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ABSTRACT

An inverse parameter estimation methodology for non-destructive
simultaneous estimation of spatially varying thermal conductiv-
ity and specific heat in arbitrary 2D solid objects was developed
that requires only boundary measurements of temperature. The
spatial distributions of the two physical properties were spec-
ified by analytic functions involving unknown parameters that
need to be determined by minimizing the normalized sum of the
least-squares differences between measured and calculated values
of the boundary temperatures. The minimization was performed
using a combination of particle swarm optimization and the Broy-
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den-Fletcher-Goldfarb—Shanno (BFGS) optimization algorithm and
a hybrid optimization algorithm. Computing time was significantly
reduced for the entire inverse parameter identification process by
utilizing a metamodel created by an analytical response surface sup-
ported by an affordable number of high fidelity numerical solutions
of the temperature fields for different guesses of the values of the
parameters. The methodology was shown to accurately simultane-
ously predict linear and nonlinear spatial distributions of thermal
conductivity and specific heat in arbitrarily shaped multiply con-
nected 2D objects even in situations with noisy temperature mea-
surements, thus proving that it is robust.

1. Introduction

When dealing with arbitrarily shaped solid objects having functionally graded proper-
ties, there are two typical situations. The first situation is when trying to learn what
materials were used in an existing non-isotropic object. Specifically, the objective is to non-
destructively determine the actual spatial variation of the physical properties throughout
a given solid object. The second situation is pertinent to the design of the proper spatial
distribution of the materials needed to create a functionally graded object (e.g. created
by additive manufacturing processes) with a specified geometry and specified (desired)
variations of the field properties on the surface of the object. This paper presents an
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inverse approach for the simultaneous determination of several spatially varying material
properties.

For example, physical properties such as electric permittivity, magnetic permeability,
specific heat and thermal conductivity influence the spatial variation of the field variable,
such as electric, magnetic and temperature fields, respectively. Determining such spa-
tially varying physical properties when they vary from point-to-point (such as it can be
accomplished in the additive manufacturing) would create a problem with potentially an
extremely large number of unknowns which would be computationally intractable.

This inverse problem is more tractable if the physical properties are assumed to vary
in space according to specified analytic functions defined by a finite number of unknown
parameters and the spatial coordinates. This type of inverse problem can then be solved by
minimizing the sum of properly scaled squared differences between the computed bound-
ary values of the field variable (or its normal derivatives) obtained when using the assumed
distribution of parameters defining material properties and the measured values of the field
variable (or its normal derivatives) on the boundaries of the object. This effectively changes
a problem to an inverse parameter identification problem. In this approach, the initially
guessed values of the parameters defining the spatial distributions of material properties
are iteratively updated until the sum of properly scaled squares of differences is below a
specific threshold.

There are several methodologies for determining spatial variations of physical prop-
erties that are based on steady-state mathematical models. The steepest descent method
was used by Chen and Seinfeld [1] to estimated diffusivity in the heat equation. Kita-
mura and Nakagiri [2] discussed the identifiably of spatially varying parameters in a 1D
parabolic partial differential equation. Authors in [3,4] discussed parameter identification
in distributed system. Flach and Ozisik [5] and Huang and Ozisik [6] inversely estimated
the thermal conductivity and heat capacity. Rodrigues et al. [7] and Huang and Huang
[8] both estimated the diffusion coefficient in 1D diffusion problem and biological tis-
sue, respectively. Naviera-Cotta et al. [9] estimated the thermal conductivity and thermal
capacity within the Bayesian framework. The main drawbacks of Bayesian methods are
that the methods are sequential in nature and difficult to parallelize. The technique used
here can be easily parallelized by solving the forward problem in parallel. Therefore, the
inverse problem can be solved much quicker using the minimization technique, rather than
Bayesian approaches. Most of these inverse problems are ill-posed. Methods for their solu-
tion are often problem-specific, iterative, and requiring use of sophisticated regularization
algorithms which are not general and not sufficiently robust.

The methodology presented herein uses a more general, robust and computation-
ally efficient approach based on a combination of a field analysis algorithm (using finite
volumes, finite elements, etc.), a metamodel and an accurate and robust minimization
algorithm capable of avoiding local minima. Ozisik [10] has shown that the least square
approach to the numerical solution of the problem with appropriate choice of the mini-
mization algorithm is unaffected by the ill-conditioning of the problem.

This inverse parameter identification concept was previously used to estimate a single
spatially varying material property based on the solutions of a steady-state version of the
heat conduction equation [11,12] and multiple physical properties in nonlinear steady-
state solid mechanics [13]. It is here extended to simultaneously determining parameters
defining two spatially varying material properties: thermal conductivity and specific heat
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[14]. Notice that specific heat appears only in unsteady heat conduction. Both linear and
nonlinear distributions of these two properties were non-destructively simultaneously
estimated in a multiply connected 2D solid object.

2. Mathematical models and verification of software accuracy

The governing equation for transient heat conduction with spatially varying material prop-
erties, in case when convection, radiation and internal heat sources/sinks are neglected, can
be written as

AT
pCpgr =V e kVT) (1)

Here, p is the density, Cpis the specific heat, T is the temperature, t is the time, and k is the
thermal conductivity. Also, we assume that C, does not depend on time. Having a math-
ematical model, the question to answer becomes: Using only boundary values of the field
variable, T, or its normal derivatives on the boundary of the solid object, how can the spatial
distribution of the physical properties, C, and k, be determined simultaneously throughout
the object of a given shape and size?

This work solves the parameter estimation problem non-intrusively. The measured tem-
perature values are assumed to be obtained only on the surface through experiments (i.e.
infrared cameras, thermocouples). The solution algorithm used for the forward problem
does not affect the estimation algorithm as long as the solution algorithm is accurate. It
should be mentioned that the accuracy of the solver does affect the methodology. There-
fore, the forward problem can be solved with finite elements, boundary elements, finite
volume, finite difference, etc. Rather than writing yet another analysis code, it is much
simpler in a forward (analysis) problem to solve of Equation (1) using commercial software
(e.g. using COMSOL with UDF option [15]) for the specified initial and boundary condi-
tions and the known spatial distribution of the material properties C, and k. All domains
in this work were discretized using triangular T-3 elements.

In an inverse (design) problem, spatial variations of C, and k are not known and must be
determined non-destructively. This typically requires the values of the field variable, T, and
its normal derivatives to be known on the boundaries of the object at a number of time steps
during the time evolution of Equation (1). Simultaneously determining spatial variations
of several physical properties where some of them are important only in the physically
unsteady processes is an important problem that has not been widely researched.

The transient heat conduction problem was discretized using the finite element method.
This was done by multiplying Equation (1) with a test function, v, and integrating over the
domain, 2. The resulting equation becomes

oT
/ pCp—de:/ Ve (kVT)vdQ (2)
Q ot Q

The second term can be expanded using divergence theorem and Equation (2) can be
rewritten as

oT
/pCp—de=/ kaTofldS—/Vvo(kVT)dQ (3)
Q ot a0 Q
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Here, dSis the surface of the elementary control volume, d2. Representing the temperature
and test function as a linear combination of finite element basis functions such that

imax

T = Z [041% (4)
i=1

yields
[CHTY + [KIT) = {Ry)} (5)
Here,

Cji:/QpCp (/)jde (6)

Kij = / VU,‘ [ (k V(pj) dQ (7)

Q
Rq,j = / qsl)j dS (8)
Q2

where ¢ is the heat conduction flux on the surface, S. The test functions become zero at
the boundary nodes where Dirichlet condition is specified. Consequently, the first term on
the right side of Equation (3) is zero.

Accuracy of the COMSOL [15] finite element analysis software with UDF option was
validated against an analytical solution for a 2D, steady-state heat conduction problem
with spatially varying thermal conductivity on a square domain. Consider an arbitrary 2D
domain with the distribution of thermal conductivity specified as

k(x,y) = (A+x)(B+y) (9)

where parameters A and B are arbitrary constants. Then, the analytical solution for
the temperature field that satisfies the steady-state version of Equation (1) takes the

A 281 A 281

278
276

274

270
268

266

V¥ 265 V¥ 265

a) b) c)

Figure 1. Verification of software accuracy for spatial distribution of (a) thermal conductivity given by
Equation (9), (b) analytical temperature given by Equation (10), and (c) temperature calculated by COM-
SOL [20] for thermal conductivity specified by Equation (9) and analytical boundary conditions from
Equation (10).
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general form
T(x,y) = (A+x)?* — (B+y)* +273 (10)

Figure 1 shows the analytical and numerical solutions of the steady-state heat conduc-
tion equation on a square with x,y € [0, 2], subject to boundary conditions given by
Equation (10) where A = B = 1.0. It can be observed that the numerical solution created
by COMSOL produces an accurate solution.

3. Inverse problem solution methodology

The methodology utilized in this work minimizes the sum of properly normalized squared
difference between calculated and measured boundary values of T by iteratively adjusting
parameters in the analytic models for the spatial variations of C, and k. Let us refer to
the temperature or temperature gradient on the boundaries obtained from experiments or
analytical solution as ‘measured’ values. Then, let us refer to temperature or temperature
gradient on the boundaries obtained from the numerical solution of the forward (analysis)
problem with guessed values of the parameters defining the spatial distribution of thermal
conductivity and specific heat as ‘calculated’ values. Thus, the functional to be minimized
can be defined as

mefx Z Tcalc. _ Tmeas. 2
J = m Tm (11)
Trr}}eas. +¢

Here, ¢ is a very small positive number of the order 1.0E—16 in order to prevent division by
zero. The summation is performed over S, the boundary of the arbitrarily shaped domain,
and over mmax number of time-integration steps.

The optimizer iteratively modifies the values of parameters in the analytic expressions
for spatial variations of thermal conductivity (such as A and B in Equation (9)) and specific
heat in the forward problem during minimization of the J functional (Equation (11)). In
most inverse problems dealing with parameter identification, the forward problem needs
to be solved many times, each time for different guessed values of parameters, until the
algorithm converges. For this reason, it is quite attractive to replace the high fidelity finite
element analysis with a slightly less accurate, but much faster surrogate model. The surro-
gate model used in this work was a response surface (a multi-dimensional interpolation)
for the J functional, based on Multi-Quadrics Radial Basis Functions [16]. The response
surface of the ] functional was supported by a relatively small number of ] values calculated
using the high fidelity COMSOL software [15]. These ] values corresponded to the sets of
parameters distributed uniformly by Sobol’s quasi-linear sequence generation algorithm
[17] in the parameters search space.

Figure 2 shows the workflow of the complete inverse problem methodology imple-
mented. First, the response surface was constructed using values obtained from COMSOL.
The constructed surrogate model was then coupled with the optimizer to minimize
the J functional. The minimization of Equation (11) was performed using a hybrid of
particle swarm and Broyden-Fletcher-Goldfarb-Shanno (BFGS) single-objective opti-
mization algorithms [16,18]. The BFGS algorithm logic can be described as follows.
Given an initial vector of the design variables, xo (parameters such as A and B) the
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- Constructing:
I Heat Transfer Analysis Response Surface Metamodel
: (COMSOL) — |  Construction !
[} i 1
Guess k and Cp Solve Forward Compute J
distribution Problem Functional

Optimization

Figure 2. Flow chart of the inverse problem methodology.

corresponding initial value of the objective function, f (which in our case is the func-
tional, J) and an approximate initial Hessian matrix By, the BFGS algorithm progresses as
follows:

(1) Evaluate the search direction py by solving Bixp, = —Vf(xx)

(2) Update x4 = xx + axp; where o is an acceptable step size found using line search
(3) Setsi = apy

(4) yr = Vf(xer1) — Vf(xr)

T T
YiYe  Brsks; Bk
(5) Bk+1:Bk+ Tk - T k
Y Sk 8; Brsk

The J functional converged to its global minimum (theoretically, it should be zero) when
the converged values of the parameters in the analytical models for thermal conductivity
and specific heat create such values for calculated temperatures at the boundaries that are
the same as the ‘measured’ values the boundaries at each of the mmax time steps.

It should be pointed out that use of classical gradient-based minimization search
algorithms alone (such as Levenberg-Marquardt algorithm [16]) could be highly unre-
liable. These minimization algorithms are known to converge to the nearest feasible local
minimum [19] instead of the global minimum, especially in the nonlinear inverse param-
eter identification problems where topology of the functional J in Equation (11) in the
parameter space almost certainly has a number of local minima.

All computations were performed on a single thread of Intel Xeon CPU
E5-4620v2@2.60 GHz with 256GB of RAM. Each transient COMSOL solution of Equation
(1) took approximately 15 s, where mmax = 11 time steps were used in each of the three
cases. The same non-structured computational grid of approximately 30,000 triangular
finite elements was used for each analysis. The response surface generation (including the
time for 40-90 high fidelity finite element solutions) consumed 600-1300 s. The optimizer,
when coupled with the response surface, took approximately 50-60 s for each case to min-
imize the functional J in Equation (11). Thus, total computing time spent on solving each
of the three cases presented in this paper was between 650 and 1400 s.
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4. Numerical results for arbitrary 2D geometry

The proposed inverse problem methodology was validated for several cases consider-
ing linear and nonlinear spatial distributions of material properties in an arbitrary 2D
geometry (Table 1).

Table 2 shows the thermal boundary conditions applied to each of the four boundaries
shown in Figure 3. The boundary conditions were kept the same for each of the three cases
presented in this paper. All heat fluxes in this work were considered to be inwards and
normal to the surface.

As previously stated, the distribution of thermal conductivity and specific heat was
assumed to be defined according to some analytical prescribed functions. The assumed

Table 1. Geometry definition of a multiply connected 2D solid object
considered in this work.

Equation # Cells on boundary
Boundary 1 r =ro — Acos(30), where 250
rnn=1,A=0200<60<2r7
Boundary 2 x=047’ + y—027’ =1 198
y 0.2 0.2 N
—0.17? 057
Boundary 3 X + yro =1 346
0.4 0.3
057" —027*
Boundary 4 X+t + y =1 213
0.1 0.3

Table 2. Thermal boundary conditions applied to
the multiply connected 2D geometry in Figure 3.

Boundary conditions

Boundary #1 T = 353K
Boundary #2 q = 100 k(xy)
Boundary #3 g = 50k(xy)
Boundary #4 q = 125k(xy)
Boundary #4
\ <+—— Boundary #1

|
, |
‘ I «.— Boundary #2
X

|
|
|

«— Boundary #3

Figure 3. Multiply connected 2D solid object geometry defined using equations in Table 1.
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functions in this study were functions most commonly used to test optimization algorithms
[20]. These functions are typically difficult to converge to as they are highly nonlinear,
highly multimodal and feature several local minima.

4.1. Case 1: estimation of bilinear distribution of k(x,y) and Cp,(x,y) in arbitrary 2D
objects

Ability of this methodology was first tested assuming bilinear variations of thermal con-
ductivity, Equation (12), and specific heat, Equation (13). In order to be consistent with
units used, the right-hand side of Equation (12) should be multiplied with units of an arbi-
trary reference value of k(x,y) divided with units of length squared. For simplicity, the value
of the reference thermal conductivity can be taken as one. Similar procedure should be fol-
lowed with the right-hand side of Equation (13) when dealing with units. This means that
the optimizer needs to find values of four parameters (A, B, Ac,, Bc,) that minimize the
J functional in Equation (11):

k(x,y) = (Ax +x)(Bx +») (12)

Cp(x,3) = (Ac, +x)(Bc, +7) (13)

The minimization algorithm was initialized with the particle swarm algorithm. A total of
100 swarm member were used where each swarm member was randomly initialized to lie
within the bounds. Table 3 shows that the domain of search is relatively large, showing
that the minimization technique can efficiently converge even with large allowable search
region. If the analytical values fall outside of the bounds, the minimization algorithm will
converge to the best possible values within those specified bounds.

The response surface for this test case was constructed [16] using 40 COMSOL anal-
yses solutions of Equation (1). In reference [20], where the same analysis code was used,
the relative error was approximately 0.012%, thus, certifying that COMSOL analysis with
UDF option provides highly accurate solutions. Each of the solutions was obtained with
different values of the four parameters. The response surface was then coupled with the
modeFRONTIER optimizer [18]. Table 3 shows the exact values of the four parameters and
the converged values of the parameters that define the thermal conductivity and specific
heat distributions in Case 1. It is evident from Table 3 and Figure 4 that the optimizer was
able to converge to the exact values of the four parameters, thereby accurately determining
the spatial variations of the two material properties.

Table 3. Case 1: search ranges for each of the four parameters,
exactand converged values of the parameters defining thermal
conductivity and specific heat.

Ak Bk Ag, B,
Min 0.0 0.0 0.0 0.0
Max 20.0 20.0 2.0 2.0
Exact 0.6 1.5 0.04 0.06
Estimated 0.6 1.5 0.04 0.06

Note: Functional J converged to value of less than 104
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a) b)

Figure 4. Case 1: distribution of (a) thermal conductivity and (b) specific heat.

4.2. Case 2: estimation of nonlinear distribution of k(x,y) and C, (x,y) in arbitrary
2D objects

The proposed methodology was then tested for highly nonlinear spatial distributions of
material properties. Thermal conductivity and specific heat were defined by the Matyas
[20] function, Equation (14), and the McCormick [20] function, Equation (15), respec-
tively:

k(x,y) = Ax(x* + y*) — Brxy (14)

Cp(x,y) = sin(Ac, (x + »)) + B¢, (x — y)* — Cc,x + D¢,y + 1 (15)

Thus, the total of six parameters (A, Bk, Ac,» Be,» Ce,» DCP) needed to be identified in Case
2 that minimize the J functional.

The response surface for this test case was constructed using 60 COMSOL analyses
solutions, each analysis performed with different values of the six parameters. That is,
the unsteady heat conduction equation was numerically integrated 60 times, each time
with different random guesses for the six parameters that were determined using a quasi-
random sequence generation algorithm of Sobol [17]. Using these 60 calculated values
of the J functional, a six-dimensional response surface was generated using a radial basis
function formulation.

Table 4 shows the exact and the optimizer converged values of the six parameters. It can
be seen that even for a nonlinear spatial distribution of thermal conductivity and specific
heat, this inverse parameter identification methodology was able to converge to the exact
values of the six parameters.

Figure 5 shows the nonlinear distribution of thermal conductivity and specific heat in
Case 2.

Table 4. Case 2: search ranges for each of the six parameters, exact and converged values of the
parameters defining thermal conductivity and specific heat.

Ak Bk A, B, Ce, De,
Min 0.0 —50.0 0.0 0.0 -2.0 0.0
Max 20.0 —10.0 20 2.0 0.0 2.0
Exact 13.6 —43.2 0.3 0.112 —0.012 0.021
Estimated 13.6 —43.2 0.3 0.112 —0.012 0.021

Note: Functional J converged to value of less than 10~4.
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A212

21

19
18
1.7

1.6

Vv 151
a) b)

Figure 5. Case 2: distribution of calculated: (a) thermal conductivity and (b) specific heat.

4.3. Case 3: estimation of nonlinear distribution of k(x,y) and Cy(x,y) with noisy
measurements

In the previous sections, the inverse parameter identification methodology was validated
for the linear and nonlinear spatial distribution of material properties. The ‘measured’ data,
in the previous cases, was synthesized using COMSOL software. This does not accurately
represent the real-life phenomenon. The ‘measured’ data are usually obtained through
experimentation and therefore contain a certain level of noise. To accurately model such
stochastic behaviour, noise must be added to the synthetic ‘measured’ data obtained using
COMSOL. This was performed by employing the white Gaussian noise model to add noise
[21], of varying intensity, to the ‘measured’ data.

In Case 3, the distribution of thermal conductivity was assumed to follow the gener-
alized Three-Hump Camel Function [20], Equation (16), while specific heat was again
assumed to follow the generalized McCormick function [20], Equation (15):

k(x,y) = Apx? — Bix* + Cex® + Dyxy + Eky2 (16)

Therefore, the optimizer needed to find values of the nine parameters that minimize the
J functional. The ‘measured’ boundary temperature values were stochastically perturbed
(with zero mean) by a noise-to-signal ratio of 1%, 2% and 3%. In reality, the actual Type ], K,
E, and T thermocouples and resistance temperature detectors (RTDs) all have a maximum
error of approximately 1% [22].

The nine-dimensional response surface was generated using 90 COMSOL analyses solu-
tions corresponding to 90 sets of the nine parameters the values of which were determined
using Sobol’s algorithm [17]. Because the objective function space in Case 3 was highly
nonlinear due to the noisy ‘measurements’, a more robust hybrid optimizer [23,24] with
an automatic switching logic among constituent single-objective optimization algorithms
was needed to minimize J functional reliably.

Table 5 shows the exact values and converged calculated values of the nine parameters
for various levels of measurement errors. It can be seen that when the measurement noise
increases, the optimizer is still able to converge to correct parameters.

Figures 6 and 7 show the distribution of thermal conductivity and specific heat respec-
tively in Case 3. It can be seen that even for higher values of boundary temperature
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Table 5. Case 3: search ranges for each of the nine parameters, exact and converged values of the
parameters defining thermal conductivity and specific heat for various specified noise levels in the
‘measurements’ of boundary temperatures.

Min Ak By Ck Dy Ex A, B, Ce, De,
Min 0.0 -5.0 0.0 0.0 0.0 0.0 0.0 -20 0.0
Max 20.0 0.0 5.0 20.0 20.0 2.0 2.0 0.0 2.0
Exact 20 —1.05 0.1667 1.00 1.00 0.30 0.112 —0.012 0.021
Estimated (0% error) 2.0 —1.05 0.1667 1.00 1.00 0.30 0.112 —0.012 0.021
Estimated (1% error) 2.0 —1.04 0.1668 0.99 0.99 0.30 0.112 —0.012 0.021
Estimated (2% error) 2.0 —1.04 0.1668 1.00 1.00 0.30 0.112 —0.012 0.021
Estimated (3% error) 2.0 —1.03 0.175 0.93 1.01 0.30 0.109 —0.030 0.027
Note: Functional J converged to value of less than 10~4.
A28 A 824
80 80
70 70
60 60
50 50
40 40
30 30
20 20
10 10
V225 v 223
a)
AB25 A833
80 80
70 70
60 60
50 50
40 40
30 30
20 20
10 10
v 224 V222
9 d

Figure 6. Case 3: spatial distribution of thermal conductivity obtained when boundary temperature
measurement noise levels were (a) 0%, (b) 1%, (c) 2%, and (d) 3%.

measurement noise levels, both material properties were predicted accurately using this
inverse parameter estimation methodology.

Figure 8 shows the relative error distributions for thermal conductivity and specific heat
between their exact and converged values. It can be seen that the maximum local relative
error is less than 1% even for large errors in the ‘measured’ boundary values of temperature,
confirming that this inverse parameter identification method is robust and accurate.
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A212 A2
2.1 21
2 2
1.9 19
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L7 17
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Figure 7. Case 3: spatial distribution of specific heat obtained when boundary temperature measure-

ment noise levels were (a) 0%, 1%, 2% and (b) 3%.

A 0.424
0.4
0.3
0.2

||

0.1

v 0.0

b)

A, A,
I 04 0.2
10.1
%‘ 0.1

o 0]

v v

c) d)

Figure 8. Case 3:spatial distribution of relative error in percent between exact thermal conductivity and
converged conductivity with (a) 1% noise, (b) 2% noise, and (c) 3% noise and (d) relative error between
exact specific heat and converged specific heat with 3% measurement noise.
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Figure 9. Effects of number of measurement points on (a) coefficients of thermal conductivity, (b)
coefficient of heat capacity, and (c) the J functional.

It should be pointed out that the key factors contributing to this successful methodology
are the use of a highly robust and accurate hybrid single-objective optimization algorithm
[23,24], use of a highly accurate multi-dimensional response surface [16], and the fact that
we used a priori assumed general analytical spatial variations of thermal conductivity and
specific heat.

5. Effects of measurement points on convergence

In the previous three sections, it was assumed that the temperature measurements are avail-
able at every boundary node. This is only true when using an infrared thermography or
other thermal imaging techniques, but not always true when using sensors or thermocou-
ples. If only point-measurement apparatus is available, then the effects on the number of
temperature measurements on the convergence of the inverse problem solution method
should be investigated. For this purpose, thermal conductivity, heat capacity and bound-
ary conditions were assumed to follow the distribution defined in Case 3. A ‘measurement
error’ with a noise-to-signal ratio of 3% was added to the boundary values (Table 2). The
measurement points were randomly distributed on the boundaries of the geometry.

Figure 9 shows the effect of the number of boundary measurement points on the conver-
gence of the material coefficients. It can be seen from Figure 9(a) and (b) that the relative
error in the calculated coefficients is relatively low when using at least 40% of all bound-
ary measurements. The general trend in Figure 9(a) and (b) indicates that a larger number
of measurements results in better convergence. Figure 9(c) shows how the analytical and
converged J functional (Equation (11)) varies with the number of measurements.

Here, the analytical value of ] functional was obtained by solving Equation (1), while
the converged value of the ] functional was obtained from the response surface. It can
be seen that by increasing the number of measuring points results in a higher J func-
tional. This is because of the additional noise/error that is introduced by each additional
sensor/thermocouple.

6. Conclusions

The methodology for estimating parameters in analytic models for the spatial distribution
of thermal conductivity was extended to also estimate parameters in analytic models for
the spatial distribution of specific heat within arbitrarily shaped multiply connected 2D
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solid objects. The material property can be non-destructively estimated by minimizing
the sum of properly normalized squared differences between the calculated and mea-
sured boundary temperature on the surfaces of the object. The numerical integration of
the governing parabolic partial differential equation for unsteady temperature evolution
was performed using the finite element method based COMSOL software with the UDF
capability. Accuracy of the steady-state temperature field was validated against an analytic
solution.

An efficient surrogate model in the form of a multi-dimensional response surface sup-
ported by a relatively small number of the high fidelity finite element solutions was created
to facilitate very fast approximate solutions of the analysis problem, thereby significantly
reducing computing time for the minimization algorithm to converge. This inverse param-
eter identification method demonstrated promising results in being able to accurately and
simultaneously determine linear and highly nonlinear spatial distributions of these two
thermal properties. This method has also proven to be stable, thus, robust and accurate
even when the boundary temperature measurements contained significant noise. Effects
of the number of measurement points on convergence were also demonstrated.

The main requirements for the success of this inverse parameter estimation algorithm
are the use of a highly reliable and accurate hybrid single-objective minimization algorithm
and the use of as accurate as possible response surface generation algorithm.
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