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The reliability of a model is its accuracy in predicting the physical phenomena. In this paper, the robust-
ness of a model of heat and mass transfer in a porous material is evaluated by comparing the numerical
predictions with experimental observations. An experimental facility composed of an enclosure made
with spruce CLT panels is used. An increase of temperature is applied in the inside air volume to force
the heat transfer from the inner to the outer surfaces. Sensors inside the material enables to have exper-
imental observations of the physical phenomena. Before bench-marking the numerical model, a first set
of experimental data is used to reduce the two major source of uncertainties in the model. Indeed, the
first source arises from surface heat and mass transfer coefficients, usually determined by empirical cor-
relations. The second comes the thermal conductivity of the material which is defined through standard
methods as invariant for the three layers of the spruce panels. To overcome this issue, a set of seven
uncertain parameters are estimated using an hybrid optimizer after demonstrating their theoretical
and practical identifiability. Then, the reliability of the numerical model, based on the DuFort–Frankel
explicit scheme, is evaluated by comparison to a second set of experimental data obtained in another wall
of the enclosure. A very satisfactory agreement is remarked showing the accuracy of the model to predict
the physical phenomena in this hygroscopic porous material.

� 2019 Elsevier Ltd. All rights reserved.
1. Introduction

Due to their environmental impacts, building energy efficiency
is a crucial challenge for designers and engineers. It requires an
accurate prediction of the heat losses through the walls. Moreover,
moisture is an important factor since it impacts performance
through latent heat exchange. In this context, several models have
been proposed in the literature to predict the physical phenomena
of heat and mass transfer in porous material. The governing equa-
tions of the mathematical model have been proposed in the early
work of Luikov [1]. From this mathematical model, numerical mod-
els have been proposed to compute the main fields with a recent
overview proposed in [2].

An important issue in elaborating model is their reliability to
represent accurately and with confidence the physical phenomena.
The robustness can be assessed by comparing the numerical pre-
dictions to experimental observations. The latter can be obtained
by submitting a porous material to forcing conditions at its bound-
aries. Sensors are settled inside the material to generate local
experimental measurements of the fields. On the other hand, the
model is defined based on the heat and mass conservation equa-
tion combined with boundary conditions. The reliability of the
model needs to be checked for Robin-type boundary conditions
since there are used in practical applications to represent the phys-
ical phenomena at the interface between the material and the
ambient air.

In the literature, various work aims at proposing such compar-
isons. Nevertheless, two important sources of uncertainties can be
remarked in the attempt of validating the robustness of the model.
First, the modeling at the interface between the porous material
and the ambient air is identified as a source of error. More pre-
cisely, the values of the surface heat and mass transfer coefficients
are always uncertain. In [3] or [4], the reliability is evaluated con-
sidering a configuration with Dirichlet boundary conditions to
avoid this uncertainty. In [5], the coefficients are settled using
the empirical correlation proposed in [6]. In [7,8], the coefficients
are guessed by changing randomly their values. In [9,10], the so-
called Sherwood number is employed to compute the surface coef-
ficients using the Reynolds number. This approach requires costly
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Nomenclature and symbols

Latin letters, physical parameters
cm mass storage coefficient kg=ðm3 � PaÞ� �
cm;0; cm;1; cm;2 parameter of the mass storage coefficient func-

tion kg=m3
� �

cmq mass storage coefficient due to temperature
kg=ðm3 � KÞ� �

c q; c q;0; c q;1; c q; 2; c q;3 heat storage coefficient J=ðm3 � KÞ� �
c v ; c l; c a specific heat J=ðkg � KÞ½ �
hm surface mass transfer coefficient s =m½ �
hq surface heat transfer coefficient W=ðm2 � KÞ� �
km; km;0; km;1 mass permeability coefficient s½ �
kmq thermo-diffusion coefficient kg=ðm � s � KÞ½ �
kq; kq; 0; i; i ¼ 1; 2; 3f g heat transfer coefficient W=ðm � KÞ½ �
kq; 1 parameter of the heat transfer coefficient function

W=ðm � K2Þ
h i

L length m½ �
P v ; P sat pressure Pa½ �
R v water vapor gas constant J=ðkg � KÞ½ �
r v ; r v ; 0 latent heat of evaporation J=kg½ �
T temperature K½ �
t; t f ; t cpu time s½ �
x space coordinate m½ �

Latin letters, dimensionless parameters
F; F u; F v Fisher information matrix [–]
J cost function [–]
pk unknown parameter [–]
R cpu computational time ratio [–]
u vapor pressure field [–]
v temperature field [–]

Greek letters, physical parameters
/ relative humidity ø½ �
q specific mass kg=m3

� �
x mass content kg=m3

� �
d x uncertainty on sensor location m½ �
rm; P uncertainty on vapor pressure due to sensor measure-

ment K½ �
r t; P uncertainty on vapor pressure due to sensor time re-

sponse K½ �
r x; P uncertainty on vapor pressure due to sensor location K½ �
rm; T uncertainty on temperature due to sensor measurement

K½ �
r t; T uncertainty on temperature due to sensor time response

K½ �

r x; T uncertainty on temperature due to sensor location K½ �
rm;/ uncertainty on relative humidity due to sensor mea-

surement [–]
Dx space discretisation parameter m½ �
Dt time discretisation parameter s½ �

Greek letters, dimensionless parameters
c coupling parameter of the heat transfer equation [–]
d coupling parameter of the mass transfer equation [–]
g coupling parameter of mass storage due to temperature

[–]
X p set of unknown parameters [–]
H sensitivity coefficient for temperature field [–]
K sensitivity coefficient for vapor pressure field [–]
W; Wu; W v determinant of Fisher matrix [–]
r variance [–]
� k estimator error on the identification of parameter pk [–]
e P v
r relative error for vapor pressure field [–]
e T
r relative error for temperature field [–]

k i; j i; h; l i; m i; i ¼ 1; 2; 3f g numerical model parameters [–]

Dimensionless numbers
Fo q

Fourier number for heat transfer [–]
Fom

Fourier number for mass transfer [–]
Bi Biot number [–]
Le Lewis number [–]
Le modified Lewis number [–]

Subscripts and superscripts
f final
m mass transfer
q heat transfer
mq coupled mass coefficient under heat process
L Left boundary x ¼ 0
R Right boundary x ¼ L
H dimensionless parameter
1 air ambient field
0 initial value at t ¼ 0
� estimated parameter
apr a priori parameter
num numerical solution
obs observation of the field
cpu computational time

The following symbols are used in the mathematical notation:

� = designates the equality between two scalar numbers. a ¼ b means that the scalars a and b are the same.

� :¼def stands for a definition. a :¼def b means that a is defined to be equal to b.
� � names the equivalence between two functions. f � g means that 8x 0 2 X x, we have f ðx 0 Þ ¼ g ðx 0 Þ, where X x stands for the
domain of existence of functions f and g.
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computational fluid dynamics. In [11,12], the coefficients are
guessed by performing a sensitivity analysis on the prediction of
the physical phenomena.

The second source of discrepancies in the model reliability
arises from the determination through the standards methods of
the so-called material properties. The knowledge of these parame-
ters is crucial since there are involved in the heat and mass transfer
processes [13]. The standards methods are based on steady-state
measurement and are particularly questionable for hygroscopic
materials [14]. Furthermore, there are not appropriate for materi-
als which are intrinsically composed of several layers such as
spruce wood panels. Indeed, according to the standard method
(ISO 8302), the thermal conductivity of spruce panels is assumed
as invariant inside the material.

Thus, the aim of this work is to evaluate the reliability of a
model of heat and mass transfer in a hygroscopic material,



J. Berger et al. / International Journal of Heat and Mass Transfer 142 (2019) 118258 3
reducing the uncertainties due to the material properties and to
the heat and mass surface transfer coefficients. The measurements
are obtained using an experimental set-up composed of enclo-
sures, which panels are based on three spruce layers. The fields
of the inside and outside air volumes can be controlled as forcing
conditions. Sensors are settled in two different walls to obtained
experimental measurements of temperature and vapor pressure.
To avoid the mentioned sources of uncertainties, a first set of
experimental observations is used to determine the uncertain
parameters in the models, namely the heat and mass surface trans-
fer coefficients and the thermal conductivity of the three layers
composing the panels. Then, another set of experimental observa-
tions is used for comparison with the numerical predictions. The
article is organized as follows. Section 2 presents the mathematical
model and its dimensionless formulation. Then, in Section 3, the
numerical model is detailed. An innovative approach, based on
the DuFort–Frankel numerical scheme, is used to reduce the com-
putational cost of the direct computation. In Section 4, the method-
ology to solve the parameter estimation problem is presented. The
experimental facility to generate the observation of temperature
and vapor pressure is introduced in Section 5. In Section 6, the
identifiability of the unknown parameters is demonstrated. Then,
the results of the parameter estimation problem, using the first
set of observations, are given. Finally, in Section 7, the reliability
of the model is compared to another set of experimental
observations.

2. Description of the mathematical model

Fist, the governing equations of the mathematical model are
described. An illustration of the problem is given in Fig. 1. A por-
ous material is submitted to forcing conditions of temperature
and vapor pressure on each boundary. The transfer occurs in a
plan perpendicular to the gravity so the effects of the latter are
negligible. A total of seven parameters are unknown in the math-
ematical problem, including the boundary heat and mass surface
transfer coefficients and the thermal conductivity of each of the
three layers.

2.1. Porous media

The mathematical model describes the heat and mass transfer
in multi-layered wall composed of porous media. The transfer
are assumed as 1-dimensional and the spatial domain is defined
as x 2 0; L½ �, where L m½ � is the thickness of the wall. The physical
phenomena are observed for the time t 2 0; t f½ �. The field of inter-
ests are the temperature T K½ � and the vapor pressure P v Pa½ �
defined according to:

T : 0; L½ � � 0; t f½ ��!R>0; P v : 0; L½ � � 0; t f½ ��!R>0;

x; tð Þ#T x; tð Þ; x; tð Þ#P v x; tð Þ:
The saturation pressure P sat Pa½ � is given by a temperature depen-
dent function given by the Antoine’s law:
Fig. 1. Illustration of physical problem
P sat Tð Þ :¼def P �
sat �

T � T a

T b

� � a

; T P T a;

with P �
sat ¼ 997:3 Pa, T a ¼ 159:5 K, T b ¼ 120:6 K and a ¼ 8:275. The

moisture content in the porous material is denoted as x kg=m3
� �

and the relative humidity by / ø½ �.

2.2. Governing equation

According to [1], the governing equations of heat and mass
transfer in porous media are:

@x
@t ¼ @

@x � km � @P v
@x

� �þ @
@x � kmq � @T@x
� �

;

c q � @T@t ¼ @
@x � kq � @T@x
� �þ r v � @

@x � km � @P v
@x

� �
:

The chosen potential to write the governing equations is the vapor
pressure. Thus, one can write:

@x ¼ @x
@/

� @/þ @x
@T

� @T:

It is assumed negligible the variation of the moisture content with
temperature @x

@T ¼ 0. In addition, using the relation between relative

humidity and vapor pressure, / ¼ P v
P sat

, we have:

@/ ¼ 1
P sat

� @P v � P v

P 2
sat

� @P sat

@T
� @T:

The Clapeyron relation gives:

@P sat

@T
¼ r v

R v � T 2 � P sat;

where r v J=kg½ � is the latent heat of vaporization and R v J=ðkg � KÞ½ �
the gas constant of water vapor. Using these results, the time vari-
ation of moisture content is given by:

@x
@t

¼ cm � @P v

@t
� cmq � @T

@t
;

where

cm :¼def @x
@/

� 1
P sat

; cmq :¼def cm � P v � r v
R v � T 2 :

Thus, the heat and mass transfer is given by the following sys-
tem of coupled partial differential equations:

cm � @P v

@t
¼ @

@x
km � @P v

@x

� �
þ @

@x
kmq � @T

@x

� �
þ cmq � @T

@t
; ð1aÞ

c q � @T
@t

¼ @

@x
kq � @T

@x

� �
þ r v � @

@x
km � @P v

@x

� �
ð1bÞ
2.3. Material properties

The wall is composed of several layers of wood spruce panels. It
is assumed that only the thermal conductivity varies according to
each layer. So, other properties do not vary according to the differ-
with the unknown parameters.
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ent layers. The sorption curve of the material is given as a third
order polynomials. Thus, the storage coefficients are computed
using the following functions:

cm T; Pvð Þ :¼def 1
P satðT Þ � cm;0þcm;1 � Pv

P satðT Þþcm;2 � Pv
P satðT Þ

� �2
 !

; ð2aÞ

cq T; Pvð Þ :¼def cq;0þcq;1 � Pv
P satðT Þþcq;2 � Pv

P satðT Þ
� �2

þcq;3 � Pv
P satðT Þ

� �3

;

ð2bÞ

cmq T; Pvð Þ :¼def cm T; Pvð Þ �Pv � rv Tð Þ
Rv �T 2 : ð2cÞ

The gas constant for water vapor is R v ¼ 462 J=ðkg � KÞ. The thermo-
diffusion coefficient kmq kg=ðm � s � KÞ½ � is set as constant. The mass
permeability coefficient varies according to temperature and vapor
pressure:

km T; P vð Þ :¼def km; 0 þ km; 1 � P v

P satðT Þ : ð3aÞ

It is assumes that the thermal conductivity varies according to tem-
perature and space:

kq x; Tð Þ :¼def
X3
i¼1

kq; i x; Tð Þ; ð4aÞ

where

kq; i x; Tð Þ :¼def w i ðx Þ � kq; 0; i þ kq; 1 � T:
The piece-wise function for each layer w i is defined by:

w i xð Þ :¼def 1; x i�1 6 x 6 x i;

0; otherwise;

�

where x i�1 denotes the interface location in the space domain
between the layer i� 1 and i. The three unknown parameters of
the material properties are the thermal conductivity coefficients
kq; 0; i W=ðm � KÞ½ �; i ¼ 1; 2; 3f g.

The mass transfer under temperature gradient coefficient kmq is
set as constant and independent of the fields. The latent heat of
vaporization r v J=kg½ � depends on temperature according to:

r v Tð Þ :¼def r v; 0 þ c v � c lð Þ � T � T cð Þ;
with c v J=ðkg � KÞ½ � and c l J=ðkg � KÞ½ � the specific heat of vapor and
liquid water, respectively. The numerical values for the physical
constants are r v; 0 ¼ 2:5 � 106 J=kg, c v ¼ 1870 J=ðkg � KÞ,
c l ¼ 4180 J=ðkg � KÞ and T c ¼ 273:15 K.

2.4. Initial and boundary conditions

At the initial state, the temperature and vapor pressure are
known in the material:

T ¼ T 0ðx Þ; P v ¼ P 0
vðx Þ; t ¼ 0;

where T 0 and P v; 0 are given function of space:
At the interface between the material and the ambient air, Robin

type boundary conditions are assumed for the heat flow

kq � @T
@x

þ r v � km � @P v

@x
¼ hL

q � T � T L
1ð t Þ

	 

þ r v � hL

m � P v � P L
v ;1ð t Þ

	 

; x ¼ 0;

kq � @T
@x

þ r v � km � @P v

@x
¼ �hR

q � T � T R
1ð t Þ

	 

� r v � hR

m � P v � P R
v ;1ð t Þ

	 

; x ¼ L;

and for the mass one
km � @P v

@x
þ kmq � @T

@x
¼ hL

m � P v � P L
v;1ð t Þ

	 

; x ¼ 0;

km � @P v

@x
þ kmq � @T

@x
¼ �hR

m � P v � P R
v;1ð t Þ

	 

; x ¼ L;

where the air ambient temperature T L; R
1 and vapor pressure P L; R

v;1
are given time dependent functions. The parameters
hq W=ðm2 � KÞ� �

and hm s = m½ � are the heat and mass surface trans-
fer coefficients. They are the additional four unknown parameters
for the left and right boundaries. A relation is introduced between
both coefficients using the Lewis Le ø½ � number:

hL
m ¼ hL

q

Ta � R v � q a � c a � Le L ; hR
m ¼ hR

q

Ta � R v � q a � c a � Le R ;

where T = 293.15 K, q a ¼ 1:16 kg=m3 is the dry air specific mass

and c a ¼ 103 J=ðkg � KÞ the specific heat of dry air.

2.5. Dimensionless formulation

To carry on the numerical analysis, the physical problem is
transformed into a dimensionless formulation. For this, the time
and space domains are scaled according to:

xH ¼ x
L
; tH ¼ t

t ref
:

The fields are also transformed into:

u ¼ P v

P ref
v

; v ¼ T

T ref :

It is important to note that T ref �C½ � and P ref
v Pa½ � should not be taken

to zero.
The storage and diffusion coefficients as well as the latent heat

of vaporization are converted in dimensionless ones:

cH
m ¼ cm

c ref
m

; cH
q ¼ c q

c ref
q

; cH
mq ¼

cmq

c ref
mq

;

kH

m ¼ km

k ref
m

; kH

q ¼ kq

k ref
q

; kH

qm ¼ kqm

k ref
qm

; rH ¼ r v
r v; 0

:

In this way, the dimensionless Fourier numbers are defined:

Fom ¼ k ref
m � t ref
c ref
m � L 2 ; Fo q ¼ k ref

q � t ref
c ref
q � L 2 :

The coupling parameters between both heat and mass transfer are
set:

c ¼ k ref
m � P ref

v � r v; 0
k ref
q � T ref

; d ¼ k ref
mq � T ref

k ref
m � P ref

v

; g ¼ c ref
mq � T ref

c ref
m � P ref

v

:

For the boundary conditions, the time dependent Biot number is
introduced:

Bi ¼ hq � L
k ref
q

;

as well as a modified Lewis number:

Le ¼ R 1 � q a � c a � k
ref
m � T ref

k ref
q

� Leð Þ 2=3:

In the end, the dimensionless formulation of the heat and mass
problem is:

cH
m � @u

@tH
¼ Fom � @

@xH
kH

m � @u
@xH

� �
þd �Fom � @

2v
@xI 2þg �cH

mq �
@v
@tH

; ð5aÞ
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cH
q � @v

@tH
¼ Fo q � @

@xH
kH

q � @v
@xH

� �
þ c � Fo q � rH � @

@xH
kH

m � @u
@xH

� �
:

ð5bÞ
The boundary condition becomes for the mass transfer:

kH

m � @u
@xH

þ d � @v
@xH

¼ Bi L

Le L
� u� uL

1
� �

; xH ¼ 0; ð6aÞ

kH

m � @u
@xH

þ d � @v
@xH

¼ � Bi R

Le R
� u� uR

1
� �

; xH ¼ 1; ð6bÞ

and for the heat one:

kH

q � @v
@xH

þ rH � c � kH

m � @u
@xH

¼ Bi L � v � v L
1

� �
þ rH � c � Bi

L

Le L
� u� uL

1
� �

; xH ¼ 0; ð7aÞ

kH

q � @v
@xH

þ rH � c � kH

m � @u
@xH

¼ �Bi R � v � v R
1

� �
� rH � c � Bi

R

Le R
� u� uR

1
� �

; xH ¼ 1: ð7bÞ

In the dimensionless representation, the unknown parameters are

Bi L, Le L, Bi R, Le R and kH

q; 0; i; i ¼ 1; 2; 3f g.

3. Direct numerical model

The numerical model used to solve the so-called direct problem
is now described. It requires to be efficient by saving computa-
tional efforts and providing accurate solutions of the governing
equations. These needs are particularly justified in the framework
of parameter estimation problem where the direct problem is
solved many time.

3.1. The DuFort–Frankel numerical method

A uniform discretisation is considered for space and time lines.
The discretisation parameters are denoted using Dt for the time
and Dx for the space. The discrete values of functions u ðx; t Þ and
v ðx; t Þ are written as un

j :¼def u ðx j; t n Þ and v n
j :¼def v ðx j; t n Þ with

j ¼ 1; . . . ;Nx and n ¼ 1; . . . ;N t . It is remarked that j ¼ 1 and
j ¼ N x corresponds to x ¼ 0 and x ¼ 1, respectively. For the sake
of clarity, the super-script H is removed in this section for the
description of the numerical method.

The DuFort–Frankel scheme is employed to build an efficient
numerical model for the heat and mass balance Eqs. (5a) and
(5b). The original work may be consulted in [15]. It affords an
explicit numerical scheme. Thus, no costly sub-iterations are
required to treat the nonlinearities, as in implicit approaches. Fur-
thermore, as demonstrated in [16,17], it has an extended stability
region, so the so-called Courant-Friedrichs-Lewy (CFL) condition
[18] is not an impediment. Interested readers may consult
[16,17] for further details and its applications for heat and mois-
ture transfer in building porous materials. Since many details are
provided in [17] for a similar system of coupled partial differential
equations, the demonstration of the fully discrete equations is not
detailed.

From Eq. (5a), using the DuFort–Frankel numerical scheme, the
following fully discrete dynamical system is obtained:

unþ1
j � 1

1þ k 3
� k 1 � un

jþ1 þ k 2 � un
j�1 þ 1� k 3ð Þ � un�1

j þ j 1 � v n
jþ1

	

þj 2 � v n
j�1 � j 3 � 12 � v nþ1

j þ v n�1
j

	 

þ h � v

nþ1
j � v n�1

j

2 � Dt

!
¼ 0;

ð8Þ
where the coefficients fk i g 3
i¼1, fj i g 3

i¼1 and h are defined as:

k 1 :¼def 2 � Fom � Dt
Dx 2 �

k n
m; jþ1

2
c n
m; j

; k 2 :¼def 2 � Fom � Dt
Dx 2 �

k n
m; j�1

2
c n
m; j

;

k 3 :¼def 1
2 � k 1 þ k 2ð Þ;

j 1 ¼ j 2 :¼def 2 � Fom � Dt
Dx 2 � d

c n
m; j

; j 3 :¼def j 1 þ j 2

h :¼def g � 2 � Dt � c mq; j

c q; j

Similarly, using the DuFort–Frankel numerical scheme for Eq.
(5b), the fully discrete dynamical system is:

v nþ1
j � 1

1þ l 3
� l 1 � v n

jþ1 þ l 2 � v n
j�1 þ 1� l 3

� � � v n�1
j

	

þm 1 � un
jþ1 þ m 2 � un

j�1 � m 3 � 12 � unþ1
j þ un�1

j

	 
�
¼ 0; ð9Þ

with the following coefficients:

l 1 :¼def 2 � Fo q � Dt
Dx 2 �

kn
q; jþ1

2

c n
q; j

; l 2 :¼def 2 � Fo q � Dt
Dx 2 �

kn
q; j�1

2

c n
q; j

;

l 3 :¼def 1
2
� l 1 þ l 2

� �
; m 1 :¼def 2 � c � r n

j � Fo q � Dt
Dx 2 �

kn
m; jþ1

2

c n
q; j

;

m 2 :¼def 2 � c � r n
j � Fo q � Dt

Dx 2 �
kn
m; j�1

2

c n
q; j

; m 3 :¼def m 1 þ m 2:

Then, the two systems Eqs. (8) and (9), are solved to obtain an expli-
cit formulation of the fields unþ1

j and v nþ1
j . For the sake of notation

compactness, the results are provided in the supplementary
MapleTM file.

The storage and latent heat of vaporization coefficients are eval-
uated using the following interpolation:

c j :¼def c u j; v j
� �

; r j :¼def r v j
� �

:

The diffusion coefficients are interpolated according to:

k jþ1
2
:¼def k

1
2
� u j þ u jþ1
� �

;
1
2
� v j þ v jþ1
� �� �

:

For the boundary conditions, a second order accurate discretisa-
tion in space is used to maintain the accuracy properties. For the
boundary x ¼ 0, the discretisation of Eqs. (6a) and (7a) yields:

km;1

2 �Dx � �u3 þ 4 � u2 �3 � u1ð Þ þ d
2 �Dx � �v 3 þ4 � v 2 �3 � v 1ð Þ ð10aÞ

¼ BiL

Le L
� u1 � uL

1
� �

; ð10bÞ
kq;1

2 �Dx � �v 3 þ4 � v 2 �3 � v 1ð Þ þ c � r 1 � km;1

2 �Dx � �u3 þ4 � u2 �3 � u1ð Þ
ð10cÞ

¼ Bi L � v 1 � v1ð Þþ c � r 1 � Bi
L

Le L
� u1 � uL

1
� �

: ð10dÞ

Then, the system (10) is solved to give an explicit expression of u 1

and v 1. A very similar operation is achieved for the boundary x ¼ 1.

3.2. Metrics of efficiency and reliability of a model

To evaluate the efficiency of a numerical model, one criteria is
the computational (CPU) run time required to compute the solu-
tion. It is measured using the MatlabTM environment with a com-
puter equipped with Intel i7 CPU and 32 GB of RAM. The
following ratio is defined:

R cpu :¼def t cpu
t f

;
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where t cpu s½ � is the measured CPU time and t f is the final physical
time of the simulation.

The reliability of a model is assessed by comparing the numer-
ical results with experimental observations. The relative error for
temperature or vapor pressure is computed according to:

e P v
r ðxH

0 ; t
H Þ :¼def u num ðxH

0 ; t
H Þ � u obs ðxH

0 ; t
H Þ

u obs ðxH
0 ; t

H Þ ;

e T
r ðxH

0 ; t
H Þ :¼def v

num ðxH
0 ; t

H Þ � v obs ðxH
0 ; t

H Þ
v obs ðxH

0 ; t
H Þ ;

where xH
0 is the sensor location, the super script num: defined the

output field computed with the model and obs: stands for the exper-
imental observation of the field.

4. Parameter estimation

The purpose is to use experimental observations to retrieve the

seven unknown parameters hL
q, h

L
m, h

R
q , h

R
m, kq; 0; 1, kq; 0; 2 and kq; 0; 3.

Thus, the set of unknown dimensionless parameters is defined by:

X p ¼ Bi L; BiR; Le L; Le R; kH

q; 0; 1; k
H

q; 0; 2; k
H

q; 0; 3

n o
:

We denote by pk, with k 2 1; . . . ; Np
� �

, a component of the set X p.
In our case, the total number of unknown parameters is Np ¼ 7. The
distinction is realized between a priori parameters p apr

k , used as ini-
tial guesses in the optimization procedure and in the computation
of the sensitivity equations. The estimated parameter after the opti-
mization process are denoted by p �

k. It is assumed that measure-
ment errors are additive with zero mean, constant variance,
uncorrelated and normal distribution.

4.1. Sensitivity equations

To discuss the identifiability of the unknown parameters, the
scaled dimensionless local sensitivity functions are introduced
for both fields u and v [19,20]:

H k : x; tð Þ# r p

r u
� @u
@pk

; K k : x; tð Þ# r p

r v
� @v
@pk

;

where r u and r v are the variance of the error measuring u and v ,
respectively. The parameter r p is set to unity since we assume that
prior information on the unknown parameter pk has low accuracy
and is equal for all parameters. The sensitivity functions are com-
puted by differentiating the governing Eqs. (5a) and (5b) with
respect to the unknown parameter pk. The sensitivity equations
can be written in a succinct way as:

cH
m � @H k

@tH
¼ Fom � @

@xH
kH

m � @H k

@xH
þ @kH

m

@pk
� @u
@xH

 !

þ d � Fom � @
2K k

@xI 2 þ g � cH
mq �

@K k

@tH
þ @cH

mq

@pk
� @K k

@tH

 !
� @cH

m

@pk
� @u
@tH

;

cH
q � @K k

@tH
¼ Fo q � @

@xH
kH

q � @K k

@xH
þ @kH

q

@pk
� @v
@xH

 !

þ c � Fo q � @rH

@pk
� @

@xH
kH

m � @u
@xH

� ��

þrH � @

@xH
kH

m � @H k

@xH
þ @kH

m

@pk
� @u
@xH

 !!
� @cH

q

@pk
� @v
@tH

:

The boundary conditions of the sensitivity equations are obtained
using a similar approach:
kH

m � @H k

@xH
þ d � @K k

@xH
¼ @

@pk

Bi L

Le L

 !
� u� uL

1
� �þ Bi L

Le L
�H k

� @kH

m

@pk
� @u
@xH

; xH ¼ 0

kH

m � @H k

@xH
þ d � @K k

@xH
¼ � @

@pk

Bi R

Le R

 !
� u� uR

1
� �� Bi R

Le R
�H k

� @kH

m

@pk
� @u
@xH

; xH ¼ 1

and

kH

q � @K k

@xH
þ rH � c � kH

m � @H k

@xH
¼ @Bi L

@pk
� v � v L

1
� �þ Bi L �K k

þ c � @

@pk
rH � Bi

L

Le L

 !
� u� uL

1
� �þ rH � c � Bi

L

Le L
�H k

� @kH

q

@pk
� @v
@xH

� c � @

@pk
rH � kH

m

	 

� @u
@xH

; xH ¼ 0;

kH

q � @K k

@xH
þ rH � c � kH

m � @H k

@xH
¼ � @Bi R

@pk
� v � v R

1
� �� Bi R �K k

� c � @

@pk
rH � Bi

R

Le R

 !
� u� uR

1
� �� rH � c � Bi

R

Le R
�H k

� @kH

q

@pk
� @v
@xH

� c � @

@pk
rH � kH

m

	 

� @u
@xH

; xH ¼ 1:

The sensitivity functions qualify the sensitivity of the field
according to changes in the parameter pk. Thus, a small magnitude
of the sensitivity function signifies that large changes in pk induce
small changes in the field. Moreover, an optimal evaluation of the
unknown parameters is obtained when the sensitivity functions
are linearly independent with large magnitudes for all parameters.
These information are gathered in the scaled Fisher information
matrix [21–23]:

F u :¼def F u
i j

h i
; F v :¼def F v

i j

h i
; F :¼def F i j

� �
; i; jð Þ 2 1; . . . ; Np

� �
;

where each element of the matrices is computed by:

F u
i j :¼

def XN m

q¼1

1
t f

�
Z t f

0
HH

i x q; t
� � �HH

j x k; tð Þ dt;

F v
i j :¼

def XN m

q¼1

1
t f

�
Z t f

0
KH

i x q; t
� � �KH

j x k; tð Þ dt;

F i j :¼def F u
i j þ F v

i j;

where Nm is the number of observations obtained during the exper-
iments. Moreover, the quality of the experimental design to retrieve
the unknown parameters with accuracy is analyzed through the D-
optimum criteria:

W u :¼def det F u; W v :¼def det F v ; W :¼def det F:

To ensure the maximal accuracy in the estimation of the unknown
parameters, it is expected to maximize the quality index W rela-
tively to the measurement plan. Last, an important result is given
in [21] using the Cramer–Rao inequality under the assumption sta-
ted. An error estimator of the retrieved parameter can be computed
according to:

� k :¼def
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F �1
	 


k k

r
:
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High values of � k might be due to important error during the
parameter estimation process.

4.2. Solving the parameter estimation problem

The inverse problem aims at determining the estimated param-
eter p � verifying:

p � :¼def arg min
X p

J; ð11Þ

where J is the so-called cost function defined by the least square
estimator:

J u; u obs; v; v obsð Þ :¼def wu � u� u obs

u obs

����
����

����
����
2
þw v � v � v obs

v obs

����
����

����
����
2
; ð12Þ

where �j jj j 2 is the L 2 error:

�j jj j 2 : y#
Z t f

0
y tð Þð Þ2 dt:

The parameters wu and w v are weights defined as the variance of
the vapor pressure and temperature measurements, respectively.
There are essential to scale the cost function J to avoid advantaging
one measurement compared to the other [24]. The experimental
observations are denoted by u obs and v obs. It also important to men-
tion that the domain of the observations and the solutions of the
direct problem verifies dom u obs � dom u and dom v obs � dom v .

To solve the parameter estimation problem, an robust tech-
nique is used based on the Single-Objective Hybrid Optimizer
(SOHO) [25,26]. It is composed on three individual algorithms,
namely the NSGA-III [27], NSDE [28] and MOEA-DD [29]. This com-
bination enables to increase the robustness of the optimization
algorithms for a large set of problems. The hybrid optimizer is ini-
tialized using one of the three previously mentioned algorithms.
The algorithm runs until no longer decreasing in the residual is
observed. Then, an alternative algorithm is chosen randomly
among the remaining two. By this random selection, the process
is made as stochastic to search the optimum parameters and to
avoid user bias.

5. Description of the experimental facility

5.1. Set-up

The experimental facility, entirely described in [30], is used to
generate the experimental observations. The set-up is an enclosure
with an interior volume measuring 0:8� 0:88� 0:88 ¼ 0:62 m3,
Fig. 2. Illustration of the experimental
built with 6-cm-thick highly hygroscopic walls composed of CLT
panels. A picture of the set-up is shown in Fig. 3(a) and one of a
slice of CLT panel in Fig. 3(b). The latter clearly highlights the three
layers of the material. Each layer has a thickness of 2 cm. The cube
is placed in a climatic chamber to control the outdoor temperature
and relative humidity. The indoor temperature of the enclosure is
controlled using four heating resistances connected to a controller.
An ultrasonic humidifier, placed outside the facility, injecting dro-
plets of water trough a flexible hose thermally insulated with a sil-
icone rubber sheathing enables to control the relative humidity
level.

In terms of sensors, two walls are monitored as illustrated in
Fig. 2(a). A thermocouples (TC) is set on each inside and outside
surfaces of the wall. As illustrated in Fig. 2(b), three sensors are
set inside the wall n �1 at the position x 1, x2 and x 3, respectively.
For the wall n �2, only one sensor is settled at the position x 2.
The exact position is given in Table 1. The position uncertainty is
rx ¼ 0:3cm on the x-axis. The inside conditions are monitored
with four TCs and four SHTs placed in a horizontal plane at
y ¼ 0:44 m. The outside boundary conditions are measured with
a sensor placed 0:3 m above the cube. For each sensor, the time
step between two consecutive measurements is set to 10 min.
5.2. Material properties

The material properties of the material come from [30]. The
storage coefficients defined in Eq. (2) equals cm; 0 ¼ 31:7 kg=m3,
cm; 1 ¼ �113:8 kg=m3, cm; 2 ¼ 162 kg=m3 for the mass and

c q; 0 ¼ 630 � 103 J=ðK �m3 Þ, c q; 1 ¼ 132:5 � 103 J=ðK �m3 Þ, c q; 2 ¼
�237:8 � 103 J=ðK �m3 Þ, c q; 3 ¼ 2:25:7 � 103 J=ðK �m3 Þ for the heat.

The diffusion coefficients from Eq. (3) are km; 0 ¼ 3 � 10�13 s and

km; 1 ¼ 4:45 � 10�12 s. The coefficient of variation of the heat diffu-
sion coefficient with temperature in Eq. (4) is kq; 1 ¼
2 � 10�4 W=ðm � K2Þ. In the absence of data, the so-called thermo-
diffusion coefficient is set to zero kmq ¼ 0 kg=ðm � s � KÞ. The a priori

value of the unknown parameters hL
q, h

L
m, h

R
q , h

R
m, kq; 0; 1, kq; 0; 2 and

kq; 0; 3 are reported in Table 3.
5.3. Experimental observations

Before applying the forcing conditions to generate the experi-
mental observations, the cube is set into an ambiance with con-
stant temperature T ¼ 20:5 �C and vapor pressure P v ¼ 1100 Pa
for 30 days. The purpose is to ensure a steady state regime inside
the walls before the carrying the experiments. Then, to generate
set-up with the sensor locations.



Fig. 3. Picture of the experimental set-up with the cube in the experimental chamber (a) and the CLT panel used (b).

Table 1
Sensors positions within the walls.

Wall x1 (cm) x2 (cm) x3 (cm)

n �1 1 3:44 4:08
n �2 – 3:44 –
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the experimental observations used in the parameter estimation
problem, the outside conditions are maintained constant around
20:5 �C and 1100 Pa. For the inside condition, an increase of tem-
perature is imposed maintaining the relative humidity as constant
(no source or sink). As a consequence, it leads to an increase of
vapor pressure.

The total uncertainty on the observations are evaluated through
the propagation of the uncertainties [31]. For the temperature, the
total uncertainty is computed according to:

r T ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r 2

m; T þ r 2
x; T þ r 2

t; T

q
; ð13Þ

where rm; T ¼ 0:1 �C is the measurement sensor uncertainty, r x; T is
the uncertainty due to the sensor location and r t is the one due to
the response time of the sensor. The two last terms are given by:

r x; T ¼ @T
@x

� d x; r t; T ¼ @T
@t

� d t; ð14Þ

where d x ¼ 0:3 cm for the sensors located at x 2 x 1; x 2; x 3f g,
d x ¼ 0:15 cm for the sensors located at x 2 0; Lf g and
d t ¼ 10 min are the position uncertainty and the response time of
the sensor. The term @T

@x in Eq. (14) is evaluated at the location of
the sensors using the numerical model and the a priori values of
the unknown parameters. It should be noted that this term is not
considered for the sensors in the ambient air. The second term @T

@t

is computed using the measurements and a discrete second order
finite difference approach.

For the uncertainty on the vapor pressure, a similar procedure is
adopted:

r P ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r 2

m; P þ r 2
x; P þ r 2

t; P

q
; ð15Þ

where the uncertainty due to the position and the response time are
given by:
r x; P ¼ @P v

@x
� d x; r t; P ¼ @P v

@t
� d t:

The sensor measures the relative humidity and we have the follow-
ing relation:

@ P v ¼ P sat � @/þ / � @P sat

@T
� @ T:

Thus, the measurement uncertainty of the vapor pressure is com-
puted using the propagation relation:

rm; P ¼ P sat ðT Þ � rm;/ þ P v � r v
R v � T 2 � rm; T ;

where rm;/ ¼ 0:018 ø is the uncertainty measurement from the
sensor on relative humidity.

The boundary conditions are illustrated in Fig. 4(a) and (b) with
the uncertainty bounds. The uncertainties are higher for the vapor
pressure than for temperature measurements. The uncertainty of
the measurements are shown in Fig. 5(a) and (b) for the sensor
located at x ¼ x 3. The contribution of each term in Eqs. (13) and
(15) is highlighted. For the vapor pressure, the measurement
uncertainty scales with Oð65Þ Pa. Due to the sensor position, the
uncertainty increases by Oð5 Þ Pa. It can be remarked that the time
response of the sensor has almost no influence on the uncertainty
propagation. For the temperature, the measurement uncertainty is
0:1 �C. With the sensor position, it increases toOð0:3 Þ �C. The time
response of the sensor has more influence, particularly at the
beginning of the design where the variations are the most impor-
tant. At t ¼ 1:5 h, additional 0:2 �C are due to the time response
in the total uncertainty.

The measured temperature and vapor pressure at t ¼ 0 are
illustrated in Fig. 6 for the wall n �1. It can be assumed that the gra-
dient of both fields is established. Thus, first order polynomial of
x 2 0; L½ � are fitted for each field:

T 0 ðx Þ ¼ �6:825 � xþ 20:75 �C½ �; P 0
v ðx Þ ¼ �502:7 � xþ 1087 Pa½ �:

Similarly, for the wall n �2, the fitted first order polynomial of x is

T 0 ðx Þ ¼ 4:23 � xþ 19:93 �C½ �; P 0
v ðx Þ ¼ �690:7 � xþ 1066 Pa½ �:



Fig. 5. Variation of observations uncertainties for vapor pressure (a) and temperature (b) at x ¼ x 3.

Fig. 6. Profiles of measured and interpolated vapor pressure (a) and temperature (b) at t ¼ 0 for the wall n �1.

Fig. 4. Variation of the boundary conditions for vapor pressure (a) and temperature (b).
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These interpolations are used as initial condition in the numerical
model.

6. Results of the parameter estimation problem

6.1. Theoretical identifiability

The issue is first to demonstrate the theoretical identifiability of
the unknown parameters. According to [32,21], a parameter P is
Structurally Globally Identifiable (SGI) in the model y if the follow-
ing condition is verified:

8ðx; t Þ; y Pð Þ ¼ y P 0� � ) P ¼ P 0:

This property is now evaluated for our model and the seven

unknown coefficients Bi L, Le L, Bi R, Le R, kq; 0; 1, kq; 0; 2 and kq; 0; 3. For
the sake of clarity and without loss of generality, the subscript H

is removed only in this subsection.

6.1.1. Parameters kq; 0; 1, k q; 0; 2 and kq; 0; 3

The demonstration is first carried for the parameter kq; 0; 1. A set
of observable fields uðx ¼ x 1; t Þ and vðx ¼ x 1; t Þ is obtained with
the parameter kq; 0; 1. A second one is hold u 0ðx ¼ x 1; t Þ and
v 0ðx ¼ x 1; t Þ according to the parameter k 0

q; 0; 1. The point of obser-
vation x 1 is located in the first layer, so by definition:

kqðx ¼ x 1; u Þ ¼ kq; 0; 1 þ kq; 1 � u:
Thus, using the governing Eq. (5b) at the point of observation
x ¼ x 1, one can write for the first set of observable:

c q ðu; v Þ � @v
@t

¼ Fo q � @
@x

kq; 0; 1 þ kq; 1 � u
� � � @v

@x

� �

þ c � Fo q � r ðv Þ � @
@x

km ðu; v Þ � @u
@x

� �
ð16Þ

and for the second set:

c q ðu 0; v 0 Þ � @v
0

@t
¼ Fo q � @

@x
k 0
q; 0; 1 þ kq; 1 � u 0

	 

� @v

0

@x

� �

þ c � Fo q � r ðv 0 Þ � @
@x

km ðu 0; v 0 Þ � @u
0

@x

� �
: ð17Þ

It is assumed that uðx; t Þ � u 0ðx; t Þ and vðx; t Þ � v 0ðx; t Þ. We also

have @u
@x � @u 0

@x and @v
@x � @v 0

@x ,
@ 2u
@x 2 � @ 2u 0

@x 2 and @ 2v
@x 2 � @ 2v 0

@x 2 and @u
@t � @u 0

@t and
@v
@t � @v 0

@t . By carrying the operation Eq. (16) minus Eq. (17) and after
some simplification, one obtains:

kq; 0; 1 � k 0
q; 0; 1

	 

� @

2v
@x 2 ¼ 0:

It follows that:

kq; 0; 1 ¼ k 0
q; 0; 1 ð18Þ

and the parameter kq; 0; 1 is SGI. A very similar demonstration can be
carried out to prove that the parameters kq; 0; 2 and kq; 0; 3 are SGI. It
requires using the observable fields at x ¼ x 2 for kq; 0; 2 and x ¼ x 3

for kq; 0; 2, knowing that x 2 and x 3 are located in the second and third
layers, respectively.

6.1.2. Parameters Bi L, Le L, Bi R and Le R

The theoretical identifiability is now demonstrated for the

parameters Bi L, Le L, Bi R and Le R. A first set of observable fields
uðx ¼ 0; t Þ and vðx ¼ 0; t Þ, obtained with the set of parameters

Bi L; Le L; Bi R; Le R; kq; 0; 1

n o
is considered. A second one is also hold

with u 0ðx ¼ 0; t Þ and v 0ðx ¼ 0; t Þ related to the parameters
Bi L 0
; Le L 0; Bi R 0

; Le R 0; k 0
q; 0; 1

n o
. Using the boundary condition at

x ¼ 0, defined in Eq. (6a), one can write:

km � @u
@x

þ d � @v
@x

� Bi L

Le L
� u� uL

1
� �

¼ km � @u
0

@x
þ d � @v

0

@x
� Bi L 0

Le L 0 � u 0 � uL
1

� �
: ð19Þ

Similarly, with Eq. (7a), it yields:

kq; 0; 1 þ kq; 1 � u
� � � @v

@x
þ r � c � km � @u

@x
� Bi L � v � v L

1
� �

þ r � c � Bi
L

Le L
� u� uL

1
� �

¼ k 0
q; 0; 1 þ kq; 1 � u 0

	 

� @v

0

@x
þ r � c � km � @u

0

@x
� Bi L 0 � v 0 � v L

1
� �

þ r � c � Bi
L 0

Le L 0 � u 0 � uL
1

� �
: ð20Þ

Now, it is assumed that uðx; t Þ � u 0ðx; t Þ and vðx; t Þ � v 0ðx; t Þ.
Thus, we also have @u

@x � @u 0
@x and @v

@x � @v 0
@x . Using this assumption

and the results from Eq. (18), showing that parameter kq; 0; 1 is
SGI, Eqs. (19) and (20) can be rewritten as:

Bi L

Le L
� Bi L 0

Le L 0

 !
� u 0 � uL

1
� � ¼ 0; ð21aÞ

Bi L � Bi L 0
	 


� v 0 � uL
1

� �þ r � c�
Bi L

Le L
� Bi L 0

Le L 0

 !
� u 0 � uL

1
� � ¼ 0 ð21bÞ

By performing Eq. (21a) minus Eq. (21b), we have:

� Bi L � Bi L 0
	 


� v 0 � v L
1

� �
Since v 0 and v L

1 are independent, it produces:

Bi L ¼ Bi L 0

and the parameter Bi L is SGI. Using this result and Eq. (21a), we
obtain:

r � c � Bi L � 1
Le L

� 1
Le L 0

� �
� u 0 � uL

1
� � ¼ 0:

Again, since u 0 and uL
1 are independent it returns that:

Le L ¼ Le L 0

and the parameter Le L is SGI. A very similar demonstration can be
performed using the boundary conditions (6b) and (7b) and the
observable fields uðx ¼ 1; t Þ and vðx ¼ 1; t Þ to prove that the

parameters Bi R; Le R
n o

are SGI.

It is important to remark that the seven parameters Bi L, Le L,

BiR, Le R, kq; 0; 1, kq; 0; 2 and kq; 0; 3 are theoretically identifiable
because the experimental design enables to obtain two observable
fields at the boundaries x ¼ 0; 1f g and one measurement in each
material x ¼ x 1; x 2; x 3f g . Indeed, the demonstration for kq; 0; 1 is
realized using the governing Eq. (5b) at the point of observation
x1. The proof of identifiability is obtained because x 1 is located in
the material 1, which thermal property kq; 0; 1 is unknown. In addi-

tion, the proof for the parameters Bi L, Le L, BiR and Le R is obtained
using the result of identifiability of the parameter kq; 0; 1 from Eq.
(18). Without these conditions, the theoretical identifiability could
not be demonstrated.



Fig. 7. Time evolution of the sensitivity coefficients of the parameters Bi L (a, c), Bi R (b, d), Le L (e, g) and Le R (f, h) at the measurements points xH 2 0; xH
1 ; x

H
2 ; x

H
3 ; 1

� �
for

vapor pressure (a, b, e, f) and temperature (c, d, g, h).
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Fig. 8. Variation of the criteria W according to the number of measurement (a) and to the time length of the experimental design (b).
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6.2. Practical identifiability

The computation of the sensitivity equation is realised using the
numerical model described in Section 3 and the discretisation
parameters Dt ¼ 36 s and Dx ¼ 6 � 10�2 cm. The a priori values of
the unknown parameters, reported in Table 3 are used.

The time evolution of the sensitivity coefficients of the four

parameters Bi L, Le L, BiR and Le R are shown in Fig. 7. Several
results can be observed. First, for both fields u and v , the magni-
tude of the sensitivity functions are higher for the right Biot num-

bers Bi R than for the left one Bi L, as noticed in Fig. 7(a)–(d). It is
consistent since the forcing conditions occurs at the right boundary
according to the experimental design shown in Fig. 4(a) and (b).

Secondly, for Bi L and Le L, the magnitudes of the sensitivity
functions are maximal at x ¼ 0. The model is the more sensible
to these parameters at the boundary x ¼ 0. It is corroborated by
the fact that these parameters influence the model through the
boundary condition defined in Eqs. (7a) and (6a). Similar remarks

can be done for the parameters Bi R and Le R.
By comparing qualitatively the sensitivity functions for Biot and

Lewis parameters, it can be noted that the variations are very poor
for the Le L and Le R. It indicated that the estimation of these
parameters may be less accurate.

The variation of the criteria W as a function of the number of
measurement are shown in Fig. 8(a). As expected, it increases with
the number of measurement considered. The optimal design is
obtained when using the five measurements for the parameter
estimation problem. In Fig. 8(b), the variation of the criteria W
according to the time length of the experimental design is given.
The criteria reaches it maximal around t ¼ 5 h. This peak corre-
sponds to the increase of temperature and vapor pressure in the
material. After t ¼ 20 h, the criteria W scales with 0. It coincides
with the reach of the quasi-steady state in the process as noted
in Fig. 9. These results reveals that it is not necessary to increase
the duration of the experiment to ensure the maximum accuracy
when estimating the unknown parameters.

The correlation between the sensitivity functions are given in
Table 2. It is computed from the Jacobian matrix. The correlation

between the couple of unknown parameters Bi L; kH

q; 0; 1

	 

,

Bi R; kH

q; 0; 2

	 

, Bi L; Le L
	 


and Bi R; Le R
	 


is reduced by using mul-

tiple observations at different points in the material. One may con-
clude that all the unknown parameters are identifiable from a
practical point of view.
6.3. Parameter estimation

The parameter estimation problem is solved using the opti-
mization procedure described in Section 4.2 and the direct numer-
ical model detailed in Section 3. The discretisation parameters are
set to Dt ¼ 36 s and Dx ¼ 6 � 10�2 cm. In this way, one direct com-
putation of the numerical model requires 12 s, which corresponds
to a ratio of R cpu ¼ 0:13 s=h of physical simulation. The evolution of
the cost function and its gradient according to the iterations is
given in Fig. 11(a) and (b). Around 100 iterations are required for
the algorithm to estimate the parameters.

The estimated parameter after optimization are reported in
Table 3. The value of the parameter is in accordance with the phys-
ical expectations. As mentioned in [33,2], the heat and mass sur-
face coefficients scales with this order of magnitude. The heat
surface coefficient is higher for the left boundary. Indeed the left
boundary is in contact with the climatic chamber. The convective
heat transfer are probably higher in the climatic chamber than
inside the cube. Using the estimated parameter kq; 0; i, it corre-
sponds to a thermal conductivity of 0:14 W=ðm � KÞ,
0:12 W=ðm � KÞ and 0:09 W=ðm � KÞ at 20 �C for the layers 1, 2 and
3, respectively. This values are consistent with the thermal conduc-
tivity of spruce measured and reported in [34,35].

The error estimator of the parameters at the left boundary hL
q

and hL
m is particularly high. It is due to a low magnitudes of the

sensitivity coefficients of the Biot numbers at this boundary as
noticed when comparing Fig. 7(a)–(d). For the other parameters,
the uncertainty is very satisfactory, being at least one order lower
than the parameter value.

Fig. 9 shows a comparison between the experimental observa-
tions and the numerical predictions obtained with the seven esti-

mated parameters Bi L, Le L, Bi R, Le R, kH

q; 0; 1, kH

q; 0; 2 and kH

q; 0; 3. A
satisfactory agreement is remarked for all points of observations.
The predictions remains in the uncertainty band of the measure-
ments. Some little discrepancies are noted for the temperature
field at x ¼ x 3. The residual between the numerical computations
and the experiments are shown in Fig. 10(a) and (b) for vapor pres-
sure and temperature, respectively. The residuals are signed partic-
ularly at the beginning of the experiments t 2 0; 10½ � h, indicating



Fig. 9. Comparison between the numerical predictions with the estimated parameters Bi L , Le L , Bi R , Le R , kq; 0; 1, kq; 0; 2 and kq; 0; 3 and the experimental observations for vapor
pressure (a, c, e) and temperature (b, d, f).
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that some physical phenomena may be omitted in the description
of the mathematical model. Despite these observations, the resid-
uals remain under the uncertainty of the measurement as deduced
from Fig. 13 showing the probability density function of the rela-
tive residuals. For the sake of compactness, the probability density
function are only presented for x ¼ x 2 and x ¼ L.



Table 2
Correlation between the sensitivity coefficients.

for u for v

Bi L Le L Bi R LeR kH
q;0;1 kH

q; 0; 2 kH
q; 0; 3 Bi L Le L BiR LeR kH

q; 0; 1 kH
q;0;2 kH

q; 0; 3

Bi L 1 �0:3 �0:03 0:7 0:5 �0:4 �0:5 1 �0:3 �0:8 �0:5 �0:4 �0:7 �0:4

Le L 1 �0:7 0:5 0:6 0:5 �0:4 1 �0:1 �0:2 �0:1 0:2 0:3

Bi R 1 �0:2 �0:7 �0:8 0:6 1 �0:4 �0:5 �0:8 �0:4

LeR 1 �0:2 0:3 0:4 1 0:3 0:4 �0:02

kH
q;0;1

1 0:5 �0:8 1 0:5 �0:4

kH
q;0;2

1 �0:3 1 0:08

kH
q;0;3

1 1

Table 3
Values of the unknown parameters.

A priori value Estimated X p ¼ Bi; Le; kq; 0; i
� �

Estimated X p ¼ Bi; Lef g
Parameter p apr

k
p �
k Error estimator � k p �

k Error estimator � k

h L
q W=ðm2 � KÞ� � 10 7:76 	0:3 8:21 	0:1

hL
m s = m½ � 7:6 � 10�6 2:8 � 10�6 	4 � 10�5 2:6 � 10�8 	9 � 10�9

hR
q W=ðm2 � KÞ� � 5 6:4 	2 � 10�3 7:2 	7 � 10�3

hR
m s = m½ � 3:7 � 10�6 1:1 � 10�9 	8 � 10�10 2:7 � 10�6 	2 � 10�7

kq;0;1 W=ðm � KÞ½ � 6:3 � 10�2 8:2 � 10�2 	2 � 10�3 – –

kq;0;2 W=ðm � KÞ½ � 6:3 � 10�2 6:9 � 10�2 	1 � 10�3 – –

kq;0;3 W=ðm � KÞ½ � 6:3 � 10�2 3:1 � 10�2 	1 � 10�4 – –

Fig. 10. Residual between the numerical predictions and the experimental observations for vapor pressure (a) and temperature (b).

14 J. Berger et al. / International Journal of Heat and Mass Transfer 142 (2019) 118258
7. Evaluating the reliability of the mathematical model

To evaluate the reliability of the mathematical model with the
estimated parameters, the numerical predictions are compared
with other experimental observations. The latter is obtained in
the wall n �2 of the cube shown in Fig. 2(a). The numerical model
is used to compute the solution with the discretisation parameters
set to Dt ¼ 36 s and Dx ¼ 6 � 10�2 cm. The material properties are

detailed in Section 5.2. For the unknown parameters hL
q, h

L
m, h

R
q ,

hR
m and kq; 0; i; i ¼ 1; 2; 3f g, the estimated values reported in Table 3

are used. The boundary and initial conditions are given in
Section 5.3.
Fig. 12 compares the numerical predictions with the experi-
mental observations. A very satisfactory agreement is observed
between both results. A small discrepancy is observed for the tem-
perature at x ¼ 0. As mentioned before, the Biot and Lewis numbers
at this boundary have been determined with low confidence. Thus,
additional experimental observations should be generated using,
for instance, forcing conditions at the boundary x ¼ 0, to estimate
with better accuracy these two parameters.

To discuss further the robustness of the mathematical model,
two hypothesis are now discussed. First, the importance of the cou-
pling term cmq � @T@t in Eq. (1a) is evaluated. For this, using the esti-
mated values of the seven unknown parameters reported in
Table 3, an additional computation of the direct model is



Fig. 11. Convergence of the optimisation process: evolution of the cost function (a) and its variation (b) with the number of iterations.

Fig. 12. Comparison between the numerical prediction with the estimated parameters Bi L , Le L , Bi R , Le R , kq; 0; 1, kq; 0; 2 and kq; 0; 3 and experimental observations from another
wall for vapor pressure (a, c, e) and temperature (b, d, f).
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Fig. 13. Probability density function of the relative residual between the experimental observations and the numerical predictions for vapor pressure (a, c) and temperature
(b, d). The grey shadow represents the band of measurement uncertainty.

Fig. 14. Comparison between the numerical predictions and the experimental observations for vapor pressure (a) and temperature (b) at the quasi-steady state regime
t ¼ 96 h.
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performed setting to zero the coupling parameter g ¼ 0. The
impact of the coupling term is observed in Fig. 13(a) and (b). As
expected, when vanishing, the prediction of the temperature
almost do not change since the coupling term affects the mass
transport Eq. (1a). However, the relative error on the prediction
scales with �20% for the vapor pressure at x ¼ x 2. Thus, omitting
this term in the mass transport equation leads to an important
underestimation of the vapor diffusion process in the material.

The second hypothesis analyzed concerns the assumption of a
different thermal conductivity for each layer of the CLT panels.
Fig. 14(a) and (b) compares the numerical predictions with the
experimental measurements in the wall n �1 at the quasi-steady
state regime t ¼ 96 h. For vapor pressure, the hypothesis of consid-
ering a constant in space vapor diffusion is acceptable since the
slope of vapor pressure do not vary much according to space. On
the contrary, for temperature, the experimental measurement
seems to highlight three different slopes for each layer. Using the
estimated parameters, the direct model predicts three distinct pro-
files of temperature in each layer. Additional computations are car-
ried out considering a direct model with a constant in space
thermal conductivity equal to the a priori value
kq; 0; i ¼ 6:3 � 10�2 W=ðm � KÞ; i ¼ f1; 2; 3g. The unknown Biot and

Lewis numbers are then estimated using the same optimization
procedure. Results are reported in Table 3 in the column ‘‘Esti-
mated X p ¼ Bi; Lef g”. As shown in Fig. 13(c) and (d), the predic-
tion of the fields at the surface x ¼ L are not changed compared
to the previous optimization results. However, discrepancies in
the predictions appear at x ¼ x 2 as shown in Fig. 13(a) and (b). This
discrepancies can also be remarked in Fig. 14(b) for the measure-
ment inside the material. In addition, Fig. 11(a) reports that the
cost function is higher for the case searching only for the Biot
and Lewis numbers. Thus, one may conclude on the importance
of modeling the heat transfer process by considering a space
dependent thermal conductivity according to each layer. Without
this assumption, the prediction of the model are reliable only at
the boundaries.
8. Conclusion

The reliability of a numerical model is a crucial feature to pre-
dict the physical phenomena with accuracy. Several works in the
literature proposed an evaluation of the robustness of models for
heat and mass transfer in porous material by comparing the
numerical predictions to experimental observations. Nevertheless,
two major sources of error are identified. First, the heat and mass
surface transfer coefficients, which are generally assumed using
empirical correlations. The second source raises from the material
properties which are determined using the standard methods with
experimental data obtained in steady-state regime.

To faces this challenge, the article proposed to evaluate the reli-
ability of a model for an hygroscopic material, reducing these
sources of uncertainty. After presenting the mathematical model
of heat and mass transfer in Section 2, Section 3 detailed the
numerical model to compute the solution of the governing equa-
tions. It is based on an explicit unconditionally stable numerical
scheme. It permits to avoid costly subiterations at each time itera-
tions to treat the non-linearities of the problem. Furthermore, the
stability condition of the standard Euler explicit approach can be
relaxed to reduce the computational efforts. This feature is partic-
ularly important in the framework of parameter estimation prob-
lem. The experimental facility is composed of an enclosure made
with spruce CLT panels. The inside and outside air volumes tem-
perature and vapor pressure can be controlled. Two walls of the
small cube are monitored using sensors. The experimental obser-
vations are generated by forcing an increase of temperature in
the inside air volumes. It induces a diffusion process of heat and
mass from the inner to the outer parts of the walls.

In Section 6, a first set composed of five experimental observa-
tions is used to estimate seven unknown parameters in the model,
namely the heat and mass surface transfer coefficients and the
thermal conductivity of each of the three layers. The theoretical
identifiability of the unknown parameters is demonstrated. It
appears that the seven parameters are identifiable only because
the experimental design provides five measurements, located at
the boundaries and in each layer of the wall. Then, the practical
identifiability is verified by computing the sensitivity coefficients
of each parameter. Last, the results of the parameter estimation
problem are presented. The physical values of the parameters are
in accordance with several references from the literature. The use
of hybrid optimizer ensures an estimation in less than 60
iterations.

Last, the reliability of the model is evaluated by comparing the
numerical prediction to a second set of experimental observations
obtained in another wall for the same forcing conditions. A very
satisfactory prediction is observed highlighting the good reliability
of the model. The importance of the coupling between heat and
mass transfer is discussed. Furthermore, the importance of consid-
ering a space-dependent thermal conductivity is shown. It indi-
cates that the standard methods to determine this material
property is questionable for such hygroscopic material.

In this work, the experimental observations are generated
through an increase in temperature. The driven process is heat
transfer. Further works should focus on generating additional
experimental observations by forcing the mass transfer through
the material. It will require to improve the mathematical model
by integrating the hysteresis effects on the sorption curve, which
are particularly important for such materials.
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