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A B S T R A C T   

This paper deals with the solution of an inverse bioheat transfer problem, by using Approximate Bayesian 
Computation (ABC). A Sequential Monte Carlo (SMC) method is applied for simultaneous model selection and 
model calibration (estimation of the model parameters) by using synthetic measurements. Two competing 
models are considered in the analysis of the thermal damage of biological tissues. The results show that the ABC- 
SMC algorithm provides accurate results for the model selection and estimation of the thermal damage model 
parameters.   

1. Introduction 

Even though many mathematical equations used to model physical 
phenomena are based on well-known conservation principles, more than 
one model can be proposed to represent the physics of a problem. 
Models can differ by the simplification hypotheses assumed for the 
conservation principles, their boundary and initial conditions, as well as 
the selection of required constitutive equations. Moreover, multiple 
scale phenomena might or might not be considered in the formulation, 
depending on the sensitivity of the dependent variables of interest for 
the problem. Besides these situations where the models can be written 
based on conservation principles and constitutive equations, there are 
many others that rely on models strongly dependent on the a priori in
formation available about the phenomena. Such is especially the case 
when the models are stochastic, like in biology or economics, for 
example. 

As detailed phenomena in nature are better comprehended, there is a 
clear trend to develop complex mathematical models, for which accu
rate predictions can only be obtained if the parameters appearing in the 
formulation are accurately known. Despite the detailed phenomena 
included in such models, their results might not be more accurate than 
simpler models that are better parameterized, based on the principle of 
parsimony [1]. The main issue is the reliability and the realism of the 
computational results obtained with possibly different models. 

Therefore, techniques for the selection of the most appropriate model to 
represent the phenomena of interest, as well as for the estimation of the 
parameters associated with this model, are of great interest for several 
current practical applications. 

Classical information criteria are available for model selection, such 
as the Akaike Information Criterion (AIC) [2] and the Bayesian Infor
mation Criterion (BIC) [3]. Similarly, many techniques have been 
developed in the past for the estimation of model parameters, from the 
measured and computational response of the system of interest, through 
inverse analyses [1,4–30]. An article by Farrell et al. [31] presents a 
comprehensive approach for model selection, calibration and validation 
within the Bayesian framework. On the other hand, there are situations 
where the likelihood is not exactly known, analytically intractable or 
when the computational cost of the actual likelihood is prohibitive. For 
such cases, the so-called Approximate Bayesian Computation (ABC) has 
been developed, where the likelihood is not computed to quantify the 
mismatch between the computational and the experimental dependent 
variables of the problem [32–37]. 

The Approximate Bayesian Computation algorithm of Toni et al. [34] 
is used in this work for simultaneous model selection and model cali
bration (estimation of the model parameters) for an inverse bioheat 
transfer problem [38,39]. Two competing models are considered for the 
thermal damage of a biological tissue during thermal ablation imposed 
by a laser, namely: (1) Arrhenius formulation [40,44] and (2) Two-state 
model [44,45]. In order to verify the Approximate Bayesian 
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Computation algorithm of Toni et al. [34], non-intrusive synthetic 
measurements of the tissue damage are used in the inverse analysis. 
Modeling thermal damage of tissues is an open subject in the literature, 
since different models are available and values reported for the model 
parameters exhibit large variability (see, for example [40–45]). There
fore, robust and powerful techniques are urgently needed for model 
selection and model calibration in the study of the thermal damage of 
tissues. This is especially the case for the hyperthermia treatment of 
cancer, with the use of nanoparticles for selective heating of the tumor 
and control of the heating process to avoid damage of the healthy cells 
[46]. 

2. Physical problem and mathematical models 

The physical problem considered here involves the laser heating of a 
biological tissue composed of 65%wt of water and 35%wt of protein, as 
in Loiola et al. [38]. The tissue consists of a cylindrical geometry, with 3 
mm of radius and 3 mm of height. Initially, the tissue is assumed at the 
uniform body temperature, Tb. A laser heating is then applied at the 
surface of the tissue at z ¼ H, while the boundaries at r ¼ R and z ¼
0 remain at the body temperature, Tb. The boundary at z ¼ H also ex
changes heat by convection and linearized radiation with the sur
rounding environment at the temperature T∞, with a heat transfer 

Nomenclature 

cp specific heat at constant pressure, J/(kg K) 
Ea activation energy, J/mol 
g anisotropy coefficient 
h specific enthalpy, J/kg 
h∞ heat transfer coefficient, W/(m2 K) 
hfg latent heat, J/kg 
H height of the geometry, m 
k thermal conductivity, W/(m K) 
mf mass fraction of fat 
mp mass fraction of protein 
mw mass fraction of water 
M vector that indexes the models 
P vector of model parameters 
Pl laser power, W 
_Q heat source per unit volume, W/m3 

r, z spatial coordinates 
R radius of the geometry, m 
Ru universal gas constant, J/(mol K) 
S fraction of surviving cells 
t time 
T temperature, �C 
T∞ surrounding environment temperature, �C 
Y vector of measurements 

Greek Symbols 
α parameter of the two-state model, s� 1 

β parameter of the two-state model 
γ parameter of the two-state model, K 
ε vector of tolerances 
κ frequency factor exponent 
μa radiation absorption coefficient, m� 1 

μeff radiation attenuation coefficient, m� 1 

μs radiation scattering coefficient, m� 1 

ρ density, kg/m3 

σ laser spot half radius, m 
ϕ0 maximum flux at the laser beam center, W/m2 

ω perfusion coefficient, m3
bs� 1m� 3

t 
Ω thermal damage integral 

Subscripts 
0 initial time 
b blood 
l laser 
m metabolism 

Superscripts 
– refers to tissue properties before phase change 
þ refers to tissue properties after phase change  

Fig. 1. Laser heating of a biological tissue.  
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coefficient h∞. Fig. 1 illustrates the axisymmetric physical problem 
when the domain contains only the original homogeneous tissue (a) and 
when part of the tissue has been thermally damaged due to the laser 
heating (b). 

The mathematical formulation for this physical problem is given by: 

ρðr;zÞ∂hðr;z; tÞ
∂t

¼r ⋅ ½kðr;zÞrTðr;z; tÞ�þ _Qðr;zÞ 0<r<R; 0<z<H; t>0

(1a)  

Tðr; z; tÞ ¼Tb 0< r<R; 0< z<H; t¼ 0 (1b)  

∂Tðr;z; tÞ
∂r

¼0 r¼0; 0< z<H; t>0 (1c)  

Tðr;z; tÞ¼Tb r¼R; 0< z<H; t>0 (1d)  

Tðr;z; tÞ¼Tb 0<r<R; z¼0; t> 0 (1e)  

� kðr;zÞ
∂Tðr;z; tÞ

∂z
¼h∞ðT � T∞Þ 0<r<R; z¼H; t> 0 (1f) 

The enthalpy form for the bioheat transfer equation, proposed by 
Abraham and Sparrow [39], is used in this work to account for the water 
phase change inside the tissue. The enthalpy is related to the tempera
ture by Ref. [39]: 

h¼

8
>>>><

>>>>:

�
cpðr; zÞ

��
t ½Tðr; z; tÞ � Tb� T � 99�C

hð99Þ þ hfgmw
½Tðr; z; tÞ � 99�
ð100 � 99Þ

99�C < T � 100�C

hð100Þ þ
�
cpðr; zÞ

�þ
t ½Tðr; z; tÞ � 100� T > 100�C

(2) 

The thermal properties density (ρ), specific heat (cp) and thermal 
conductivity (k) are considered as functions of the tissue composition, 
which are related to the mass content of water (mw), protein (mp) and fat 
(mf), as proposed by Cooper and Trezek [47]: 

ρ¼ 1
mw þ 0:649mp þ 1:227mf

�
g
�

cm3� (3)  

cp¼ 4:2mwþ 1:09mp þ 2:3mf ½J = ðg �CÞ� (4)  

k¼ ρ
�
6:28mwþ 1:17mpþ 2:31mf

�
½mW = ðcm KÞ� (5) 

The source term in Eq. (1a) includes the energy supplied by blood 
perfusion, tissue metabolism and the heating laser, that is: 

_Qðr; zÞ¼ _Qbðr; z;ΩÞþ _QmðΩÞ þ _Qlðr; zÞ (6) 

The blood perfusion source term is taken as [48]: 

_Qbðr; z;ΩÞ¼ ρbcbωbðΩÞ½Tb � Tðr; zÞ� (7)  

where Tb represents the arterial blood temperature, ρb the density and cb 
the specific heat of the blood. The perfusion coefficient ωb is considered 
as a function of the tissue thermal damage, Ω [39]: 

ωb¼

8
<

:

�
1þ 25 Ω � 260 Ω2�ω0 Ω � 0:1
ð1 � ΩÞω0 0:1 < Ω � 1
0 Ω > 1

(8)  

where ω0 is the blood perfusion of the healthy tissue. Values of thermal 
damage up to Ω ¼ 0.1 increase the perfusion due to vasodilation of the 
heated tissue, while values of thermal damage in 0.1 < Ω � 1 decrease 
the blood perfusion due to blood clotting. The value of Ω equal to unity 
(Ω ¼ 1) is associated with blood coagulation and tissue necrosis, when 
perfusion is then ceased (ωb ¼ 0) [39]. The correlations given by Eq. (8) 
were used by Abraham and Sparrow [39], based on the experimental 
works of Henriques and Moritz [40–43]. 

The term _QmðΩÞ in Eq. (6) corresponds to the metabolic heat 

generation, which was considered uniform in the original homogeneous 
tissue. On the other hand, the metabolic heat generation is null when the 
tissue becomes necrotic (Ω ¼ 1) due to the thermal damage. 

The energy provided by the laser is modeled with Beer-Lambert’s 
law, due to the small size of the region considered in this work [49]. The 
laser beam applied at z ¼ H is Gaussian, with radius 2σ, fluence ϕ0 and 
attenuation coefficient μeff, so that, 

_Qlðr; zÞ¼ μeff ϕ0 exp
�
� μeff ðH � zÞ

�
exp
�

�
r2

2σ2

�

(9) 

The laser fluence is given by Ref. [50]: 

ϕ0¼
Pl

2πσ2 (10)  

while the attenuation coefficient is calculated with the absorption (μa), 
scattering (μs) and anisotropy (g) coefficients, that is [51]: 

μeff ¼f3μa½μa þ μsð1 � gÞ�g0:5 (11) 

Two different models are used here to predict the thermal damage 
resulting from the laser heating, namely, an Arrhenius model (Model 1) 
and a two-state model (Model 2). The Arrhenius model for the thermal 
damage was first proposed by Henriques and Moritz [40–43] and con
siders that the necrosis of the tissue occurs when Ω ¼ 1. The Arrhenius 
formulation is given by Eq. (12) and relates the damage of the tissue to 
the temperature (T) and time (t) of heating. The parameters of Model 1 
are the universal gas constant (Ru), activation energy, Ea, and frequency 
factor, which is expressed here in power form, that is, 10κ. 

Ω¼
Z t

0
10κ exp

�

�
Ea

RuT

�

dt’ (12) 

The two-state model (Model 2) was derived by Feng et al. [45] with a 
thermodynamic analysis related to the fraction of surviving cells (S). The 
authors performed in vitro experiments and correlated the fraction of 
surviving cells with the temperature and time of heating, by using three 
parameters: α, β and γ. The two-state model is given by: 

Sðt;TÞ¼
1

1þ exp
h
�
�

γ
T � β � αt

�i (13) 

The tissue thermal damage is related to the fraction of surviving cells 
in the two -state model by Ref. [49]: 

Ω¼ ln
�

Sð0Þ
SðtÞ

�

(14) 

These two competing models will be considered to represent the 
synthetic experimental data. Model selection and model calibration with 
an ABC-SMC algorithm is presented in the next section. 

3. Model selection and model calibration 

Approximate Bayesian Computation (ABC) is used in this work for 
simultaneous model selection and estimation of the model parameters 
(calibration). Methods of this class can deal with experimental un
certainties that may not be appropriately modeled in terms of analytic 
statistical distributions or the computation of the likelihood function is 
very time consuming [34,35,52–54]. 

The algorithm of Toni et al. [34], which is an extension of the 
Sequential Monte Carlo algorithm of Sisson et al. [33], is used here for 
model selection and model calibration. Therefore, the present objective 
is to obtain the combined posterior distribution, πðP;MjYÞ, where M is 
the vector that indexes the models that are considered in the analysis, P 
is the vector of model parameters and Y is the vector of measurements. 
In this algorithm, a model is initially selected from the prior π(M), and 
then a sample for the parameters of this model is obtained from their 
prior distributions. This process of selecting the model and sampling the 
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parameters is repeated until a pre-specified number of samples (N) are 
accepted. A user-selected distance function, d(Y,Y*), between mea
surements (Y) and estimated dependent variables (Y*), is used as the 
acceptance criterion instead of the likelihood, with a specified tolerance 
(ε), that is, d(Y,Y*) � ε. The set of accepted particles is named popula
tion. Weights are calculated for each particle and normalized according 
to each model. New populations of size N are then generated by sam
pling the model from its prior and sampling the model parameters from 
their values at the previous population. This process is repeated until the 
tolerance for the last population, εP, is satisfied, where P indicates the 
number of populations. Tolerances are usually set large for the first 
populations, in order to avoid lack of convergence when the sampling is 
dominated by the priors. The information provided by the measure
ments becomes more significant as the populations advance. Conse
quently, a larger number of particles is selected for the correct model 
and the samples for the parameters better reflect the real posterior dis
tribution. Convergence tolerances are then gradually reduced for accu
rate model selection and parameter estimation as the populations 
advance. 

The ABC algorithm of Toni et al. [34] used in this work is summa
rized by Table 1. 

4. Results and discussions 

In order to generate the synthetic measurements, the temperature 
field was computed with the finite volume method [55,56] by using the 
explicit enthalpy scheme, on a mesh with 245 vol in radial and longi
tudinal directions and a time step of 0.2 ms. Verification and validation 
of this finite volume code for the solution of the direct problem were 
presented by Loiola et al. [38]. The numerical codes were implemented 
in MATLAB® and run on a computer with processor Intel® Cor
e™i7-7500U CPU@2.70Ghz, with 16 Gb of RAM. The ABC code took 
around 170 h to reach the convergence for each test. The properties of 
the blood and tissue, as well as the heat source parameters used to 
generate the synthetic measurements, are presented by Table 2. The 
values of parameters of the two thermal damage competing models 
(Model 1 - Eq. (12) and Model 2 - Eqs. (13) and (14)) for PC-3 prostate 
cancer cells, which were used in this work, are presented by Table 3 
[45]. 

A sensitivity analysis was performed by sampling one parameter at a 
time from its prior distribution (see Table 4) and simulating the forward 

problem. Each parameter was sampled one hundred times. The priors 
were supposed as uniform distributions with large variances, which 
encompass the reported parameter values for different cell lines. The 
curves obtained with each simulation are presented by Figs. 2 and 3. 
Fig. 2 present the results for the transient variation of temperature at 
three different radial positions over the heated surface (z ¼ H). Fig. 3 
present the results obtained for the thermal damage (Ω) over this same 
surface, at the radial position r ¼ 0.75 mm. The behaviors of the thermal 
damage for other radial positions are similar to those presented by Fig. 3 
and are omitted here for the sake of brevity. The curves obtained by 
sampling the parameters of model 1 are presented by Figs. 2a and 3a 
(parameter κ), and Figs. 2b and 3b (parameter Ea). Similarly, the curves 
obtained by sampling the parameters of model 2 are presented by 
Figs. 2c and 3c (parameter α), Figs. 2d and 3d (parameter β) and Figs. 2e 
and 3e (parameter γ). 

As can be observed at Fig. 2, the temperature at the heated surface 
has no sensitivity with respect to variations of the damage parameters, 
either for model 1 or model 2, since the curves obtained with one 
hundred samples are superimposed at the graph scale. Moreover, the 
temperature variations obtained with models 1 and 2 are the same. 
Therefore, temperature measurements cannot be used to estimate the 
model and its associated parameters related to the decomposition of the 
tissue, because of low sensitivity. On the other hand, the thermal dam
age is very sensitive to variations in the parameters of models 1 and 2, 
except for α, as shown by Fig. 3. Based on the analysis of Figs. 2 and 3, 
the inverse problem was solved with non-intrusive transient measure
ments of the necrosis front position at the surface heated by the laser. 
The interface between decomposed and original tissues was considered 
as the point where Ω ¼ 1 (necrosis front). Measurements of the necrosis 
front position can be obtained in practice with optical observations of 
the tissue color changes [61,62]. 

The reduced sensitivity coefficients [1,24,25,30] of the thermal 
damage front with respect to the different parameters are presented in 
Fig. 4a and b, for models 1 and 2, respectively. The reduced sensitivity 
coefficients were calculated with the parameter values given in Table 3. 
They are obtained by multiplying the sensitivity coefficients by the 
values of the corresponding parameters [1,15–26]. Fig. 4a and b shows 
that the sensitivity coefficients are null for small times, while necrosis 
has not yet developed over the heated surface. The sensitivity co
efficients for parameters κ and Ea of model 1, as well for parameters β 
and γ of model 2, suddenly increase when necrosis starts and then decay 
to steady-state values. The sensitivity coefficient with respect to the 

Table 1 
ABC algorithm [34].   

1. Define the tolerances ε1, ε2, …εP for each of the iterations (populations) used for 
selecting the model and its parameters. Also, specify the distance function d(Y,Y*) 
that substitutes the likelihood function. Set the population indicator p ¼ 0.  

2. Set the particle indicator i ¼ 1, where each particle represents, at each iteration, a 
model and its parameters.  

3. Sample the model M* from the prior distribution for the models π(M). 
If p ¼ 0, sample the candidate parameters P** from the prior distribution for the 
parameters of model M*, that is, π[P(M*)]. Else, sample P* from the parameters in the 
previous population PðM*Þ

i
p� 1, with weights wðM*Þ

i
p� 1, and perturb this particle to 

obtain P** � Kp(P*, P**), where Kp is a perturbation kernel.  
4. If π(P**) ¼ 0, return to step 3. Else, simulate from the forward problem (operator f) 

a candidate set of observable variables with model M* and parameters P**, that is, 
Y* ¼ f(Y|P**, M*).  

5. If d(Y,Y*) > εp, return to step 3. Otherwise, set Mi
p ¼M*, add P** to the population 

of particles PðM*Þ
i
p and calculate the particle weight 

wðM*Þ
i
p ¼

8
>><

>>:

1 if p ¼ 0

πðPðM*Þ
i
pÞ

XN
j¼1

wðM*Þ
j
p� 1KpðPðM*Þ

j
p� 1;PðM

*Þ
i
pÞ

if p > 0  

6. If i < N, where N is the number of particles, set i ¼ i þ 1 and go to step 3.  
7. Normalize the weights.  
8. If p < P, where P is the number of iterations (populations), set p ¼ p þ 1 and go to 

step 2. Otherwise, terminate the iterations.   

Table 2 
Biological and blood properties and heat source parameters.  

Parameter Value Unit Reference 

ρ- 1140 kg/m3 [47] 
ρþ 4400 kg/m3 [47] 
cp
- 3110 J/(kg K) [47] 

cp
þ 382 J/(kg K) [47] 

k - 0.512 W/(m K) [47] 
kþ 0.180 W/(m K) [47] 
ρb 1000 kg/m3 [39] 
cb 4100 J/(kg K) [39] 
ω0 0.0028 m3

bs� 1m� 3
t  [39] 

Tb 37 �C [39] 
hfg 2257000 J/kg [57] 
mw 0.65 – [38] 
mp 0.35 – [38] 
_Qm  170 W/m3 [39] 

μeff 4060 m� 1 [58] 
h∞ 10 W/(m2 K) [59] 
T∞ 25 �C [59] 
Pl 10 W [60] 
σ 0.5 mm [60] 
ϕ0 636.62 W/cm2 [50] 
R 0.003 m – 
H 0.003 m –  
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parameter α of model 2 is null, as also revealed by the sensitivity analysis 
presented by Fig. 3c. The sensitivity coefficients are not linearly 
dependent for the parameters of model 1, except when they reach steady 
state values. On the other hand, parameters β and γ of model 2 are 
correlated, as shown by Fig. 4b. 

For the results presented below, the synthetic transient measure
ments of the necrosis front were assumed available with a frequency of 
100 Hz. The synthetic measurements were Gaussian, with means given 
by the solution of the direct problem and standard deviations of 1% of 
these mean values. In order to avoid an inverse crime, the inverse 
problem was solved on a mesh much coarser than that used to generate 
the synthetic measurements (163 control volumes in each direction and 
a time step of 0.2 ms). The duration of the simulated experiments was 
taken as 0.187 s. 

The uniform transition kernels presented by Table 5 were used to 
generate the particles for the parameters in step 3 of the algorithm of 
Toni et al. [34], and the two competing models were assumed as equally 
probable to represent the measured data. Eleven populations of this 
algorithm, with 1000 particles each, were used in this work for the so
lution of the inverse problem. These numbers of populations and par
ticles, as well as the tolerances for the convergence of each population, 
were selected based on numerical experiments. 

The function used in step 5 of the algorithm of Toni et al. [34] (see 
Table 1), in order to verify the agreement between the measurements Y 
and the estimated responses Y*, was the Euclidean distance between 
these two vectors. The convergence tolerances were gradually reduced 
as the populations advanced, and the tolerance for the final population 
was set based on Morozov’s discrepancy principle [7]. The following 
vector of tolerances ε ¼ [4.2 � 10� 3, 1.1 � 10� 3, 8.5 � 10� 4, 6.8 � 10� 4, 
4.7 � 10� 4, 3.8 � 10� 4, 3.0 � 10� 4, 2.1 � 10� 4, 1.3 � 10� 4, 8.5 � 10- 5, 
6.4 � 10� 5] m was used as the convergence criterion. For each test-case 
examined in this work, the inverse problem was solved at least four 
times, with different sets of synthetic measurements, in order to examine 
possible discrepancies in the obtained results. The inverse problem so
lution was not sensitive to the set of synthetic measurements and the 
results of one single run of the algorithm of Toni et al. [34] are presented 
below. 

We consider first a case where the synthetic measurements were 
generated with model 1. Fig. 5 presents the numbers of particles selected 
for each model as the populations evolved. This figure shows that model 
1 was correctly the only one selected from population 8 onwards. 
Despite that the correct model has been the only one selected at popu
lation 8, additional populations were required to improve the calibra
tion of the model parameters. 

The histogram of the parameters for model 1 at the final population 
are shown by Fig. 6. The histograms for the two parameters of model 1 

exhibit small variances, despite the large intervals initially assigned by 
their uniform priors (see Table 4). The mean values for each parameter 
and their 95% credibility intervals (obtained from the 2.5% and 97.5% 
quantiles) are given by Table 6. Although these estimated mean values 
are quite different from the exact ones used to generate the synthetic 
measurements (see Table 3), the agreement between estimated and 
measured transient positions of the necrosis front is very good. Such a 
fact is demonstrated by Fig. 7, which presents the synthetic measure
ments and the transient front positions estimated with the mean values 
of the parameters given by Table 6. Fig. 7 shows that the estimated front 
agrees with the measurements within their related uncertainties. 

For the case examined above, the ABC algorithm of Toni et al. [34] 
was capable of selecting the correct model, but the estimated mean 
parameters were quite far from the exact values used to generate the 
synthetic measurements. Therefore, these results reveal that multiple 
sets of parameters can represent the measured data with model 1, within 
the uniform priors with large variances used for this case (see Table 4). 
On the other hand, the ABC algorithm can simultaneously select the 
model and estimate the correct parameter values if priors with smaller 
variances are used for the model parameters. In order to illustrate this 
behavior, we now consider a case in which the priors for the parameters 
of model 1 are given by U(20,50) and U(200,250) kJ/mol for κ and Ea, 
respectively, instead of those presented by Table 4. For this case, the 
priors for the parameters of model 2 are still given by Table 4 and the 
two models are considered equally probable. Such as for the case above, 
model 1, which was used to generate the synthetic measurements, was 
correctly the only one selected from population 8 onwards. The statistics 
obtained for the parameters of model 1 at the final population are pre
sented by Table 7. This table shows that the estimated means are now in 
excellent agreement with the values used to generate the synthetic 
measurements (see Table 3) and that the estimated parameters exhibit 
small variances. As expected, the agreement between synthetic mea
surements and the necrosis front positions obtained with the mean 
parameter values is excellent, as revealed by Fig. 8. 

Figs. 7 and 8 reveal that values reported in the literature for the 
parameters of model 1 need to be used with great caution, since different 
sets of parameter values may result with the same qualitative thermal 
damage. However, an analysis of the residuals can provide additional 
information regarding which set of parameter values is more appro
priate to represent the measured data [1,8,25,30]. Residuals are defined 
by the difference between the measurements and the dependent vari
ables simulated with the selected model and the estimated parameters. 
Residuals are expected to be small and with a random behavior, if the 
model selection and model calibration are adequate. Otherwise, if the 
residuals are large or exhibit a specific trend (signature), either the 
model or the parameter values do not appropriately represent the 
measured data [1,8,25,30]. Fig. 9 presents the residuals for the results of 
Figs. 7 and 8, that is, for the synthetic measurements generated with 
model 1 and the parameter priors with large and small variances, 
respectively. Although Approximate Bayesian Computation does not 
rely on the actual modeling of the measurement errors, since the like
lihood is not used for the model selection/calibration, Fig. 9 shows that 
the residuals obtained with the priors with small variances (see also 
Table 7 and Fig. 8) are small and exhibit a random behavior centered at 
the null value. On the other hand, the residuals obtained with the priors 
with large variances (see also Table 6 and Fig. 7), which resulted in 
estimated parameters quite different from the exact ones, clearly in
crease from negative to positive values as time increases. The uncorre
lated behavior of the residuals obtained with the priors with small 
variances indicate that the model selection/calibration was appropriate 
for this case, as opposed to the correlated residuals obtained with priors 
with large variances. 

The ABC-SMC algorithm of Toni et al. [34] naturally provides a 
framework for uncertainty quantification of the inverse problem solu
tion, since the particles at the final population represent samples of the 
approximate posterior distribution for the model parameters. These 

Table 3 
Exact values of the parameters for the competing thermal damage models.  

Model Parameter Value [45] 

1 κ 35 
Ea [kJ/mol] 231.8 

2 α [s� 1] 0.0049 
β 215.64 
γ [K] 70031  

Table 4 
Priors for the parameters of each model.  

Model Parameter Prior Reference 

1 κ U(20,130) [61] 
Ea [kJ/mol] U(200,800) 

2 α [s� 1] U(0.001,0.010) [45] 
β U(150,300) 
γ [K] U(60000,80000)  
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samples were then used here to compute the necrosis front position in
side the domain at the final time. The 1000 front positions computed 
with model 1, by using the parameter values given by each of the par
ticles at the final population of the algorithm, are shown by the light 
blue lines in Fig. 10. These curves were obtained for the case with small 

variances in the prior. The exact necrosis front, obtained with the 
parameter values given by Table 3 for model 1, is also shown in this 
figure. Fig. 10 reveals that the front position at the final time has a small 
variance and that the exact position falls within the related uncertainties 
of the numerical simulations. 

Fig. 2. Temperature variation at the heated surface (z ¼ H) for three distinct radial positions by sampling the thermal damage parameters. Model 1: (a) κ; (b) Ea; 
Model 2: (c) α; (d) β; (e) γ. 
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We now consider a case where the synthetic measurements were 
obtained with model 2, using the parameter values presented by Table 3. 
For the results presented below, the priors are given by Table 4. Such as 
for the cases presented above, the ABC-SMC algorithm of Toni et al. [34] 
is capable of selecting the correct model in few populations, as shown by 
Fig. 11. The histograms of the model parameters at the final population, 

presented by Fig. 12, exhibit Gaussian behaviors, centered at mean 
values quite close to the exact parameter values and with small vari
ances. This behavior is different from that observed with the other cases 
where the measurements were obtained with model 1. The means and 
95% credibility intervals for the estimated parameters of model 2 are 
presented by Table 8. 

Fig. 3. Thermal damage variation at the heated surface (z ¼ H) for r ¼ 0.75 mm by sampling the thermal damage parameters. Model 1: (a) κ; (b) Ea; Model 2: (c) α; 
(d) β; (e) γ. 
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The comparison between the measurements and the estimated 
transient necrosis front, which was obtained with the mean parameter 
values given by Table 8, is presented by Fig. 13 for the present case. An 
analysis of this figure reveals an excellent agreement between the esti
mated transient front positions and the measurements. The residuals for 

this case are not presented here for the sake of brevity, but they are small 
and uncorrelated. The simulation under uncertainty of the front position 
at the final time, which was obtained with the parameter values corre
sponding to the particles at the final population of the algorithm, is 
presented by Fig. 14. This figure shows that the exact necrosis front at 

Fig. 4. Reduced sensitivity coefficients for the parameters of. model 1 (a) and model 2 (b).  
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the final time falls within the curves obtained with the particles for the 
parameters of model 2. These 1000 curves exhibit small variances. 

The inverse analysis of model selection and model calibration of 
thermal damage to tissues was also performed with synthetic intrusive 
measurements of the necrosis front at the final time. However, the al
gorithm developed by Toni et al. [34], which was used in this work, was 
not capable of selecting the model used to generate the synthetic mea
surements in this case, and final populations exhibited particles of both 
models. 

5. Conclusions 

The method used for the simultaneous model selection and param
eter estimation of the thermal damage in heating processes of biological 

tissues was the algorithm of Approximate Bayesian Computation (ABC) 
developed by Toni et al. [34]. The case considered here involved the 
heating of a biological tissue with 65% of water and 35% of protein, with 
a laser of 10 W of power and 2 mm of beam diameter. In order to avoid 
an inverse crime, the solution of the inverse problem was obtained with 
a mesh less refined than that used to generate the synthetic measure
ments. Two models of thermal damage were analyzed: Arrhenius 
formulation and two-state model. 

A sensitivity analysis revealed that the temperature at the heated 
surface is not affected by the models examined in this work and by their 
parameters. Therefore, the simulations were performed considering 
synthetic non-intrusive measurements of the transient position of the 
necrosis front at the heated surface. The synthetic measurements were 
generated with either one of the two models, with reference values for 
the parameters obtained from the literature for PC-3 prostate cancer 
cells. The measurements were Gaussian, with zero means and standard 

Table 5 
Transition kernels for the parameters of each model.  

Model Parameter Transition Kernel 

1 κ U(-3,3) 
Ea [kJ/mol] U(-10,10) 

2 α [s� 1] U(-0.001,0.001) 
β U(-3,3) 
γ [K] U(-500,500)  

Fig. 5. Number of accepted particles at each population –. measurements generated with model 1.  

Fig. 6. Histograms for the parameters of Model 1 –. measurements generated with model 1: (a) κ (b) Ea.  

Table 6 
Statistics for the parameters of model 1 – measurements generated with model 1.  

Parameters Mean Standard deviation Quantile 2.5% Quantile 97.5% 

κ 82.3 0.3 81.9 82.8 
Ea [kJ/mol] 566 2 562 568  
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deviations given by 1% of the exact transient front positions at the 
heated surface. For the solution of the inverse problem, both models 
were considered as equally probable, with uniform priors. The priors 
assumed for the model parameters were also uniform. 

Despite the large uncertainties represented by the priors for the 
models and their corresponding parameters, the model used to generate 
the synthetic measurements was correctly selected for all test cases 

examined in this work. The model parameters were properly estimated 
when the measurements were generated with the two-state model. On 
the other hand, when the synthetic measurements were generated with 
the Arrhenius thermal damage model, the model parameters could only 
be correctly retrieved with priors of small variances. In fact, for a case 
which involved priors that encompassed values reported in the literature 
for different cell lines, parameters of the Arrhenius thermal damage 
model were not correctly estimated, despite that the agreement between 
estimated and measured necrosis front positions was qualitatively good. 
Therefore, parameter values reported in the literature for the Arrhenius 
thermal damage model need to be used with great caution, since 
different sets of values may result on the same thermal damage. The ABC 
algorithm used in this work provided the samples of the approximate 
posterior distribution of the model parameters at the final population, 
which were used for uncertainty quantification of the thermally affected 
region within the domain at the final time. The necrosis front positions 
predicted with a Monte Carlo simulation exhibited small variances and 
were centered around the exact values. 

Fig. 7. Comparison between the synthetic data and the estimations 
–measurements generated with model 1. 

Table 7 
Statistics for the parameters of model 1 - measurements generated with model 1 
and priors with small variances.  

Parameters Mean Standard deviation Quantile 2.5% Quantile 97.5% 

κ 35.0 0.8 33.5 36.2 
Ea [kJ/mol] 232 6 221 240  

Fig. 8. Comparison between the synthetic data and the estimations –. mea
surements generated with model 1 and parameter priors with small variances. 

Fig. 9. Residuals obtained with priors of large and small variances – mea
surements generated with model 1. 

Fig. 10. Prediction of the necrosis front at the final time – measurements 
generated with model 1 and parameter priors with small variances. 
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Fig. 11. Number of accepted particles at each population –. measurements generated with model 2.  

Fig. 12. Histograms for the parameters of model 2 –. measurements generated with model 2: (a) α; (b) β, (c) γ.  
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