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a b s t r a c t 

The in situ estimation of the thermal properties of existing building wall materials is a computationally 

expensive procedure. Its cost is highly proportional to the duration of measurements. To decrease the 

computational cost a methodology using a D-optimum criterion to select an optimal experiment dura- 

tion is proposed. This criterion allows to accurately estimate the thermal properties of the wall using 

a reduced measurement plan. The methodology is applied to estimate the thermal conductivity of the 

three-layer wall of a historical building in France. Three different experiment sequences (one, three and 

seven days) and three spatial distributions of the thermal conductivity are investigated. Then using the 

optimal duration of observations the thermal conductivity is estimated using the hybrid optimization 

method. Results show a significant reduction of computational time; and reliable simulation of physical 

phenomena using the estimated values. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

Recently, reducing carbon emissions has become one of the

ost important tasks worldwide. The building sector is responsible

or approximately one-third of global energy-related carbon emis-

ions [1] . Implementation of energy-efficient policies can signifi-

antly decrease these emissions. Policies should focus on minimiz-

ng energy demand for heating and cooling through the retrofitting

f the existing building stock. The success of the retrofitting strate-

ies highly depends on accurate predictions of the building’s en-

rgy performance. Building simulation programs play the main

ole in the efficiency evaluation of energy-saving policies. However,

o obtain reliable prediction simulation software requires accurate

alues of the building material properties. As recent studies show,

here is a gap between calculated and actual energy consump-

ion [2,3] . Specifically, this discrepancy comes from the uncertainty

f the thermophysical characteristics of the building wall. Thermal

onductivity and heat capacity can be inferred through the solu-

ion of the so-called inverse problem. The latter corresponds to
∗ Corresponding author. 

E-mail address: ainagul.jumabekova@univ-smb.fr (A. Jumabekova). 

o  

t  

n  

m  

ttps://doi.org/10.1016/j.ijheatmasstransfer.2020.119810 

017-9310/© 2020 Elsevier Ltd. All rights reserved. 
n optimization problem, which aims to minimize a difference be-

ween direct model outputs and experimental observations. 

The acquisition of experimental data in existing buildings faces

everal constraints. First, dealing with existing buildings should

onsider their residents, and not interfere in occupants’ everyday

ife. The next factor is the cost of experimental design. For instance,

he quality of the experiment can be improved by installing more

ensors, which would increase the cost of the experiment. Finally,

he duration of an experiment should be questioned. On the one

and, longer experiments guarantee better accuracy of estimated

arameters. But on the other hand, the computational cost of the

arameter estimation problem is highly proportional to the dura-

ion of the observations. Therefore, it is important to address this

ssue and find an optimum between the “richness” of the experi-

ental data and the computational cost of the inverse problem. 

Several studies that deal with this dilemma can be found in

he literature. The first approach presents an error measurement of

hermal conductivity and heat capacity calculated over a different

umber of days, from one up to twenty [4] . Through a comparison

f the relative errors and parameters dispersion for each period,

he optimal number of days is chosen. However, this approach is

ot reliable for a longer experiment duration, for instance several

onths, due to computational cost. Another drawback is a lack of

https://doi.org/10.1016/j.ijheatmasstransfer.2020.119810
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Fig. 1. Illustration of the wall construction. 
Nomenclature 

c material volumetric heat capacity [ J · m 

−3 · K 

−1 ] 

E thermal loads [ W · s · m 

−2 ] 

h convective heat transfer coefficient [ W · m 

−2 · K 

−1 ] 

j heat flux [ W · m 

−2 ] 

k thermal conductivity [ W · m 

−1 · K 

−1 ] 

L wall length [ m ] 

q ∞ 

total incident radiation [ W · m 

−2 ] 

T temperature [ K ] 

t time [ s ] 

t ini starting date [ day(s ) ] 

τ max ending date [ day(s ) ] 

δ τ measurement plan [ day(s ) ] 

x thickness coordinate direction [ m ] 

Dimensionless values 

F Fisher matrix [ − ] 

Fo Fourier number [ − ] 

π measurement plan [ − ] 

� objective function [ − ] 

u temperature field [ − ] 

Subscripts and superscripts 

L Left boundary x = 0 

R Right boundary x = L 

� dimensionless parameter 

◦ a priori parameter value 

est estimated parameter value 

reliable criteria, so the choice is made based on a personal per-

spective. A second practice is maximizing the so-called D-optimum

criterion, the determinant of the sensitivity matrix and its trans-

pose, which minimizes the confidence regions of the parameters.

Several articles apply this criterion on mass transfer in a porous

building material [5,6] . Studies of optimal experiment design of

heat transfer have been performed in controlled laboratory condi-

tions. For instance, in [7] , the optimal heating period and the dura-

tion of the experiment were investigated for a three-layer experi-

mental set-up, where a thin heater is placed between two identical

samples. Unfortunately, the aforementioned articles do not apply

the optimal experiment design in real climate conditions. 

This article presents a real case study of the wall of a histori-

cal building in France. Temperature measurements were taken over

one year both on the wall surfaces and within the wall using five

different sensors. The wall consists of three layers. Previously, the

thermal conductivity of the wall were identified by implementing

the Bayesian approach [8] . However, an order of 10 5 direct model

computations were required to solve the estimation problem using

the whole set of observations. Therefore, it is crucial to decrease

the measurement period and to preserve the accuracy of the esti-

mated parameters at the same time. 

The aim of the article is to propose a methodology to choose

the optimal experiment duration for the estimation of thermal

conductivity. By using the D-optimum criterion [9] and the advan-

tages of the Dufort –Frankel numerical scheme, this approach can

be used to choose the best period of the experiment efficiently.

Additionally, thermal conductivity is estimated over the chosen pe-

riod using the hybrid optimization method. Hybrid optimization

methods combine gradient and heuristic optimization strategies to

find rapidly global extremum. 

The article is organized as follows: Section 2 presents the math-

ematical and numerical models together with the methodology to

solve the parameter estimation problem. Section 3 introduces a

case study of a multi-layer wall. The estimation of the thermal
onductivity of each layer of the wall requires several steps. First,

he identifiability of the parameters is demonstrated. Next, the op-

imal duration of the experiment is chosen. Then, the results of the

arameter estimation problem are given. Finally, the reliability of a

hole approach is discussed. 

. Methodology 

.1. Physical model 

The physical problem considers one–dimensional heat conduc-

ion transfer through a building wall. The wall is composed of N

ayers, each layer differs from the other by its thermal properties

nd thickness, as shown in Fig. 1 . The temperature in the wall is

efined on the domains � x : x ∈ [ 0 , L ] and � t : t ∈ [ 0 , τ max ] ,

here L [ m ] is the length of the wall and τmax [ s ] is the duration

f the experiment: 

 : [ 0 , L ] × [ 0 , τmax ] −→ R . 

he mathematical formulation of the heat transfer process is given

elow: 

 

∂T 

∂t 
= 

∂ 

∂x 

(
k 

∂T 

∂x 

)
, (1)

here c [ J · K 

−1 · m 

−3 ] is the volumetric heat capacity, or c =
· c p , corresponding to the product between the material den-

ity ρ [ kg · m 

−3 ] and the specific heat c p [ J · kg −1 · K 

−1 ] , and

 [ W · m 

−1 · K 

−1 ] is the thermal conductivity. Both properties de-

end on the space coordinate. 

The inside and outside surface temperatures of the wall are set

s boundary conditions: 

 = T L ∞ 

(
t 
)
, x = 0 , (2)

 = T R ∞ 

(
t 
)
, x = L . (3)

he initial condition of the problem is defined as a solution of the

teady state problem: 

 = T 0 
(

x 
)
, t = 0 . (4)

he contact between layers is assumed to be perfect, thereby im-

osing continuity on the temperature and the heat flux [10,11] . 

 

T 
(

x , t 
) ] 

x = x int 
i 

= 0 , 

[ 
k 

∂T 
(

x , t 
)

∂x 

] 
x = x int 

i 

= 0 . (5)

.2. Modelling the thermophysical properties 

This section outlines a mathematical model to represent space

ependant thermal conductivity k and volumetric heat capacity c .
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enerally, the spatial distribution of the thermophysical proper-

ies is defined as a piecewise function . The expression for thermal

onductivity k is formulated as: 

 ( x ) = 

N ∑ 

i =1 

k i ϕ i ( x ) , (6) 

hile volumetric heat capacity c is defined as: 

 ( x ) = 

N ∑ 

i =1 

c i ϕ i ( x ) , (7) 

here 
{
ϕ i ( x ) 

}
i =1 , ... ,N 

are piecewise functions and can be writ-

en as: 

 i ( x ) = 

{
1 , x int 

i −1 
� x � x int 

i 
, i = 1 , . . . , N , 

0 , otherwise , 
(8) 

here x int 
i −1 

and x int 
i 

are the left and right interfaces of the layer i ,

espectively. 

This article focuses solely on the estimation of the thermal con-

uctivity of the wall. Therefore, the piecewise parameterization is

sed to characterize the variation of the volumetric heat capacity.

owever, thermal conductivity may depend on moisture content

n a wall that changes spatially due to daily cycles of temperature

nd relative humidity [12] , therefore there are several options to

efine the spatial variation of the thermal conductivity. It can be

resented as a linear combination of basis functions: 

 ( x ) = 

M ∑ 

i =1 

β i Y i ( x ) , (9) 

here M is number of the chosen basis functions { Y i ( x ) }. 

This article deals with three different types of the properties

arameterization : the standard–case scenario as piecewise func-

ions, the polynomial interpolation, the spline interpolation. The

rst is defined above. The next parameterization is found through

 polynomial interpolation . Thermal conductivity is formulated

y standard series of the polynomial basis functions, and it yields

o: 

 ( x ) = k 0 + β1 x + β2 x 
2 + . . . + βM 

x M , 0 � x � L . 
(10) 

inally, thermal conductivity is presented using a piecewise poly-

omial interpolation . Therefore, 

 ( x ) = Y i ( x ) , x int 
i −1 � x � x int 

i , (11) 

here Y i ( x ) is polynomial with a different degree for each wall

ayer, or 

 i ( x ) = 

G ∑ 

r=0 

β r x 
r , (12) 

here G is the chosen polynomial order. 

The further choice of a parameterization will depend on the

tructural identifiability of unknown parameters since it varies due

o number of available measurements. 

.3. Dimensionless equation 

This section introduces the dimensionless model equations. 

Let us define the following dimensionless variables: 

x � = 

x 

L 
, u = 

T − T ref 

�T ref 

, t � = 

t 

t ref 

, (13) 

 

� = 

k 

k 
, c � = 

c 

c 
, Fo = 

t ref · k ref 

L 2 · c 
, 
ref ref ref 
here subscripts ref relate to a characteristic reference value,

nd superscript � for dimensionless parameters. Thus, Eq. (1) be-

omes: 

 

� ( x � ) 
∂u 

∂t � 
= Fo 

∂ 

∂x � 

(
k � ( x � ) 

∂u 

∂x � 

)
. (14) 

Dirichlet–type boundary conditions are converted to: 

 = u L ( t 
� ) , x � = 0 , where u L = 

T L ∞ 

− T ref 

�T ref 

, (15)

 = u R ( t 
� ) , x � = 1 , where u R = 

T R ∞ 

− T ref 

�T ref 

. (16)

The initial condition is transformed to: 

 = u 0 ( x 
� ) , where u 0 = 

T 0 − T ref 

�T ref 

. (17) 

.4. Numerical model 

After defining the governing equation, this section details the

onstruction of the numerical model. Let us discretize uniformly

he space and time intervals, with the parameters �x � and �t � , re-

pectively. The discrete values of function u ( x � , t � ) are defined as

u n 
j 

def 
:= u ( x � 

j 
, t � n ) , where j ∈ { 1 , . . . , N x } and n ∈ { 1 , . . . , N t } .

he solution u ( x � , t � ) is obtained using the Dufort-Frankel numer-

cal scheme. This numerical model is chosen due to its explicit for-

ulation without loss of accuracy or reliability [13–15] . 

For the non-linear case, the solution is calculated with the fol-

owing expression: 

 

n +1 
j 

= ν1 · u 

n 
j+1 + ν2 · u 

n 
j−1 + ν3 · u 

n −1 
j 

, (18) 

here 

1 = 

λ1 

λ0 + λ3 

, ν2 = 

λ2 

λ0 + λ3 

, ν3 = 

λ0 − λ3 

λ0 + λ3 

, (19) 

nd 

0 

def 
:= 1 , λ3 

def 
:= 

�t � 

�x � 2 

Fo 

c � 
j 

(
k � 

j + 1 
2 

+ k � 
j− 1 

2 

)
(20)

1 

def 
:= 

2 �t � 

�x � 2 

Fo 

c � 
j 

k � 
j + 1 

2 

, λ2 

def 
:= 

2 �t � 

�x � 2 

Fo 

c � 
j 

k � 
j− 1 

2 

. (21) 

he nonlinear coefficients are approximated by: 

 

� 

j ± 1 
2 

= k � 
( x � 

j 
+ x � 

j ± 1 

2 

)
. (22) 

.5. Parameter estimation problem 

The next section presents different steps required to solve the

arameter estimation problem. The issue is to determine the ther-

al conductivity within each layer of the wall. Each case of the

hermal conductivity parameterization holds its own set P of un-

nown dimensionless parameters. 

The parameter set of the piecewise representation directly cor-

esponds to the thermal conductivity values of wall layers: 

 = { k � 1 , k 
� 
2 , . . . , k 

� 
N } . (23) 

he set of the polynomial parameterization consists of polyno-

ial coefficients, and its number depends on the chosen order of

he series: 

 = { k � 0 , β1 , β2 , . . . , βM 

} . (24) 

nlike the polynomial representation, the number of the coeffi-

ients of the spline interpolation differs depending on the layer.

herefore, its parameters set is expressed as: 

 = 

N ⋃ 

i =1 

{ β 0 
i , β

1 
i , . . . , β

G 
i } . (25) 
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We define the component of the parameter set P as P m 

∈ P with

m ∈ { 1 , . . . , N p } , where N p is the total number of unknown pa-

rameters and varies depending of chosen parameterization. In case

of piecewise it equals to the number of all wall’s layers, or N p = N;

for polynomial and spline interpolations N p = M and N p = G × N

respectively. Therefore, the aim is to estimate these parameters

P m 

. 

The recovery of the parameters P is based on the minimiza-

tion of a difference between the computed temperature distribu-

tion u ( x , t ) and the given temperature measurements u obs . The

cost of this minimization procedure is highly proportional to the

number of parameters and the length of the observations. Thus, it

is important to check whether all parameters can be identified, and

if the estimation process requires all the measurement data. The

next sections introduce a methodology on how to answer these

questions. 

2.5.1. Structural identifiability 

Initially, it is of capital importance to check whether the pa-

rameters can be identified independently from the measurements.

One may introduce the formal identifiability of the unknown pa-

rameters as follows. We assume here u ( x , t ) is the only observable

field. 

A parameter P m 

∈ P is Structurally Globally Identifiable (SGI)

if the following condition is satisfied [16] : 

∀ t , u ( P ) = u ( P 

′ 
) ⇒ P m 

= P 

′ 
m 

. (26)

This property should be demonstrated for each type of

parametrization. 

2.5.2. Practical identifiability 

Before performing the parameter identification process we need

to study whether the parameters can be estimated regarding

the given experimental design. These results are obtained using

practical identifiability by calculating the sensitivity coefficients.

The sensitivity coefficient is defined as the first derivative of the

(numerical) observations with respect to an unknown parameter

[17,18] : 

X P m = 

∂u 

∂P m 

. (27)

The function X P m measures the sensitivity of the estimated field

u with respect to changes in the parameter P m 

. If the value of

X P m is small it can be concluded that that the parameter P m 

does

not influence the output u and cannot be identified with accuracy.

Moreover, the inverse problem is also ill–conditioned. If the sensi-

tivity coefficients are linearly dependent, the inverse problem be-

comes ill–posed. Therefore, to get the best estimation of parame-

ters P, it is necessary to have linearly–independent sensitivity func-

tions X P m with large magnitudes for all the parameters P m 

. 

The sensitivity coefficients are computed by direct differentia-

tion of the governing Eq. (14) with respect to an unknown param-

eter. Each parameter set implies a different set of sensitivity equa-

tions. For instance, if the thermal conductivity is formulated as a

piecewise function, the sensitivity coefficient of the unknown pa-

rameter k � 
i 

is given by the following differential equation: 

∂X k � 
i 

∂t � 
= 

Fo 

c � 
∂ 

∂x � 

(
∂k � 

∂k � 
i 

∂u 

∂x � 
+ k � 

∂X k � 
i 

∂x � 

)
, (28)

where X k � 
i 

= 

∂u 

∂k � 
i 

, and the derivative of the thermal conductivity

yields to: 

∂k � 

∂k � 
i 

= 

{
1 , x int 

i −1 
� x � x int 

i 
, 

0 , otherwise . 
(29)
Similarly, sensitivity equations for coefficients of the polynomial

nd spline representations are retrieved. The difference lies in the

alculation of the thermal conductivity derivative. In case of poly-

omial parameterization, the derivative is computed as: 

∂k � 

∂k � 
0 

= 1 , or 
∂k � 

∂β i 

= x i −1 . (30)

n analogous expression is obtained for the spline parameteriza-

ion: 

∂k � 

∂β r 
= x r , r = { 0 , . . . , G } , x int 

i −1 � x � x int 
i . (31)

.5.3. The optimal experiment design 

Finally, to improve the precision of the estimated results, it is

rucial to find an optimal experiment design (OED). Under the op-

imal experiment, we mean measurement conditions that maxi-

ize the estimated parameter accuracy. The purpose of this study

s to determine the optimum duration of experiment δ τ , to re-

rieve which period of observations provide us with maximum ac-

uracy. To search for this optimal experiment design, we introduce

he following measurement plan: 

= { δ τ } . (32)

he choice of the experimental design relies on the maximization

f certain quality indicators [19] , thus the objective of OED is to

nd a measurement plan ˆ π that maximizes a chosen function �: 

ˆ = argmax 
π

� . (33)

everal objective functions � can be applied, in this article a mea-

urement plan is analyzed using a D–optimum criterion: 

= det ̃  F ( π ) , (34)

here ˜ F ( π ) is the modified Fisher matrix. The elements of the

atrix represent the average value of the parameters sensitivity

uring the measurement plan π and are defined according to [9] :

 

 ( π ) = 

[ ˜ F i j 

] 
, ∀ 

(
i, j 

)
∈ { 1 , . . . , N p } , (35)

 

 i j = 

1 

σ 2 

N m ∑ 

q =1 

1 

δτ

∫ t ini + δτ

t ini 

X P i X P j dt , (36)

here X P i is the sensitivity coefficient of the solution related to the

arameter P i , σ is the measurement uncertainty, N p is the num-

er of parameters, and N m 

is the total number of measurements,

nd δ τ is the duration of experiment, which should be investi-

ated. Additionally, the initial time of measurements t ini ∈ [ 0 ,

max ] and the total number of periods N δ τ in the whole in-

erval [ 0 , τ max ] are defined. 

For example, to find an optimal week during one year of obser-

ations fifty two Fisher matrices should be investigated, therefore,

n this case δ τ = 7 [ days ] , t ini shifts every seven days from the

rst observation day and N δ τ = 52 . 

Thus, from a numerical point of view, to detect the optimal

eriod of measurements one should choose the duration of the

xperiment, calculate the modified Fisher matrix for the chosen

easurement plan and then find an optimal sequence that maxi-

izes the D–optimum criterion. 

.5.4. Cost function minimization 

After finding the optimal sequence, the parameter estimation

roblem is solved by minimizing the following cost function by the

ptimization method: 

 

(
P 

)
= 

M ∑ 

i =1 

ω i 

∣∣∣∣∣∣∣∣ u 

num 

(
x � = x � i , P 

)
− u 

obs 
i 

∣∣∣∣∣∣∣∣
2 

(37)
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Table 1 

Sensors and layers positions within the wall. 

Sensors 
χ 1 [ m ] χ 2 [ m ] χ 3 [ m ] Layers 

Interface 

x 1 [ m ] x 2 [ m ] 

0.05 0.23 0.42 0.2 0.48 

Table 2 

Thermal properties of each layer. 

Material of 

layer Index 

Thermal conductivity 

k ◦
i 

[ W · K · m 

−1 ] 

Heat capacity 

c ◦
i 

[ J · K −1 · m 

−3 ] 

Thickness 

δ i [ m ] 

Dressed Stone i = 1 1.75 1.6 · 10 6 0.2 

Rubble Stone i = 2 2.3 2.8 · 10 6 0.28 

Lime Coater i = 3 0.8 2.2 · 10 6 0.02 

T  

o  

o

3

 

t  

u

σ

w  

t  

f

σ

w  

n  

t  

χ

7

4

4

 

i  

o  

n  

o  

b

4

 

i

k

 

x  

s  

o

c

he value of u num results from the solution of the direct prob-

em (14) for a given set of parameters P. The values of u obs 
i 

are

iven by the measurements at the points x � = x � 
i 

respectively, M is

he total number of sensors. It is assumed that measurement er-

ors are additive with zero mean, constant variance, uncorrelated

nd normal distribution. The weights are calculated as ω i = 

1 

σ 2 
i 

,

here σ i is a standard deviation of the measurement u obs 
i 

of the

 th sensor [11] . The norm is calculated according to: ∣∣∣ y 

∣∣∣∣∣∣
2 

= 

∫ t max 

0 

(
y ( t ) 

)2 

d t (38) 

 priori parameters values, denoted as P ◦, are used in the mini-

ization process and to compute the sensitivity coefficients. The

esults of the parameter estimation problem are written as P est .

he optimization of cost function is performed through the OP-

RAN package [21,20] . It includes a hybrid optimizer, combining

radient and global optimization methods to achieve the global ex-

remum of the function. It had the following six constituent op-

imization modules: Davidon–Fletcher–Powell(DFP) gradient–based 

lgorithm [22,23] , Genetic Algorithm (GA) [24] , Nelder–Mead (NM)

implex algorithm [25] , Differential Evolution (DE) algorithm [26] ,

equential Quadratic Programming (SQP) [27] and quasi-Newton

lgorithm of Pshenichny–Danilin (LM) [28] . Thus, this hybrid op-

imizer had three gradient–based and three non–gradient–based

onstituent optimization algorithms that are automatically switch-

ng back–and–forth. 

The optimization problem is completed when one of several

topping criterion is met: (1) the maximum number of iterations

r objective function evaluations are exceeded, or (2) the best de-

ign in the population was equivalent to a target design, or (3) the

ptimization program tried all four algorithms but failed to pro-

uce a non-negligible decrease in the objective function. 

.6. Metrics of efficiency and reliability of the model 

The reliability of the model is assessed by comparing the nu-

erical results with experimental observations. The residual for

emperature is computed according to: 

 ( χ � 
i ) 

def 
:= 

∣∣∣ u 

num 

(
x � = χ � 

i 

)
− u 

obs 
i 

(
x � = χ � 

i 

) ∣∣∣ (39) 

here χ � 
i 

is the sensor location, the super script “num” defined

he output field computed with the model and ”obs” stands for

he experimental observation of the field. 

Meanwhile, the efficiency of a numerical model can be mea-

ured by its computational (CPU) run time required to compute the

olution. It is measured using the Matlab TM environment with a

omputer equipped with Intel i7 CPU and 16 GB of RAM. 

. Case study 

.1. Presentation 

The issue is to estimate the thermophysical properties of the

all of a historical building. The house, built in the XIX century,

s located in Bayonne, France. The West oriented wall of the liv-

ng room was considered for the study. The wall is composed of

hree materials: lime coater, rubble stone and dressed stone. The

all was monitored by sensors which were placed on both sides of

he wall surface and three were installed within the wall. The set–

p is illustrated in Fig. 2 a where { χ 1 , χ 2 , χ 3 } are the loca-

ions of the three sensors. The exact position is reported in Table 1 .

 out ( t ) and T ins ( t ) are outdoor and indoor temperatures. Their

ime variation is shown in Fig. 2 b. The thermal properties of the

all are given in Table 2 , obtained from the French standards [29] .
he data acquisition took almost one year starting from the middle

f December with a time step of 1 h. Complementary information

n the experimental design can be found in [8] . 

.2. Experimental observations 

The total uncertainty on the observations are evaluated through

he propagation of the uncertainties. For the temperature, the total

ncertainty is computed according to: 

= 

√ 

σ 2 
T 

+ σ 2 
x (40) 

here σ T = 0 . 5 ◦ C is the measurement sensor uncertainty, σ x is

he uncertainty due to the sensor location. The latter is given by

ollowing formula: 

x = 

∂T 

∂x 

∣∣∣
x = χ i 

· δx , (41) 

here 
∂T 

∂x 
is calculated at the location of the sensors using the

umerical model and the a priori values of the parameters. The

erm δx varies according the location, it is 1 cm when x ∈ { χ 1 ,

2 , χ 3 }, and δx = 1 . 5 cm if x ∈ { 0 , L }. 

Several figures present the calculated total uncertainty. Figs. 5–

 display the uncertainty in the gray shadow. 

. Results of the parameter estimation problem 

.1. Structural identifiability of the parameters 

The purpose of this section is to demonstrate the theoretical

dentifiability of the unknown parameters. Moreover, the number

f unknown parameters is determined, since it depends on the

umber of the points of observations and the spatial distribution

f thermal conductivity. The evaluation of each case is discussed

elow. 

.1.1. The piecewise function parameterization 

The first demonstration is carried out when thermal conductiv-

ty is presented as a piecewise function: 

 

� ( x � ) = 

{ 

k � 1 , 0 � x � < x � 1 , 

k � 2 , x � 1 � x � < x � 2 , 

k � 3 , x � � x � 2 . 

(42) 

First, the parameter k � 
1 

is considered. Observations u 
(

x � =
 

� 
1 
, t � 

)
are obtained with the parameter k � 

1 
. Another set of ob-

ervations u 
′ (

x � = x � 
1 
, t � 

)
is gathered with k � 

′ 
1 

. At the point of

bservation x � = x � 1 the governing Eq. (14) is as follows: 

 

� 
1 

∂u 

∂t � 
= Fo 

∂ 

∂x 

(
k � 1 

∂u 

∂x � 

)
. (43) 
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Fig. 2. Illustration of the real case study (a) with the boundary conditions (b). 
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One may formulate the following equation for the second set: 

c � 1 

∂u 

′ 

∂t � 
= Fo 

∂ 

∂x 

(
k � 

′ 
1 

∂u 

′ 

∂x � 

)
. (44)

In the case of our model, if u ( x � , t � ) ≡ u 
′ 
( x � , t � ) , then 

∂u 

∂t � 
≡

∂u 
′ 

∂t � 
and 

∂u 

∂x � 
≡ ∂u 

′ 

∂x � 
. By subtracting Eq. (44) from Eq. (43) , one

may obtain: (
k � 

′ 
1 − k � 1 

)
∂u 

∂x � 
= 0 (45)

Therefore, it can be concluded that k � 
1 

≡ k � 
′ 

1 
. Similar demonstra-

tions can be carried out to prove that the parameter k � 
2 

is SGI by

using the observations at x � = x � 
2 

or x � = x � 
3 
. However, based on

the argumentation above, the parameter k � 3 is not SGI since there

are no observations in the third layer. Therefore, in this particular

case only parameters k � 
1 

and k � 
2 

can be identified theoretically. 

4.1.2. Representation through the spline interpolation 

The next parameterization assumes that thermal conductivity is

given by constant values on the first and third layers while chang-

ing linearly on the second wall layer. We denote this representa-

tion as a linear parameterization. Therefore, the following expres-

sion is used: 

k � ( x � ) = 

{ 

k � 1 , 0 � x � < x � 1 , 

k � 20 + β21 x 
� , x � 1 � x � < x � 2 , 

k � 3 , x � � x � 2 . 

(46)

Using the same steps from the previous case, one may conclude

that parameters k � 1 and { k � 20 , β21 } are SGI; the parameter k � 3 can-

not be identified theoretically. Indeed, there is only one linear for-

mulation of k � ( x � ) for the second layer. The two observations at

points { x � 2 , x 
� 
3 } uniquely identify the coefficients k � 20 and β 21 . 

4.1.3. Representation through the polynomial function 

Another hypothesis implies that thermal conductivity is pre-

sented as a second–order polynomial according to the space vari-

able. Therefore, 

k � ( x � ) = k � 00 + β10 x 
� + β20 x 

� 2 , ∀ x � ∈ [ 0 , 1 ] . (47)

The theoretical identifiability of k � ( x � ) is proven below. Using this

function k � ( x � ) we observe field u ( x � , t � ) : 

c � ( x � ) 
∂u 

∂t � 
= 

∂ 

∂x � 

(
k � ( x � ) 

∂u 

∂x � 

)
(48)
d

et us suppose that there is another polynomial ̂ k � ( x � ) , and cor-

esponding variable ̂ u ( x � , t � ) : 

 

� ( x � ) 
∂ ̂  u 

∂t � 
= 

∂ 

∂x � 

( ̂ k � ( x � ) 
∂ ̂  u 

∂x � 

)
. (49)

ubtracting one equation from another, and using that u ( x � , t � ) ≡
 

 ( x � , t � ) , one may obtain: 

∂ 

∂x � 

((
k � ( x � ) − ̂ k � ( x � ) 

)
∂u 

∂x � 

)
= 0 , or (50)

∂k � ( x � ) 

∂x � 
− ∂ ̂  k � ( x � ) 

∂x � 

)
∂u 

∂x � 
+ 

(
k ( x � ) − ̂ k � ( x � ) 

)
∂ 2 u 

∂ x � 2 
= 0 .

(51)

he terms 

{ 

∂u 

∂x � 
, 

∂ 2 u 

∂ x � 2 

} 

are linearly independent. The polyno-

ial k ( x ) − ̂ k � ( x � ) has at most a second order degree. However,

t has 3 zero values, the number of observable fields. Therefore,

t can be concluded that the polynomial k � ( x � ) − ̂ k � ( x � ) is a

ero polynomial, and k � ( x � ) ≡ ̂ k � ( x � ) . So all three parameters

 k � 00 , β10 , β20 } are SGI. 

The choice of the thermal conductivity spatial distribution can

e questioned. The answer lies in the number of available sen-

ors. In this particular case, at most three parameters can be the-

retically identified. In order to use more complex formulations of

he thermal conductivity parameterization, the experimental de-

ign should provide more observable fields. For example, to in-

rease an order of the polynomial parameterization and use a cubic

olynomial, one has to put one more sensor inside the wall. With

he given theoretical identifiablity, one may search the Optimal Ex-

eriment Design to ensure a high quality parameter estimation. 

.2. Results of the optimal experiment design 

Aim of this section is to demonstrate how to select an opti-

al measurement plan, which allows us to estimate the thermal

onductivity accurately and efficiently. Furthermore, it can be re-

arked that the search of the OED requires only the knowledge of

all boundary conditions. So the methodology is reproducible and

oes not need measurements inside the wall. 
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Table 3 

The values of initial day t ini , starting from which the minimum and maximum of � are achieved. 

Type of 

parametrization 

δ τ = 1 [ day ] δ τ = 3 [ days ] δ τ = 7 [ days ] 

max � min � max � min � max � min �

Piecewise January, 16th August, 18th January, 18th July, 14th January, 21st August, 5th 

Linear January, 19th August, 18th January, 18th July, 14th January, 21st August, 8th 

Polynomial January, 19th September, 2nd January, 18th June, 23rd January, 21st September, 2nd 
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i  

i  

T  

c  

i  

T  

e  

e  

m  

r

 

p  

s  

d  

n  

s  

l  

o  

p  

w  
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The three different measurement plans are investigated: 

 ini ∈ [ 0 , 360 ] [ day(s ) ] , 

τ = 1 , δ τ = 3 , δ τ = 7 , 

 δ τ = 360 , N δ τ = 120 , N δ τ = 52 . (52) 

o calculate the modified Fisher matrix using Eq. (35) the

ensitivity coefficients of the particular parameters are required.

hus, for each measurement plan, three thermal conductivity

arametrizations are studied. The sensitivity equations of the

iecewise, linear and polynomial (quadratic) representation are

olved with the Dufort –Frankel numerical scheme. For the OED

nvestigation the a priori parameter values used are reported

n Table 2 . The results are summarized in Table 3 and Fig. 3 .

able 3 presents the starting dates, from which the D–optimum

riterion reached its maximum and minimum values depend-

ng on the duration of the experiment and the parameterization.

able 3 shows that to obtain the best accuracy of estimated param-

ters the observations in January should be chosen. This is valid for

ach thermal conductivity representation and each duration of the

easurement plan. However, the observations in the summer pe-

iod generally give a lower accuracy of estimated parameters. 

Fig. 3 displays values of the relative D–optimum criterion de-

ending on the selection of the measurement plan. Fig. 3 b demon-

trates how the relative criterion composed of 120 values varies

uring the whole year of the experimental campaign. It can be

oted that the high values of the criterion occurred in the cold sea-

on, providing a better accuracy for the parameter estimation prob-

em, while the lower values occurred during the summer. More-

ver, the D–optimality criterion of the three thermal conductivity

arametrizations can be compared. Fig. 3 c displays that the piece-

ise representation had the highest values of the criterion, show-

ng that piecewise parameters are more sensitive than the others. 

Furthermore, a difference between the highest values of the cri-

erion for three chosen sequences can be discussed. Table 4 pro-

ides an information how the criterion varies depending on the

easurement plan using the piecewise representation. It can be

een that 7 [ days ] of observation provide more information than

he others since it provides the highest value of the objective func-

ion � . 

The decision on the duration of the experiments is a difficult

ompromise. A week of observations might be chosen since it en-

ures maximum accuracy, when solving the inverse problem, com-

are to one-day duration. However, the cost of the inverse problem

ncreases exponentially with the duration of the experiment. Thus,

 duration of 3 [ days ] for the experiments seems a good compro-

ise as a measurement plan. Moreover, since we are dealing with

n occupied building, the experiment should not disturb the oc-

upants. The next step is to study the practical identifiability of

arameters. 
Table 4 

The D-criterion highest values of the piecewise parametrization. 

δ τ = 1 [ day ] δ τ = 3 [ days ] δ τ = 7 [ days ] 

max � 6 . 7 × O ( −13 ) 3 . 9 × O ( −11 ) 3 . 2 × O ( −10 ) 

 

p  

p  

z

.3. Results of practical identifiability 

The issue now is to demonstrate the practical identifiability of

he parameters for the selected three days of observations, t ini =
8 / 01 , δ τ = 3 . For the sake of compactness, the sensitivity coef-

cients are presented only for the piecewise thermal conductivity.

urthermore, as discussed in Section 4.2 , the piecewise parameters

re more sensitive. Section 4.1 shows that the two parameters k � 
1 

nd k � 
2 

are theoretically identifiable for piecewise representation.

herefore, only two sensitivity functions were computed. The cal-

ulation was performed for the whole year. Next, considering the

ifferent periods of the year, reported in Table 3 , the variation over

he time of the variables X k � 
1 

and X k � 
2 

is shown in Fig. 4 . Fig. 4 a and

 display the variation of the sensitivity coefficients during three

ays in January for the first two sensors. In addition, Fig. 4 b and

 present the same information during a three day period in July

orresponding to the period of the experimental design with the

owest values of D–criterion. Several conclusions can be drawn. 

First, it can be remarked that, in general, the amplitudes of the

ensitivity coefficients during the winter period were higher than

n the summer. As a result, the model is more sensitive to the pa-

ameters during the chosen period in January. This is consistent

ith the fact that the D–optimum criterion achieved its highest

alue in January. Secondly, the sensitivity coefficients are linearly

ndependent within the first and second layers. Therefore, the ther-

al conductivity of the first and second layers are practically iden-

ifiable. As shown in Fig. 4 a and c, the sensitivity of the parame-

er k � 
1 

is higher for the sensor located in the first layer. Addition-

lly, Fig. 4 a and c show the sensitivity function of parameter k � 2 
ncreases for the sensor position in the second layer. Moreover, the

otal sensitivity was calculated during the best period of observa-

ions between the two parameters in all sensor locations. The fol-

owing expression can be used: 

 

(
k � 1 , k 

� 
2 

)
= 

3 ∑ 

q =1 

1 

σ 2 

∫ 
δτ

X k � 
1 

(
χ q , t 

)
X k � 

2 

(
χ q , t 

)
d t . (53) 

or this particular case this value is −0 . 0029 , which proves the

ensitivity coefficients are not correlated. It can be concluded that

he unknown parameters k � 
1 

and k � 
2 

are identifiable from the prac-

ical aspect, and should be estimated during the winter season. 

F lin = 

k � 1 

k � 20 

β21 

k � 1 k � 20 β21 ⎛ ⎝ 

1 −0 . 0028 −0 . 0022 

− 1 0 . 0014 

− − 1 

⎞ ⎠ 

, 

F quad = 

k � 1 

β10 

β20 

k � 1 β10 β20 ⎛ ⎝ 

1 0 . 0020 0 . 0046 

− 1 0 . 0020 

− − 1 

⎞ ⎠ . 
(54) 

Similarly, the total sensitivity can be computed for linear and

olynomial thermal conductivity representation. The results are re-

orted in matrices (54) . The matrices values do not equal to the

ero value, so, the parameters can be estimated practically. 
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Fig. 3. Variation of the criteria � according to the length of observation period δ τ = 1 days (a) , δ τ = 3 days (b) and δ τ = 7 days (c) . 
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4.4. Results of the parameter estimation problem 

The parameter estimation problem is solved using the optimiza-

tion procedure described in Section 2.5.4 and the direct numeri-

cal model detailed in Section 2.4 . The space and time discretiza-

tion are �x � = 10 −2 and �t � = 10 −2 corresponding, from a phys-

ical point of view, to �x = 5 · 10 −3 m and �t = 3 . 6 s . The direct

problem is solved for three days in January, t ini = 18 / 01 , δ τ = 3

as justified in Section 4.2 . The three separate cases of thermal con-

ductivity parameterization are analyzed. 

First, the piecewise representation of the thermal conductivity

was studied. As a result of the theoretical identifiability, only 2 pa-

rameters k � ◦
1 and k � ◦

2 were identified. The initial guess and the esti-

mated results are reported in Table 5 . Then the direct problem was

solved with the estimated parameter values and compared to the

observations. The calculated temperature values and the respective

measurements with uncertainty boundaries in three sensors loca-

tions are presented in Fig. 5 . The estimation was in good agree-
ent for the first two sensors. However, in the third sensor loca-

ion, the computed temperature values were out of the observation

ncertainty bound. This discrepancy may arise due to the model-

ng of the second layer material properties. As rubble stone is not

 homogeneous material, and it is irregular in shape and struc-

ure. Fig. 5 d displays the estimated variation of thermal conductiv-

ty according to the space coordinate and the standard values of

he thermal conductivity. 

In the second case, the parameters of the linear representation

ere identified. The parameter scope includes the thermal conduc-

ivity of the first layer k � 
1 

and the coefficients { k � 
20 

, β21 } of the

inear function for the second layer. The initial guess and the es-

imated results are reported in Table 5 . Fig. 6 illustrates the dif-

erence between observations and the computed temperature val-

es in different sensor locations. Similar to the previous case, the

alculated temperature values are closer to the measurements in

he first two sensors. However, a comparison of Figs. 6 c and 5 c

hows that the gap between the experimental and the calculated
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Fig. 4. Variation of the sensitivity coefficients at the sensors location during 3 days in January and July. 

Table 5 

The a priori and estimated parameter values of the 

thermal conductivity representations. 

Parameter A priori value Estimated value 

Piecewise 

k � ◦
1 1.0 0.75 

k � ◦
2 1.3 1.01 

Linear 

k � 1 1.0 0.8336 

k � 20 0.6195 −0 . 714 

β 21 0.8271 2.639 

Quadratic 

k � 00 0.89 1.3952 

β 10 2.397 −3 . 8249 

β 20 −2 . 655 4.4296 

d  

p  

F  

i  

s  

t  

e

 

q  

t  

a  

m  

o  

u  

t  

t  
ata was smaller for the linear representation. Although, the com-

uted values were not in the measurement uncertainty bounds.

ig. 6 d presents the variation of the estimated thermal conductiv-

ty according to the location in the wall and a comparison with the

tandard values of the thermal conductivity. It can be seen that the

hermal conductivity of the second layer was higher closer to the

nd of the wall. 

Finally, the parameter estimation problem was solved for the

uadratic representation of thermal conductivity. The results of

hree coefficients identification are given in Table 5 . Fig. 7 shows

 comparison between the experimental observations and the nu-

erical results; there was a satisfactory agreement for all points

f observations. The computed temperature values were inside the

ncertainty boundaries. Fig. 7 d illustrates how the thermal conduc-

ivity changed according to wall depth and the standard values of

he thermal conductivity. The thermal property reached its higher
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Fig. 5. Variation of the computed temperature and the experimental observations for (a) first, (b) second and (c) third sensor locations; and (d) the estimated thermal 

conductivity representation. 
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Fig. 6. Variation of the computed temperature and the experimental observations for (a) first, (b) second and (c) third sensor locations; and (d) the estimated thermal 

conductivity representation. 
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Fig. 7. Variation of the computed temperature and the experimental observations for (a) first, (b) second and (c) third sensor locations; and (d) the estimated thermal 

conductivity representation. 
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Fig. 8. Variation of the error ε of the (a) piecewise, (b) linear, and (c) quadratic representation. 
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alues closer to the wall borders. As mentioned in Section 2.2 , the

rofile of the thermal conductivity in Fig. 7 d can be justified by

he so-called moisture buffering effect [30] . Indeed, due to the cli-

atic and indoor variations of temperature and relative humidity,

eat and mass transfer occurs in the porous wall. The water mi-

ration goes from the borders, where the forcing conditions occur,

o the centre of the wall. The wall being very thick, the moisture

ontent penetrates only the first centimetres. It is probably higher

n the wall borders and lower in its centre. Since the thermal con-

uctivity has a linear relation with the water content in the wall,

he profile of thermal conductivity should be similar to the varia-

ion of water content in the wall. 

The residuals for each thermal conductivity representation dur-

ng the studied period t ini = 18 / 01 , δ τ = 3 can be compared. As

hown in Fig. 8 the residuals were not correlated regardless of the
 M  
arameterization, although an error was higher for the piecewise

nd linear interpolation on the third sensor location. The applica-

ion of the quadratic interpolation helped to significantly reduce

his error. It can be concluded that the quadratic representation of

hermal conductivity gave better results than the other two. 

.5. Convergence of the optimization process 

Fig. 9 displays the relative variation of cost function accord-

ng to iterations from the initial point until the convergence cri-

eria. The process starts with the Differential Evolution (DE) al-

orithm, and around the hundredth iteration a change of the

ptimization algorithms occurred, it successively changed from

uasi-Newton algorithm of Pshenichny–Danilin (LM) to Nelder–

ead (NM) simplex algorithm, after it shifted to Genetic Algo-
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Fig. 9. Convergence of the optimization process: evolution of the cost function and 

switch between the methods of the hybrid optimizer. 
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rithm (GA) to Davidon–Fletcher–Powell(DFP) gradient–based algo-

rithm and Sequential Quadratic Programming (SQP). 

The benefit of the reduced measurement plan can be calcu-

lated. To obtain an accurate parameter estimation 150 iterations

were required. In addition, the computational time of the numeri-

cal model for three days was 4 seconds, therefore, the overall esti-

mation lasted 10 min. Similarly, as the computational time for one

month was 40 s, at least 100 min are necessary to obtain the es-

timated values. Finally, whole year simulation requires 400 s, and

the parameter estimation problem is solved in 17 h. 

These evaluations assume that the convergence criteria of the

optimization algorithm does not change with the length of obser-

vation sequence. Nevertheless, it underlines the advantage of the

approach in terms of CPU time. 
Fig. 10. Normalized probability density function of the error distribution for the piecewi

the measurement uncertainty σ values during one year for each sensor location.. 
.6. Evaluating the reliability of the mathematical model. 

The aim of this section is to investigate the prediction of the

odel with the experimental data during the whole observation

eriod. This issue is important since the parameter estimation

roblem has been solved for a reduced measurement plan of three

ays. Thus, its reliability needs to be evaluated. The numerical

odel was calculated for one year of observations using the esti-

ated parameters. Fig. 10 displays the probability density function

f the residual for each thermal conductivity representation. In ad-

ition, the observation uncertainties for the sensor locations are

epresented. It can be noted that the mean values of the residuals

ay between 0.0 ◦C and 0.5 ◦C. Moreover, the computed residuals

ean values are smaller than the observations mean values, indi-

ating the satisfactory reliability of the numerical model. 

Furthermore, one may conclude that during the one year ob-

ervations the quadratic representation gave better results on the

econd and third sensor locations. However, the piecewise and the

inear interpolations have better results for the first sensor loca-

ion. 

Finally, the temperature distribution in the wall was computed

uring the last three days of the experimental campaign. The cal-

ulation was performed using the estimated parameters of the

uadratic representation. Fig. 11 shows how the predicted temper-

ture varies according to time inside the three sensor locations. A

ood agreement was obtained between the estimated values and

he experimental data; the observations were inside the uncer-

ainty bound of the calculated temperature. Furthermore, the a pri-

ri information was not reliable for the model prediction. 

. Conclusion 

In the context of identification of thermophysical parameters of

 building wall, the length of observations plays an important role.

he accuracy of estimated parameters proportionally depends on

he quantity of observations points, however, a long experiment is

 computationally expensive task. To find a balance between these

wo opposite conditions a methodology for determining the opti-

al duration of the experiment was investigated. The concept of

he optimal experiment design (OED) was explored to decrease the
se (a) , linear (b) , and quadratic (c) representations compared to the distribution of 
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Fig. 11. Variation of the a priori temperature, the computed temperature, and the experimental observations during the last three days of observations for (a) first, (b) second, 

and (c) third sensor locations. 
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uration of an experiment since this approach provides the best

ccuracy of estimated parameters. The search of the OED was done

sing the Fisher information matrix, quantifying the amount of in-

ormation contained in the observations. 

This article studies the wall of a historical building composed

f three layers. It was monitored during one year by five sensors:

wo were placed on the wall’s surfaces, while three others within

he wall. The estimation of the thermal conductivity of the wall

ook several steps. First, different spatial parametrizations were

roposed to reproduce the variation of thermal conductivity ac-

ording to the length of the wall. However, only three parametriza-

ions (piecewise, linear and quadratic) were structurally identi-

able. Then, the sensitivity coefficients were computed and the

ractical identifiability of the parameters was discussed. Next, in

rder to increase the accuracy of the estimation of unknown pa-
ameters the D-optimum criterion was analyzed for three measure-

ent plans: one, three and seven days. It can be noticed that the

riterion reaches the maximum value in January, while the min-

mum is in the summer period. Then, the three days in January

ere chosen as an optimal measurement plan as a compromise

etween the accuracy of the identification method and overall ex-

eriment cost. Third, the estimation of thermal conductivity us-

ng measurements during these three days was performed by the

ybrid optimization method. Results have shown that the imple-

entation of the quadratic representation of thermal conductivity’s

patial variation has the best agreement with observations among

thers two. It can be remarked that a large computation gain is

chieved by decreasing the length of observations from one year

o three days. Last, the reliability of the model is evaluated by

omparing the numerical prediction using the estimated parame-
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ters values to the whole year of observations. A very satisfactory

agreement is observed highlighting the good reliability of the pro-

posed approach. It indicates that the estimated parameters values

using the obtained optimal sequence of three days can be applied

to accurately predict a physical phenomenon. 

This study shows that the substantial reduction of the length of

observations using OED, nevertheless, provides sufficient informa-

tion to accurately simulate physical processes. Moreover, the OED

approach can be applied for in situ measurements only and is not

depending on the number of sensors inside the wall. However, it

requires a priori information of parameters values and depends on

a chosen physical model. Further works should focus on the exten-

sion of the methodology for more complex mathematical models

including for instance coupled heat and mass transfer in porous

materials. 
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