formed when cells aggregate and secrete ECM to give the cells structure in suspension. The formation of
the ECM is typically promoted and enhanced with the addition of collagen, fibronectin, or commercial products such
as Matrigel®, an undefined gelatinous mixture excreted by Engelbreth-Holm-Swarm (EHS) mouse sarcoma cells. Spher-
oids mimic many of the structural and functional features of a tumor microenvironment, such as a nutrients, oxygen,
and pH gradient,"" ™" but importantly, not the presence of a vasculature. In addition to the ECM, spheroids may also
generate functional cell-to-cell contacts such as E-cadherin junctions and tight gap junctions (desmosomes).'® Drug
transport data from tumor spheroids are particularly suitable to validate computational models of nanoparticle trans-
port as presented in this article.

1.3 | Chemotherapy and hyperthermia
Cancer cells are more susceptible to mild hyperthermia than are normal cells and thus a strategy to reduce off-site tox-

icities and enhance the efficacy of chemotherapy is to combine chemotherapy with regional hypothermia.'””*® In fact,
according to a search of the ClinicalTrials.gov database there are 45 current (active, recruiting, or not yet recruiting)
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phase 3 trials with the keywords Cancer AND Chemotherapy AND Hyperthermia and another 45 that are com-
pleted. Our own group has developed nanoparticles that combine chemotherapy with a thermo-responsive dye to
induce mild hyperthermia.’** We have found that, in uterine sarcoma cells, long duration slow-rate hyperther-
mia at 43°C induced mild cell apoptosis while, short duration fast rate hyperthermia causes
necrosis.”'Hyperthermia therapy and doxorubicin chemotherapy were found to be synergistic, or at least provide a
more than the additive effect of the individual treatments. Slow-rate hyperthermia represents a scenario of whole
organ or regional hyperthermia, while fast-rate hyperthermia represents a scenario of localized targeted hyperther-
mia. Lacking from the current literature is a detailed examination of the effects of hyperthermia on the transport
of nanoparticle drug carriers through solid tumors. In the current study, the effect of long duration (slow rate)
hyperthermia on silica nanoparticle transport into tumor spheroids is modeled. The Arrhenius formula was used
to model the temperature dependence of solute-membrane reaction rates in a numerical model of nanoparticle
transport. Further, the effects of hyperthermia on tumor porosity were modeled.

2 | MATHEMATICAL DESCRIPTION OF TRANSPORT IN TUMORS

The defined geometry of spheroids simplifies the mathematical representation of macromolecule transport toward iden-
tifying properties for optimal distribution. The advection-reaction (AR) model for studying penetration of antibodies,
antibody fragments and free drug moieties has been reported.”*** Predictions of antibody transport from this model
have been validated with experiments.?® The basic mathematical framework presented below (Equation 1) is also appli-
cable to model transport of moieties larger than antibodies, namely, nanoparticles.

JdC 10 d(C C
E:r—zg |:Deff€r2&r (8):| —kaCbS;+deb (1)

Equation (1) is the general form of Fick's second law of diffusion in spherical coordinates relating the rate of change
of concentration C (M; molar concentration) in the spheroid with change of flux as a result of a concentration gradient.
This rate is determined by the porosity (¢), effective diffusion coefficient (Degr m? s'), and a reaction component
governed by association (k,; M~'/s) and dissociation (kq; s~ ') rate constants. Porosity (¢) is a dimensionless variable that
is defined as the fraction of void volume to total volume. For a porous medium (spheroid) immersed in liquid the void
volume is filled with fluid and acts as a diffusing medium for macromolecules.?”*® Cy is the concentration of binding
sites and Cy, is the concentration of solute bound to the membrane. The ideal diffusion coefficient of a molecule (D,) is
determined from its size using the Stokes-Einstein relation. However, D, is not sufficient to describe molecule diffusion
in porous media. D, is modified to the effective diffusion coefficient (Deg) that accounts for available volume fraction

for diffusion and hydrodynamic interactions between solutes and solid matrix (Equation 2).%®
L(4)
Der =D, 2
eff 0 FT(&‘) ( )

In Equation (2), 4 is defined as the ratio of molecule to pore radius. As 4 — 0 solute pore interactions can be
ignored. L(1) accounts for the hydrodynamic and steric reduction of diffusion in a pore. For 4 < 0.4, L(2) is represented
by Equation (3). In Equation (2), F is the shape factor, z(¢) represents the tortuosity, that is, increased path length
between two points in a porous medium that is measured by the distance between the points through connected pores
(Equation 4).%®

L(2) = (1-2)*(1-2.10442+2.0894° - 0.9844°) (3)
2o
@ ;(1+e)1-¢) (4)

Equations (2)—(4) describe the physical parameters that influence the transport of molecules in a porous medium.
Additionally, solutes can bind to cell membranes and can also be internalized by the cells. Therefore, the total
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concentration of solute in a spheroid is the sum of solute in the fluid phase (C), solute bound to cell membranes (Cy,),
and solute internalized by the cells (C;) (Equation 5).

Ctot:C+Cb+Ci (5)

It is assumed that cells do not migrate and that binding sites on cells are recycled at a constant rate. Hence, concen-
tration of binding sites (Cys) is solely dependent on the association and dissociation of solute on the cell membrane
(Equation 6)

9 __oCy
ot~ ot

=k,CpsC —k4qCp —kiCy (6)

The bound solute (C},) is subsequently internalized by cells, exocytosis of solutes (i.e., recycling back to the surface)
can be neglected here as it is very slow compared to internalization and does not have any significant or direct contribu-
tion to the concentration flux. Rate of internationalization is determined by k; as shown by Equation (7).

aCi
o kiCyp (7)

Equations (1), (6), and (7) need to be solved simultaneously to obtain total concentration of a solute in the spheroid
with the following initial and boundary conditions (I.C and B.C.)

2 kﬁﬂé

Initial conditions : C(0,r) = (C;(0,r) = Cy(0,7) = 0; Cps (0, 7) =—
(0.1) = (€1(0.1) = Cu(0,1) = 0:Cos(0,1) =

(8)

Dirichlet boundary condition: C(¢t, R) = C,

Neumann boundary condition: £¢(¢,0) =0

The initial condition for Cy is from Goodman et al.*® and is dependent on porosity (¢), the available binding site
fraction (f), the radius of the nanoparticle (a), the effective pore radius (r,,). The difference in the binding site density
on cells in mono-layer culture compared to cells grown as spheroids, which experience more cell-to-cell interactions, is
denoted by kg. N, is Avogadro's number. Values of physical parameters such as porosity for different tumor types are
available from the literature or determined from spheroid cross sections using scanning electron or transmission elec-
tron microscopy. Particle radius is determined from scanning electron microscopy or through dynamic light scattering.
Determination of the cell uptake rate constants (k,, kg4, k;) and binding sites require independent experiments since each
cell type has different membrane and uptake properties.

2.1 | Mathematical models of cell uptake kinetics

The uptake of macromolecules by cells happens via passive diffusion or through energy dependent endocytosis. For
macromolecules with size greater than 5 nm, endocytosis is the primary mode of uptake. Endocytosis happens via
absorption of molecules on clathirin or caveolae coated pits on the cell membrane led by membrane invagination,
wrapping and subsequent “pinching” of the clathirin/caveolae vesicles into the cell. The uptake of ligands targeted spe-
cifically to receptors on cells happens via receptor mediated endocytosis. Two different formulations have been widely
used to model molecule uptake into cells; (1) based on adsorption kinetics (Langmuir kinetics) and (2) based on ther-
modynamics of membrane wrapping (energy formulation).

2.1.1 | Langmuir kinetics
Langmuir kinetics assumes the cell surface as a Langmuir membrane with finite capacity for binding molecules (Np).*

The number/mass of particles adsorbed at any time on the cell surface is proportional to the number of particles in the
extracellular medium (Ne) and the number of particles that can still bind to the cell surface (N, — N(t)). The
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extracellular medium acts as a reservoir that is assumed to be a non-depleting source (constant) of molecules at the
boundary of the tumor. This is a valid assumption since the number of molecules is very high compared to the number
of cells at any time. The number of molecules desorbing from the surface is proportional to the absorbed molecules (N
(). The proportionality constants are specified by association (k,; M~' s™') and dissociation (kq; s~ ') rate constants.
Therefore, the rate of change of the number of molecules on the cell surface is mathematically expressed by
Equation (9)

dN(t
#:kaNext(No—N(t)) —kaN(t) (9)

A fraction of adsorbed particles is internalized at a rate k; by the cells through endocytosis in Equation (10). The
internalized particles are also actively recycled back to the cell membrane at an externalization rate, k..

dN;(t)
dt

=kiN(t) — krecNi(2) (10)

2.1.2 | Determination of cell uptake constants using Langmuir kinetics

The Langmuir kinetic model has been widely used to fit experimental data to estimate the rate constants of mac-
romolecule uptake by cells. However, the model cannot be used directly to independently model N(tf) and Nj(¢)
since this information is often not readily available from cell experiments. The information available on total cell
concentration is the sum of N(f) and Nj(t). Therefore, additional experiments that make some a priori assumptions
regarding cell uptake or specialized techniques are necessary to explicitly extract N(tf) and N;i(f). Conventionally, to
estimate membrane concentration, cells are incubated with solute of interest at 4°C where the internalization and
externalization processes are assumed to be dormant (i.e, k; and k... = 0). The measured concentration is fitted to
Equations (9) and (10) using a nonlinear least squares method (e.g., Levenberg-Marquadt) to obtain k, and kg.
The uptake experiments were repeated at 37°C and the information on k, and k4 obtained at 4°C is used to esti-
mate k; and k... It has been mentioned above that association and dissociation rate constants are strongly depen-
dent on temperature and hence using k, and kg obtained at different temperatures will lead to an inaccurate
representation of uptake kinetics. Furthermore, it has been shown that small nanoparticles enter cells even at 4°C
via energy independent pathways.*!

3 | INVERSE ESTIMATION OF UNKNOWN PARAMETER

If Equations (9) and (10) are treated as a direct, or forward problem, then the values of k,, kg4, k;, and k... are known
and the differential equations can be solved, based on a set of initial conditions, to study the time evolution of cell
uptake. Alternatively, an inverse formulation uses the information on N,(t) available from experiments to recover the
cell uptake parameters.**** This set of parameters is denoted by a vector.

P" = [P,P,,...P,] (11)

In Equation (11), n is the number of parameters. The experimental measurement of response or output of a physical
system is denoted in vector form by Equation (12).

N§ = [N Nis s Ny ] Where Ni = Niog (1), i=1,2, ..., I. (12)
One of the common approaches to solve an inverse problem is to estimate the parameter set P* with a given set of

experimental measurements Ny, (¢;) by maximizing the likelihood probability density function (pdf) or by minimizing
the exponent of likelihood pdf (Equation 13).>>3¢
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7 (Niot|[PT) = <2n>1/2W|1/2exp{—§[Nm— vM<P>]TW-l[Nm—vM<P>]} (13)

Vm(P) is the set of responses generated by the system (forward problem) for a given set of P. The likelihood pdf spec-
ifies the relative probability of different measurement outcomes N, with a fixed P. Equation (13) is formulated on the
assumption that measurement errors are Gaussian random variables with zero means and covariance matrix W. Fur-
thermore, it is also assumed that the errors in measurements are independent of the parameters P. The likelihood pdf is
based on the classic Bayesian statistics and is not dependent on the modeling of prior information regarding the system
and related uncertainty about the unknown parameters.

Bayes theorem specifies the conditional probability of P occurring given a set of measurements Ny. It serves as a
mechanism to combine new information (experimental measurements) with previously available information (known
as the prior). Furthermore, Bayes theorem is the basis of a statistical inversion approach based on the following princi-
ples; (1) all variables occurring in the inverse problem are considered random; (2) the randomness describes the degree
of information related to their realization, which is coded into the likelihood pdf; (3) the solution of the inverse problem
is recast in the form of statistical inference from the posterior probability density. Bayes theorem is mathematically
stated as:

7(P)7(N | P)

”posterior(P) - 77:(P|Nt0t) = ﬂ(N )
tot

(14)

where Zposterior(P) OF 7(P|Nioy) is the posterior distribution of parameters and is interpreted as the conditional probabil-
ity of P occurring for a given set of measurements N 7(P) is the prior probability distribution of parameter set,
7(Nyot|P) is the likelihood function and z(Ny,) is the marginal probability of the measurements.

The application of Bayes theorem predicts the posterior distribution, which is sampled in this work using Markov
chain Monte Carlo (MCMC) methods. The Metropolis-Hastings (MH) algorithm is the most widely used to implement
the MCMC method.?” The MH algorithm is implemented by choosing a sample distribution p (P, P =~ V) which is used
to draw a new candidate P given the sample at the current state of the Markov chain P~ Once the proposal distri-
bution is selected, the MH algorithm is repeated as follows:

1. Sample the proposal distribution based on the current state of the Markov chain.
2. Calculate the acceptance factor

a=min{ 1, E<P*}Ntot)p(P(tj1>,P*)
IT(P([*I) |Nt0t)p (p*’P(tﬂ))

3. Generate a random variable U that is uniformly distributed on the interval 0 to 1.
4. If U < a, then set P = P, else set PP = P~ D,
5. Return to step 1 and repeat to generate samples {P(l), P(z), P(‘)} of the posterior distribution.

The above algorithm generates a sequence of the posterior distribution and the inference on this distribution is
obtained from the inference on samples {P(l), P(z), P(‘)}. However, a certain number of samples have to be discarded
before the Markov chain reaches equilibrium (known as the burn-in period).

4 | METHODS FOR CELL AND SPHEROID NANOPARTICLE UPTAKE AND
TRANSPORT

Inorganic nanoparticles made from silver, silica and gold offer advantages such as (1) control over size and surface
properties, and (2) ease of loading with various fluorescent agents.*® Silica nanoparticles were chosen for our studies
since silver and gold nanoparticles without citrate stabilization more easily flocculate in physiological buffers and are
not as stable against aggregation. Under typical clinical use conditions, silver and gold nanoparticles would be citrate
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stabilized. Aggregation increases effective particle diameter and induces high experimental variability that is often diffi-
cult to model without explicit information on its dynamics. Moreover, silver particles induce cell toxicity due to
leaching of silver ions in physiological buffers.

4.1 | Nanoparticle preparation

Fluorescent silica nanoparticles (~58 nm) were prepared by a slight modification of the reverse microemulsion
method.*® Briefly, 1.6 mg fluorescein isothiocyanate (FITC) was reacted with 20 uL 3-aminopropyltriethoxysilane
(APTES) in 1 mL ethanol (200 proof) for 6 h. The ternary emulsion was prepared by adding 7.8 mL cyclohexane,
1.6 mL 1-hexanol (co-surfactant), 1.77 mL Triton X-100 (surfactant), 480 pL de-ionized water (18 M), 100 pL of
APTES-FITC mixture, and 100 pL tetraethylorthosilicate (TEOS) (silica precursor). The mixture was stirred on a rotor
plate at 800 rpm for 30 min after which 65 pL of aqueous ammonia (28% in water) was added. The stirring was allowed
to proceed under a nitrogen atmosphere for 48 h after which the nanoparticles were recovered by adding ethanol to the
microemulsion. The recovered particles were washed 2 times with ethanol and 1 time with NaOH solution (8 mM) to
get rid of the unentrapped dye (FITC) and the surfactant. The final yellow product (FITC-SiNP) was resuspended in
5 mL, 8 mM NaOH solution using sonication and was stored at 4°C until further use.

FITC-SiNP was modified with polyethylene glycol. Methoxy-PEG-silane (mPEGSi) or carboxy-PEG-silane (cPEGSi)
was dissolved in water at 5 mg/mL and used for pegylation of the nanoparticle surface. Nanoparticle suspension
(2.5 mL) was mixed with 10 mL DI water containing 50 pL. aqueous ammonia and sonicated for 5 min. This was
followed by the addition of 15 pL of TEOS and 1 mL of PEG solution. The mixture was vigorously stirred at 60°C for
15 h. The particles were washed three times using a 100 kDa centrifugation filter to get rid of unattached PEG. Finally,
the particles were resuspended in 1 mL DI water and stored at 4°C for further experiments.

4.2 | Nanoparticle characterization

The size and surface charge were characterized using dynamic light scattering (DLS) (Malvern nano series Zetasizer).
Silica content of nanoparticles was estimated using the blue molybdosilicic assay as per manufacturer's instructions.
The number of silica nanoparticles was calculated by assuming a monodisperse size distribution and the known density
value of silica, that is, 2.0 g cm™>. A calibration curve of fluorescent intensity and number of silica particles was pre-
pared by the measurement of fluorescence at Ao, = 515 nm's and A, = 480 nm's by serial dilutions of FITC-SiNP. The
calibration curve was linear within the measured limits of nanoparticle concentration.

4.3 | Cell uptake kinetics of nanoparticles

Skov-3 cells cultured under standard conditions were seeded in a 96 well plate at a density of 25,000 cells/well and
allowed to attach overnight in an incubator. PEGylated-FITC loaded silica nanoparticles (PEGSiNp) modified with
methoxy-PEG (mPEGSi) or carboxy-PEG (cPEGSi) were incubated with McCoy's 5A media for 30 min prior to addition
to the cells at different concentrations (for determining dose dependent uptake) to determine the optimal concentration
at which the cell uptake of nanoparticles saturated. The time kinetics of nanoparticle uptake was studied by incubating
the cells with an optimal concentration (determined via dose dependent uptake study to be 100 pg/mL) of PEGSiNp
nanoparticles at different time intervals. Every hour following the incubation (i.e., 1, 2, ..., 5 h), the cells in the wells
were washed three times with ice-cold DPBS to get rid of free nanoparticles from the extracellular medium. The total
nanoparticle concentration in the cells was determined from FITC fluorescence using a multi plate reader. Fluorescence
intensity from FITC was corrected by subtracting the intensity obtained from cells without any PEGSiNp-loaded
nanoparticles. After the completion of the uptake study, cell number was estimated using the SRB assay. The estimated
protein content in each well was converted to cell number using a calibration curve of SRB protein content versus cell
number.

The effect of hyperthermia (43°C) on cell uptake of PEGSiNp loaded silica nanoparticles was studied in a cell cul-
ture incubator. The cells were placed in the incubator set at 43°C and allowed to equilibrate for 50 min and followed by
the addition of the PEGSiNp. The temperature of a well was monitored using a sterile thermocouple. Cells were
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incubated with PEGSiNp at 43°C for 1 h, after which the plates were moved to a 37°C incubator. Nanoparticle uptake
was determined in a similar manner as described above. FITC fluorescence was converted to the number of Si
nanoparticles and divided by number of cells to estimate nanoparticle per cell.

4.4 | Spheroid generation

Hyperthermia was investigated to improve nanoparticle distribution in the tumor. Spheroids were created using the lig-
uid overlay method*>*" using Skov-3 human ovarian cancer cells in 96-well plates coated with agarose as described pre-
viously.?® Cells in 2.5% (v/v) Matrigel® were added to wells of the 96-well plate. Spheroids were used 5 days after
seeding at which time they were roughly round, compact and ~330 pm in diameter. Spheroids were characterized by
histology and scanning electron microscopy (SEM) and viability using trypan blue assay. Additional details of the
methods as well as results and discussion of structure and viability experiments can be found in our previous paper.>*

To measure nanoparticle tumor penetration, spheroids were transferred to glass imaging dishes and incubated for
24 h with cPEGSi at 37°C or 43°C in a manner similar to monolayer cells described above. The mPEGSi nanoparticles
were not tested due to low cell uptake. Prior to imaging, spheroids were treated with (4',6-diamidino-2-phenylindole)
(DAPT; nuclear stain) for 30 min followed by fixation with 4% formalin. The spheroids were mounted with Fluoroshield
and imaged using an Olympus FLV1200 confocal microscope at 10x objective. For each spheroid, 10 pm sections along
the z-axis were obtained. Linear attenuation correction and background subtraction of fluorescence intensity were done
in FLV1200® software and images were exported for analysis in Image J 1.39. A macro created in Image J was used to
locate the center of the spheroid from the DAPI channel and to quantify the fluorescence intensity in the FITC channel.
DAPI dye is a small molecule that diffuses rapidly into the spheroid and binds to cell nuclei, hence by using DAPI and
FITC the spheroid shape and the distribution of nanoparticle fluorescence are easily determined. If FITC fluorescence
is low or inhomogeneous, especially in deep sections of the spheroid then the spheroid shape is not resolved clearly by
the thresholding algorithms. In such cases DAPI dye provides the advantage of locating the spheroid. First, the center
and periphery of the spheroid was found by thresholding the images from the DAPI channel. This information was
used to quantify fluorescent intensity along a straight line (with length equal to the radius of the spheroid) from the
images in the FITC channel. The line was rotated by a 10° angle and the procedure was repeated. This procedure was
adopted to minimize location-related variability within a spheroid.** A total of three spheroids per each case were ana-
lyzed and change in intensity profile with spheroid depth was normalized to intensity at the outer perimeter. Once the
intensity curves were obtained, the linear trapezoidal rule was used to calculate the area under the curve (AUC).
Another parameter, W ,,, half width maximum of concentration was calculated based on the distance in the spheroid
at which the total concentration (sum of Cy, C;, and C) was reduced by 50% (depth, x, relative to the spheroid radius,
R). A higher AUC value denotes an increase in the number of nanoparticles in a spheroid whereas a smaller W, indi-
cates deeper penetration (or steeper concentration decrease). The AUC and W, from the images were compared to the
predictions from the model. Additionally, a fraction of data points from model predictions were measured to calculate
the percentage within 95% CI of experimental data.*?

5 | MCMCSIMULATIONS
5.1 | Experimental measurements of nanoparticle uptake were imported to MATLAB

Data points between each measured time-period were generated using cubic spline interpolation (MATLAB 13.0%,
Math Works, MA). A total of 1000 data points were used in the solution of the inverse problem with the MCMC algo-
rithm. The simulation was run in MATLAB along with the ODE solver for solving the differential equations. For the
MCMC simulation, proposal distribution was drawn from a random walk. The default number of states was N = 1E5
and the random walk step was w = 0.01. In the simulation, the standard deviation was set at 1% of maximum measure-
ment value. The chosen parameter set of uptake rate constants with their respective upper and lower limits used for
uniform priors is shown in Table 1. It must be noted that the upper and lower bounds represent a wide range of cell
uptake constants. From an initial guess given by the user, Equations (9) and (10) were solved using the odel5s solver in
MATLAB. The estimated concentration from initial guess was then compared to the experimental data to evaluate the
error and an acceptance factor. Based on the acceptance factor, Markov chain was advanced to choose a new parameter
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TABLE 1 Lower and upper bounds chosen for different parameter values

Lower bound Upper bound
ka (M 'min™t) 1.00E+00 1.00E+4-08
k4 (min™1) 2.20E—07 2.20E—01
ke (min™Y) 2.20E—06 2.88E—01
Kree (min 1Y) 8.00E—06 9.30E—02

Note: The values were chosen from different literature studies and the maximum and minimum values were extended by 10% to form the bounds.**>>'"7

set. Initial iterations of the Markov chain were discarded (burn in period) and the simulation was run until the Markov
chains of all parameters reached equilibrium. The robustness of the Monte Carlo method was assessed by choosing var-
ious initial guesses for each parameter and from the potential scale reduction factor (PSRF), which is the ratio of the
variance of the posterior estimates and in-chain variance. Ideally, PSRF should be close to 1.

A well-mixed chain is a Markov process near its equilibrium distribution. In the process, the prediction of the next
event depends on the previous events. The progression to equilibrium is a sequential dependence on adjacent events
that is defined as a “chain.” Parameter k, and k4 estimates showed well-mixed Monte Carlo chains (supplemental data)
with small fluctuations around the mean predicted value of the parameters. The Markov Chain for k; required some
burn in, but was well-mixed locally, the predicted values in the burn in period were discarded and only values towards
the end were considered. Poor mixing of the chain was observed for the parameter k... However, after a long burn in
time, that is, 4E4 iterations, all chains appeared to converge towards the mean parameter value. The PSRF for k, and kq4
was 1, for k; it was 0.87 and 0.61 for k... The prediction of parameters was also not dependent on initial guess, all
parameters converged to within 10% deviation from the mean parameter value for initial guesses that were an order of
magnitude (in some cases 2-3 orders of magnitude) apart (supplemental data). These results indicate the robustness
of the MCMC method in fitting the experimental data.

6 | CELL UPTAKE EXPERIMENTS AND MCMC PREDICTIONS

Cell uptake of nanoparticles occurs primarily via energy dependent mechanisms, such as endocytosis (non-specific, spe-
cific/receptor mediated), pinocytosis and macropinocytosis. These processes are dependent on binding of nanoparticles
to the cell membrane and subsequent internalization through membrane wrapping and “pinch-off” into the cell. The
interaction of nanoparticles with a cell is primarily determined by the protein corona that forms on the nanoparticle
surface due to the adsorption of proteins that are present in incubation media (cell culture and plasma). From the above
described events, it is clear that temperature plays a very important role in (1) the physical processes that affect
nanoparticles, such as aggregation, (2) protein adsorption on the nanoparticle surface, and (3) nanoparticle interaction
with the cell membrane.** The effect of nanoparticle surface functionalization on uptake by Skov-3 cells is shown in
Figure 1. The comparison of experimental data and uptake kinetics determined from the parameters predicted by the
MCMC simulation are shown. MCMC predictions of cell uptake agree well with experimental results.

Silica nanoparticles modified with mPEGSi and cPEGSi had the same size (~58 nm diameter) and surface potential
(~—6 mV @ pH 7.4) (supplemental data). However, mPEGSi particles showed less uptake compared to cPEGSi particles
(Figure 1). Carboxy groups have been shown to be more reactive than methoxy groups and hence show more cell
uptake than the mPEGSi particles.*’ This is not surprising since in complex media the zeta potential is determined by
the formation of a protein corona. Tenzer et al.*® observed that silica nanoparticles with oppositely charged functional
groups (-NH,: positive; -COOH: negative) reached the same zeta potential on incubation with plasma. However, the
composition of protein corona was different between two types. This ultimately decides the interaction of nanoparticles
with the cells. Likely, the mPEGSi particles interact weakly with the cell surface as seen from the predicted value of dis-
sociation constant kg, 5.14E2 M and therefore also have a low internalization rate (Table 2). cPEGSi particles show
strong binding to the cell surface (kq, 6.34E5 M) and higher internalization rate compared to mPEGSi. The exposure of
cells to hyperthermia at 43°C for 1 h led to faster binding of nanoparticles to cell membrane compared to binding at
37°C for both mPEGSi and cPEGSi. This can be seen from the initial slope (0-1 h) of the uptake kinetics curve at 43°C
which is steeper compared to uptake at 37°C (Figure 1). With hyperthermia, the predicted association rates for both
PEG types were almost twice the values predicted at 37°C. However, hyperthermia did not increase the number of
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FIGURE 1 Experimental and simulations of mPECSi NP (left) and cPEGSDi NP (right) uptake by cells. MCMC predictions align closely
with experimental measurements for all cases. Plots show predictions of cell uptake overlaid with experimental data

TABLE 2 MCMC predictions of different uptake parameters for mPEGSi and cPEGSi in Skov-3 at 37°C and 43°C

Predicted value +99% CI —99% CI Predicted value —+99% CI —99% CI
mPEGSi@37°C mPEGSi@43°C
k. 9.45E+4-00 9.41E+4-00 9.49E+00 1.94E4-01 1.92E4-01 1.97E+401
kq 1.84E—02 1.83E—02 1.85E—02 5.49E—02 5.40E—02 5.58E—02
ki 9.10E—05 8.29E—05 9.90E—05 2.52E—03 2.48E—03 2.56E—03
Krec 3.85E—-03 3.58E—03 4.12E-03 4.52E—-05 3.78E—05 5.26E—05
cPEGSi@37°C cPEGSi@43°C
ka 7.46E4-03 7.30E4-03 7.62E+03 1.43E+04 1.41E+04 1.45E+04
kq 1.18E—02 1.14E—02 1.21E—-02 3.03E—-02 2.95E—-02 3.10E—02
k; 1.37E-03 1.35E—-03 1.39E—-03 2.72E—03 2.66E—03 2.78E—03
Krec 1.94E—05 1.81E—05 2.07E—-05 2.15E—-04 2.02E—-04 2.27E—04

Abbreviation: CI, confidence interval.

nanoparticles taken up by cells as no significant difference was found between nanoparticle content at 5 h for 43°C and
37°C. This is because the cells have a finite capacity for nanoparticle internalization and membrane turnover after
internalization. The metabolic processes such as lysosome production have been shown to increase with temperature
rise from 4°C to 37°C to accommodate more nanoparticles into the cell. However, these processes seem to plateau after
37°C and a further rise in temperature did not cause a significant increase in lysosome production.*’ Our results are
consistent with recent observations by DeWitt et al.*® which showed that the cell uptake of cisplatin was increased in
cells at 42°C. No such temperature dependent increase was observed in the uptake of cisplatin conjugated carbon nan-
otubes. From the experimental measurements and predicted values of internalization (k;) and externalization rate con-
stants (k) it can be observed that for cPEGSI particles, kinetic processes at 43°C are faster than at 37°C. Interestingly,
for mPEGSI, hyperthermia caused an increase in k; whereas k.. decreased.

7 | SIMULATING NANOPARTICLE TRANSPORT IN SPHEROIDS UNDER
HYPERTHERMIA

Nanoparticle transport in avascular tumor spheroids depends on particle size, particle uptake by the cells (i.e., k) and
tumor porosity. The effects of hyperthermia on particle properties and cell uptake have been discussed above.
Depending on the thermal dose, hyperthermia related thermal damage causes cell death via apoptosis or necrosis.***!
Thermal damage to tumor tissue is modeled by the well-known Arrhenius equation.
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Lexp

Q(r,T) :FJ

o

exp (*E"/RT,(x,y, z)) dt (16)

In Equation (16), F is the frequency or pre-exponential factor (1/s), E, is the activation energy barrier (J/mole), R is
the universal gas constant (J mol ' K™'), and T(x, y, t) is the absolute tissue temperature at the specified coordinates.
The value of Q is zero before application of the thermal energy. At Q = 1, 63% protein denaturation occurs and at
Q = 4, 98% protein denaturation occurs.*

Cell death in spheroids from hyperthermia causes an increase in the available fluid fraction (i.e., porosity) for the
nanoparticles to access. Therefore, hyperthermia may enhance the transport of nanoparticles into tumor spheroids.>
Equation (17) describes the change in porosity as a result of cell death under hyperthermia conditions.*’

€43 :837+(100%—837) X (1—S[I’,TD (17)
S(x, T) is cell survival rate which is related to the Arrhenius parameter Q by

S(r,T) =e /4 (18)

Modeling nanoparticle transport as a function of porosity change in response to the application of hyperthermia
requires solving a system of coupled nonlinear partial differential equations. The scheme used in modeling the trans-
port of nanoparticles in tumor spheroids was: (i) solve Fick's equation with reaction terms, (ii) model heat generation
and thermal damage, (iii) calculate changes in porosity (¢) and the uptake constants, (iv) iterate until the stopping
criteria is reached. The system of equations was solved using COMSOL 4.2a. Equations (1), (2), (6), and (7) were solved
with corresponding initial and boundary conditions using equations for the transport of diluted species. Equation (16)
was solved using the partial differential module with free form scripting (ODE DAE). Free form scripting in COMSOL
allows the user to input custom differential equations and their boundary/initial conditions. Since the equations for
thermal damage are not available in COMSOL, ODE DAE had to be used to model the thermal damage using the
Arrhenius equation. The temperature profile was obtained from the incubator by placing a thermocouple in a well of a
96 well plate containing media. The discrete temperature values at various time points were imported to COMSOL and
a continuous profile was generated by interpolation. The tumor spheroid was modeled as a 2D circle with another con-
centric circle of radius (R 4+ 100 pm) as the outer domain of the spheroid. A free triangular mesh was used for both
domains (i.e., spheroid and outer domain). The mesh of the outer domain was finely resolved (max element size: 10 pm
and min element size: 1.2 pm) in order to account for concentration discontinuity, or “jump” at the boundary. The
spheroid domain was meshed with max element size equal to 90 pm. The transport simulations for different cases, that
is, cPEGSIi at 37°C and 43°C, were simulated for 24 h. The values of different parameters used in the model are pres-
ented in Table 3.

8 | SIMULATION AND EXPERIMENTAL RESULTS

A dynamic diffusion model was used to account for particle aggregation under hyperthermia. cPEGSi particles were
incubated in DPBS at 43°C and size measurements at various time-points (starting at 1-24 h) were obtained with a
Malvern Zetasizer. The size was converted to effective diffusion coefficient using Equation (2). The effective diffusion
coefficient increases initially until 6 h due to increase in porosity because of cell death (Figure 2). After 6 h, the diffu-
sion coefficient reduces due to an increase in particle size due to aggregation. Then, a further decrease in cell viability
contributes to an increase in the effective diffusion coefficient (Figure 2). The abrupt change in diffusion coefficient is
due to shifting equilibrium of colloidal systems in complex media. The repulsive forces between charged nanoparticles
keep them in quasi-equilibrium. In the present case, incubation of silica nanoparticles in cell culture medium shifted
the equilibrium towards the isoelectric point (0 mV zeta potential) due to adsorption of proteins on the nanoparticle
surface. At this point, the quasi-equilibrium is overcome by particle aggregation and a sudden collapse of the colloidal
system. This effect is visible in the steep decline of effective diffusion coefficient due to rapid increase in size. Biologi-
cally, this trend is not expected in-vivo as particle distribution and stability will be determined by particle cell
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TABLE 3 Parameter values used in modeling

Parameter Value [unit] Description
R 300E—6 [m] Spheroid radius
T 1.3E—7 [mol L] Cell surface binding capacity of spheroids
CMedium 1.13E—9 [mol L] External Boundary Condition
kg 1.38E—23 [m* kg (s > K 1)] Boltzmann constant
u 8.94E—4 [Pa s] Viscosity of fluid (media)
30 [nm] Particle radius
rp 0.003*R*” Collagen fiber radius
A alry, Ratio of nanoparticle radius to pore size
Ax 1.19E38 [s1]*° Activation energy
EAx 2.57E5 [J mol *]>° Activation energy barrier
R 8.31 [Jmol 'K Universal gas constant
€ 0.03 Porosity

Note: Values that could not be measured were adopted from the literature.
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FIGURE 2 Plots showing reduction in cell viability under hyperthermia (left) and changes in effective diffusion coefficient as a result of
particle aggregation and change in porosity (right)

interactions, protein adsorption and convective forces due to fluid circulation. A continuous examination of particle size
variation in complex media instead of discrete size measurements such as those obtained in this study is likely to yield
a better representation of particle aggregation kinetics.

Spheroid images showed a sharp drop-off of fluorescence at the periphery. This is due to the loss of nanoparticles
(and thus FITC) at the periphery during washing and processing steps. To account for this, a window function was
introduced in the model.>" It can be seen from Figure 3 (top) that after 24 h incubation of cPEGSi at 37°C particles are
localized around the periphery of the spheroid. The moving front of fluorescence drops sharply at a 30% distance from
the periphery and does not progress further towards the center. These findings indicate that diffusion of cPEGSi in
Skov-3 spheroids was a slow process (occurring over hours) and limited to the first few cell layers. Alternatively, spher-
oids incubated with cPEGSi at 43°C showed a less pronounced front and more diffuse fluorescence after 24 h through-
out the spheroid (Figure 3, bottom).

Interestingly, under hyperthermia, MCMC predictions estimated an increase in kq which should slow the transport
of nanoparticle transport. Concurrently, the internalization rate constant increased at 43°C. This leads to depletion of
nanoparticles in the interstitial space of the spheroid which maintains the concentration gradient and drives the diffu-
sion of nanoparticles. Furthermore, cell death due to thermal damage increased available fluid fraction for the
nanoparticles to diffuse (Table 3, Figure 4). The mean AUC and W, values calculated from the experiments agree with
the values predicted from simulations (Table 4). The AUC at 43°C was significantly higher than the AUC value at 37°C.
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cPEGSi @ 37°C

cPEGSi @ 43°C

3

Confocal sections of Skov-3 spheroids incubated with cPEGSi at 37°C (top) and 43°C (bottom) with DAPI and FITC

channels merged. FITC fluorescence is concentrated around the periphery of the spheroid
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Nanoparticles also penetrated deeper into the spheroid under hyperthermia (~51% at 43°C from ~32% at 37°C, Table 4).
However, no significant difference was found between the W7, values for the two cases, likely owing to variability of

the experimental data. A comparison of simulated and experimental data showed that 55% and 67% values of simulated
data points fall within the 95% CI of experimental data at 37°C and 43°C, respectively (Table 4).
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TABLE 4 Comparison between experimental determination and model prediction of area under the curve (AUC) and Wy, (x/R) values
from cPEGSi transport in Skov-3 spheroids

AUC Wi Fraction 95% CI
Experiment@37°C 0.34 + 0.06 0.68 + 0.15 55+ 8%
Simulation@37°C 0.38 0.66
Experiment@43°C 0.61 +0.11 0.49 +0.12 67 + 5%
Simulation@43°C 0.57 0.43

Note: R is the spheroid radius and x is the depth from the spheroid periphery. The fraction indicates percentage of model simulated data points that are within
the 95% confidence limits of experimental data.

Comparision of cPEGSi and Gold Nanoparticle Penetration
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FIGURE 5 COMSOL simulations comparing transport of 50 nm gold nanoparticles with high cell binding affinity to cPEGSi with lower
cell binding affinity. The uptake parameters for gold nanoparticles were from Jin et al.>® The inset shows the particle distribution (zoomed)
inside the spheroid

The results show that diffusion is the rate limiting step for cPEGSi transport instead of the reaction parameters of
cell uptake. The moving front progresses into the spheroid as long as free nanoparticles are available at the tumor sur-
face. If the nanoparticle concentration drops to zero at the periphery, that is, when nanoparticles are removed via wash-
ing the spheroids or in vivo when nanoparticles are removed at the tumor site due to plasma clearance, the front
appears to be stuck at some distance from the periphery. In the case of high binding affinity, transport is rate limited by
the reaction rate of nanoparticle association. A comparison to gold nanoparticle transport (~50 nm in diameter) with
uptake rate constants obtained from the literature,* shows that high association, that is, k, of 7.2E7 M~* s %, leads to
high accumulation at the periphery and low penetration into the tumor (Figure 5). High accumulation at the periphery
results in the “binding site barrier” effect which further impedes diffusion into the spheroid.>> On the other hand, low
affinity leads to deeper penetration of nanoparticles.

9 | DISCUSSION

Computational approaches have contributed to a better understanding and improved designs of nanoparticle drug
delivery systems. Mathematical models of nanoparticle transport at the tumor level (spheroids, 3D models) have been
developed®~*> and there are several fine reviews.”®*®" The approaches span from modeling nanoparticle cell
interactions,’*"®* models that mimic the vasculature and tumor microenvironment,® pharmacokinetics models,*®
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pharmacokinetics models that include vascular flow’®”* and up to multi-scale models that combine whole body phar-

macokinetics with nanoparticle-tumor cell interactions.”>”* According to current literature, only one other author has
reported the mathematical prediction of temperature dependent cell uptake of nanoparticles. The model formulated by
Zhang et al.”* studied the temperature dependent (6°C-40°C) uptake of quantum dots in SPCA-1 cells (lung adenocarci-
noma) and showed the presence of a temperature independent component of internalization at low temperatures.
Based on the rate constants obtained by fitting Langmuir kinetics to experimental data, they show that with an increase
in temperature from 22°C to 37°C, there is a reduction in k,, an increase in ky and a plateau in k;. However, the experi-
mental data by the authors showed a marked increase in uptake at 37°C. This is counterintuitive as the total content of
nanoparticles measured in a cell can only increase when there is an increased association of particles with the cell
membrane or if there is increased internalization of particles by the cells. The variability in the kinetics of temperature
dependent cell uptake of nanoparticles as studied by different authors*”*®’* suggests that this phenomenon may be
dependent on the type of nanoparticle and the cell line. The MCMC method used here for predicting cell uptake rate
constants provides a unified/general framework for parameter estimation without the need for additional experiments
or the need to make specific a priori assumptions regarding cell uptake phenomenon. Since this approach can predict
all rate constants with good confidence and is robust (supplemental data), extending it to other nanoparticle systems
(liposomes, gold nanoparticles, etc.), various cell lines and different conditions can be done easily.

The finite element method (FEM) developed in this work is an improvement over existing models of nanoparticle
transport. FEM's advantages are that it can easily deal with irregular 3D geometries and is more accurate than finite
volume methods because of lower numerical dissipation. It can easily use higher order basis functions (p-refinement),
and thus, is superior when dealing with a diffusion term that can have high gradients, and its convergence is mathe-
matically assured. FEM models for nanoparticle transport in tumor spheroids have been described in the literature for,
(1) effect of collagenase on spheroid disruption and subsequent effect on nanoparticle transport,” (2) dynamic diffusion
model of liposomal transport in spheroids,>* and (3) macroscopic transport model of heat conduction and magnetic
nanoparticle transport in spheroids.’® The first two models used the conventional method to calculate cell uptake
parameters, that is, perform cell experiments at 4°C to estimate k, and k4 and use the information at 37°C to estimate
k;. However, the models only consider nanoparticle transport through the tumor and does not consider uptake by the
cells.

Modeling uptake of nanoparticles by the cells in a spheroid is critical to designing therapeutic interventions for can-
cer as the drug has to reach the intended target inside the cell to cause an effect. Additionally, the effect of heat on
nanoparticle stability and uptake has not been considered until now. By combining MCMC predictions and finite ele-
ment simulations, several scenarios can be simulated to find an optimal balance between penetration and cell uptake
(MCMC predictions). The transport of drugs to tumors happens through convection which is followed by extravasation
of the drug at the tumor site. As mentioned previously, the transport after extravasation is determined by the diffusion
into the tumor and the uptake rate of the cells. The uptake rate of nanoparticles is in-turn dependent on the surface
and physical properties of the nanoparticle. The combination of parameter estimation using inverse techniques and
finite element methods is a suitable approach for this multiphysics problem. Based on the model predictions, the den-
sity/type of surface coating (i.e., number of moieties) and drug loading in nanoparticles can be determined to achieve
an efficient therapeutic response. For example, as seen in our experiments, the type of surface coating (i.e., mPEG
vs. cPEG) plays an important role in determining the uptake. In our case, mPEG particles are not a suitable choice for
surface modification due to low cell uptake (Figure 1) since they appear to interact weakly with the cell surface. PEG
moieties generally possess a stealth advantage since they can avoid being tagged by proteins (opsonization), and, thus,
being recognized by the reticuloendothelial system (RES) and cleared by the immune cells. However, the same property
proves as a detriment to cell uptake. Tagging of nanoparticle surface with proteins promotes cellular recognition,
attachment, and uptake. Hence, the reactive end groups of PEG are important. Methyl group, which is inert, is not reac-
tive hence induces less cell uptake. Carboxy group is more reactive and therefore exhibits more cell uptake.

The observations from experiments and the corresponding models present important factors that need to be consid-
ered for nanoparticle transport in solid tumors under hyperthermia. These include the effect of hyperthermia on stabil-
ity of nanoparticle formulation, uptake of nanoparticles by the cell exposed to hyperthermia and the effect of tumor
microenvironment on nanoparticle penetration. Colloidal stability, that is, aggregation, is a kinetic phenomenon depen-
dent on temperature (Figure 2). Poor colloidal stability on exposure to hyperthermia may compromise the therapeutic
efficacy by further impeding nanoparticle penetration. From a cell uptake perspective, if hyperthermia increases the
association rate of particles with the cell, it may overcome the diffusive transport and impede the transport of
nanoparticles into the spheroid. Experiments in spheroids demonstrated that in the absence of hyperthermia, particles
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mainly localized around the tumor periphery, whereas exposure to hyperthermia lead to penetration of nanoparticles
into the spheroid (Figure 3), likely due to an increase in ECM porosity or decreased ECM viscosity at higher tempera-
tures. The AR model showed that the transport of pegylated silica nanoparticles is diffusion dominated (Figure 4). The
predictions of the model and experiments agreed with each-other (Table 4). Since spheroids and cells can be cultured in
a high throughput format, the combination of a mathematical model with high throughput experiments will allow for
rapid screening of nanoparticle systems for therapeutic applications.

10 | MODEL LIMITATIONS AND OPPORTUNITIES FORIMPROVEMENT

The experimental data points vary from model predictions at the center of a spheroid for both 37°C and 43°C cases and
fluorescence intensity from silica nanoparticles increased near the core of the spheroid (Figure 5). This may be due to
increased porosity owing to cell necrosis at the center of the spheroid. A similar profile of increased fluorescent inten-
sity at the middle of a spheroid due to increased porosity as a result of cell necrosis in the region was reported for Hela
cell spheroids (400 pm diameter).”" In the current study, we were not able to accurately estimate the amount of silica
nanoparticles which are lost from spheroid periphery during experimental manipulation (washing) and imaging. The
local structural variations in porosity are also not known and hence porosity was assumed to be homogeneously distrib-
uted. The estimation of radially dependent porosity is difficult since reliable techniques for porosity estimation are not
available. Electron microscopy (SEM and TEM) has been used to image the microstructure of a spheroid and estimate
porosity. However, the processing of spheroids for SEM and TEM, mainly dehydration and critical drying, leads to
shrinkage of tissues and alteration to spheroid structure. Furthermore, the alteration in cell uptake of nanoparticles due
to aggregation under hyperthermia cannot be estimated inside the spheroid. In monolayer cultures, the uptake was sat-
urated at 5 h and therefore aggregation which happens after 6 h did not affect cell uptake. In spheroids, the cell uptake
within deep cell layers is delayed due to diffusion. Future models may consider the aforementioned factors for increas-
ing the agreement between experimental data and model predictions.

The spheroid model used does not present the true complex tumor micro-environment and ECM. The extent and
complexity of the tumor microenvironment and function of the ECM has been reviewed elsewhere.”>”® Particles experi-
ence opsonization and uptake by macrophages in the plasma leading to extravasation by the liver and spleen. Biological
barriers to transport exist throughout the body that inhibits nanoparticle transport from the vasculature to tumor tissue,
including the capillary endothelial layer, tissue microenvironment, and finally the membranes of the target cells and
organelles.””””® Based on a purely computation approach, Hauert et al.*® propose that nanoparticle design should
include a mechanism that delays nanoparticle binding until after they have had time to diffuse deep into the tumor.
Others have proposed multi-stage nanoparticles to improve the potential for the nanoparticles to reach and to transport
deep into the tumor.®’ Based on a purely mathematical models, Stylianopoulos et al.®* propose that cationic
nanoparticles should have better transport into tumors. Dai et al.** conducted a very comprehensive study and found
that, on average, only 0.59% and 0.25% of targeted and non-targeted nanoparticles, respectively, injected into tumor-
bearing mice reached the tumor, and as little as 0.001% (of active) and 0.003% (passive) nanoparticles actually reached
the cancer cells. Even more interesting, of the nanoparticles that enter the tumor, only about 1% were associated with
cancer cells, about 9% were with tumor associated macrophages and the rest remained extracellular. The finding was
consistent for both gold and silica nanoparticles, targeted and non-targeted and for different size nanoparticles. In the
present study the spheroids only included cancer cells. However, Priwitaningrum et al.** developed a “heterospheroid”
model to evaluate nanoparticle transport in spheroids containing both cancer cells and fibroblasts and obtained data
that support the findings of Dai et al.*> Nevertheless, more advanced three-dimensional tumor models with multiple
cell types, more complete ECM and microvasculature better resembling the in vivo tumor microenvironment are
needed.

Another aspect of tumor spheroids that differs from solid tumors in vivo is the total lack of a vasculature. In vitro
avascular tumor spheroids possess pH and pO, gradients which are dependent on cancer cell type,'> but which is not as
steep as in in vivo solid tumors. Helmlinger et al.'* found that mean interstitial pH and pO, in solid tumors reduced
from ~7.3 and 14 mmHg respectively at the interface between the nearest blood vessel and the tumor, to ~6.7 and
0 mmHg respectively at the core. The “reversed pH gradient”, in which extracellular pH is more acidic than intracellu-
lar pH has been considered as a mechanism to trigger drug release in solid tumors. Al-Husari et al.'> modeled intracel-
lular pH regulation and pO, and pH gradients in early tumor growth which accounts for a necrotic core, quiescent
layer and proliferating outer core. The model predicts the effect of oxygen, pH and lactate on tumor growth and
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nutrient consumption on tumor morphology. The spheroids in the present study did exhibit a necrotic core but neither
the pH nor pO, were measured. However, it is highly likely that the spheroids exhibited expected pH and O, gradients.
Tumor-on-chip models are commercially available that add a vascular element, which should be considered for future
experiments.

The details of the interaction of nanoparticles containing a PEG surface with proteins and macrophages have been
extensively investigated.® A method for the precise quantification of nanoparticle internalization to cancer cells has
contributed to the understanding of the factors that affect nanoparticle drug delivery systems.*' The internalization of
liposomes is dependent on both size and charge.®® Attaching polyethyleneglycol (PEG) to a nanoparticle's surface has
been the most widely used approach to avoid opsonization and prolong nanoparticle plasma residence time.*”~** How-
ever, PEG has been shown to interfere with a nanoparticle traversing the ECM and suppress interaction with the cell
membrane for effective cellular uptake.*"”>***° Labouta et al.”® characterized these interactions recognizing that PEG
confirmation affects the interactions of liposomes with the ECM and therefore their transport behavior. Strategies have
been proposed to evade the RES and the so-called “PEG dilemma” either by modifying the nanoparticle surface or the
ECM.””?® The present study demonstrated that methoxy-PEG-silane (mPEGSi) are taken up less efficiently than
carboxy-PEG-silane (cPEGSi) particles. Gyenge et al.”® found that SiO,-PEG nanoparticle uptake to cells was minimal
after 24 h compared to SiO,-OH and SiO,-NH, nanoparticles. Bachir et al.'® showed that accumulation of
nanoparticles in macrophage cells decreased with increasing the mPEG surface density or the mPEG molecular weight
suggesting that mPEG may be a better choice to avoid the RES, but that cPEG may be a better choice to enhance cancer
cell uptake. Nevertheless, additional experiments with different types of particles and different surface coatings are
warranted.

The present study only evaluated one nanoparticle size. Gaumet et a provided a review of reports of fenestration
sizes in different organs indicating 200-780 nm in mouse tumors compared to <6 nm in skeletal, cardiac and smooth
muscle, 150 nm in liver and spleen and 1-400 nm in lungs. Sindhwani et al.'* provided evidence that the gaps between
capillary endothelial cells account for only 3% of nanoparticles entering tumors, the rest crossing the capillary wall by
active processes of transcytosis. This finding is bound to be controversial as it is inconsistent with numerous studies that
claim that the gaps are indeed responsible for the enhanced uptake of nanoparticles in many tumors. Nevertheless, it
does complicate the assumptions made with respect to the optimal nanoparticle size for solid tumor therapy and thus
further investigation is warranted. For example, detailed analysis of nanoparticle transport through solid tumors in vivo
with particular attention to the orientation and characteristics of the tumor-associated vasculature will shed light on
this problem. Recent efforts by Cattaneo and Zunino'®* and Shipley et al.'®* aimed to solve this issue through multiscale
modeling of fluid and drug distribution in vascular tumors.

Finally, this study simulated a “slow-rate,” “mild” application of hyperthermia administered on the order of an
hour. However, hyperthermia therapy for cancer can also be administered faster with greater localization by adding a
thermal component to the nanocarrier and stimulating with an external source (such as near-infrared light*>*' or alter-
nating magnetic field'°%). A recent study by Wang et al.'® used Monte Carlo simulations to study local heat generation
from graphene nanosheets and the corresponding photothermal damage to cells. Such approaches can be used to model
the effects of a localized “fast-rate” application of hyperthermia in tumor spheroids.

1 101

11 | CONCLUSIONS

Drug delivery to avascular tumors is a challenging problem that has been addressed by employing carriers, such as
nanoparticles and drug-polymer complexes. Computational modeling has improved the understanding of factors that
contribute to the transport and delivery of drugs to tumors and ultimate efficacy of the therapy. This study confirms
that 58 nm silica (cPEGSi) nanoparticles largely concentrate at the periphery of avascular Skov-3 tumor spheroids, con-
sistent with several other studies, but further demonstrates that tumor penetration can be enhanced with mild hyper-
thermia (43°C). Cell death due to thermal damage increases available fluid fraction for the nanoparticles to diffuse
deeper into the tumor. The mean area under the concentration versus depth curve (AUC) at 43°C was significantly
higher than the AUC value at 37°C. The half width maximum of concentration (W;,,) increased from ~31% at 37°C to
~50% at 43°C, but the difference was not significant likely because of variability of the experimental data. The finite ele-
ment simulations compared well to experimental data with 55% and 67% values of simulated data points falling within
the 95% CI of experimental data at 37°C and 43°C, respectively. Our results indicate that for cancer cells and spheroids
with similar uptake and structural characteristics of Skov-3 Ovarian carcinoma cells, mild hyperthermia has the
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potential to overcome the binding site barrier effect. This could improve nanoparticle distribution in Ovarian carcinoma
spheroids. Further research into different kinds of ovarian cancer cells and robust combination of experimental plat-
forms and mathematical simulations is needed for developing personalized nanodrugs based on cancer type.
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