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ABSTRACT 

The method of Elementary Effects (EE) is a parameter 

screening type sensitivity analysis technique that combines 

advantages of inexpensive one-at-a time methods and expensive 

variance decomposition based global Sensitivity Analysis (SA) 

techniques. Most of the sampling strategies for EE either use 

random sampling or maximize sample spread through 

oversampling. The Sampling for Uniformity (SU) is the only 

available strategy that combines the principle of sample spread 

with the principle of uniformity.  

In this work, we proposed modifications to SU (eSU) to 

further improve sample uniformity. Performance of eSU was 

compared to that of SU based on uniformity, sample spread, 

sample generation time, and screening efficiency. Importance 

of the concept of uniformity was strengthened as eSU 

outperformed SU across all evaluation criteria. Further, it was 

found that eSU does not need oversampling and can result in 

better screening with relatively few trajectories indicating 

significantly reduced requirement on computational resources. 
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NOMENCLATURE 

 

Tμ* set of important parameters identified from EE 

exercise based on μ* 

TST set of truly important parameters 

TimeQ Sample generation time normalized with respect 

to that of Q = 1 

Timer Sample generation time normalized with respect 

to  that of r = 4, Q = 1 

gST screening efficiency 

gSTQ screening efficiency normalized with respect to  

that of Q = 1 

k  number of parameters 
q  number of parameter levels 

Q oversampling size  

r number of trajectories 
Δ  parameter perturbation size in unit hyperspace 

µi* mean of absolute values of elementary effects 

associated with ith parameter 
µi  mean of elementary effects associated with ith 

parameter 
σi standard deviation of elementary effects 

associated with ith parameter 
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INTRODUCTION 
Sensitivity analysis (SA) is an extremely useful model 

evaluation technique that can serve many purposes such as 

model corroboration, parameter identification, research 

prioritization, model based decision making, and others [1,2]. 

Large scale system models such as climate models, 

environmental flow models, building energy models are 

characteristically high-dimensional, complex in nature and 

often require substantial simulation time. This large 

dimensionality poses numerous challenges in terms of 

computational resources on more rigorous SA techniques such 

as Sobol’ analysis [3-5]. Due to this, the Elementary Effects 

(EE) method [6] has received considerable attention during the 

last decade as it can perform Global Sensitivity Analysis (GSA) 

at an exceptionally low computational cost, though relatively 

qualitatively [7,8]. Several studies have recommended 

incorporation of the EE technique as an essential step to 

identify important parameters before implementing more 

rigorous model analysis (e.g., [9]). In some cases, modelers 

have relied solely on EE analysis (e.g., [10-12]) or used EE 

analysis to replace traditional design of experiments for 

laboratory studies [13]. 

The downside of the low computational cost of EE analysis 

is that the sample is a relatively sparse representation of the 

parameter space which can have substantial effect on screening 

performance. This has been the motivation behind the 

refinement of parameter sampling in EE analysis as evident 

from the development of as many as eleven different sampling 

strategies between 2006 and 2016 (Table 1). Note that these 

strategies vary in terms of sampling principles (e.g., (a) sample 

spread: Optimized Trajectories [OT], Modified Optimized 

Trajectories [MOT], Quasi OT [QOT], (b) local polytopes: 

Latin Hypercube One-at-a-Time, Simplex, Constellations, and 

others) and other characteristics (fixed step or variable step, 

winding stairs or radial trajectories, etc.). Literature survey 

indicates that fixed step trajectory-based sampling strategies are 

more popular among modelers. 

Khare et al. (2015) developed a trajectory-based sampling 

strategy – Sampling for Uniformity (SU) based on the dual 

principle of (a) uniformity and (b) spread. Their results pointed 

that sample spread does not play as important a role in 

enhancing screening efficiency of EE analysis as initially 

thought. A typical way of obtaining optimal sample spread, i.e., 

hyper distance between trajectories, is through oversampling. 

In OT and MOT (Table 1) oversampling refers to generating 

very large pool of parameter trajectories from which a final 

smaller sample is chosen while in SU it implies generating the 

entire parameter sample multiple times. Sample spread 

maximization algorithms in purely spread based techniques 

such as OT and MOT can make them impractically time 

consuming, especially in high-dimensional problems at 

recommended oversampling sizes, which was also noted by 

[15]. On the other hand, [14] concluded that improved sample 

uniformity in SU helped in producing better and stable 

parameter screening across a range of benchmark functions at 

just a fraction of the sample generation time of OT and MOT. 

Though SU was not the first strategy to recognize the 

importance of uniformity, it was the first one to explicitly use it 

as its sampling basis. 

Fixed grid trajectory based sampling for the method of EE 

assumes that all parameters follow discrete uniform 

distributions in unit parameter hyperspace [6]. The uniformity 

algorithm used in SU aimed at generating samples such that 

parameter distributions were discrete uniform for only the first 

and the last points of the trajectories. While this helped in 

improving the overall uniformity of the sample, it does not 

ensure or imply complete uniformity considering all sample 

points i.e., complete uniformity. This point continues to be a 

matter of concern since complete uniformity is a critical 

requirement of EE. 

 
OBJECTIVES  

The objective of this work was to modify SU to enhance 

the uniformity considering all sample points with the aim of 

improving screening efficiency without adversely impacting the 

time required for sample generation. The modified SU or 

enhanced SU (eSU), formulated by making changes to SU, was 

then compared to the original SU on the basis of uniformity, 

sample spread, sampling time, and screening efficiency. For the 

screening efficiency, a suite of six benchmark test functions 

was used. Since computational time and screening performance 

are affected by oversampling size (Q) and number of 

trajectories (r), SU vs. eSU comparison was extended to study 

these effects to identify ideal sampling settings for these 

techniques. 

ELEMENTARY EFFECTS METHOD 
The method of Elementary Effects (EE) or EE method [6] 

is a low-cost GSA technique typically used in parameter 

screening type of experiments. Sample consists of r trajectories 

each of (k+1) points such that from every trajectory k 

numerical derivatives (Elementary Effects), one corresponding 

to each parameter (model dimension) are calculated (Eq. (1)). 

The r trajectories give r EEs from the entire sample which are 

then statistically analyzed to estimate two sensitivity measures, 

µi and σi (Eq. (2a) and Eq. (3)). Measure μi was later modified 

to use the absolute value of the elementary effects, μ𝑖
∗ (Eq. (2b)) 

to make it suitable also for non-monotonic outputs [16]. 

 

𝐸𝐸𝑖 =  
𝑦(𝑝1,𝑝2,…,𝑝𝑖+∆,…,𝑝𝑘)−𝑦(𝑝1,𝑝2,…,𝑝𝑖,…,𝑝𝑘)

∆
                    (1) 

 

 

μ𝑖 =  
1

𝑟
∑ 𝐸𝐸𝑖

𝑗𝑟
𝑗=1                                                          (2a) 

 

μ𝑖
∗ =  

1

𝑟
∑ |𝐸𝐸𝑖

𝑗
|𝑟

𝑗=1                                                       (2b) 

σ𝑖 = √
1

𝑟
∑ (𝐸𝐸𝑖

𝑗
− μ𝑖)

𝑟
𝑗=1                                              (3) 
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where y = model, while p1, p2... pk = model parameters. 

Parameters are plotted in µ* - σ space to identify model 

behavior related to them and to segregate them into important 

and unimportant classes as schematically shown in Fig. 1. It has 

been empirically shown that µ* is equivalent of total effect 

sensitivity index calculated in variance decomposition based 

GSA techniques and is primarily used for parameter 

ranking/screening [16]. The total computational cost associated 

with EE method is r(k+1). Typically, r is chosen in the range of 

10-30. However, in the literature there is no consensus with 

different studies recommending from as few as 2 to as many as 

over 100 trajectories (e.g., [17-19]) without formally analyzing 

an ideal number for r across a range of functions.    

SAMPLING PROCEDURE: SU AND eSU  
Sampling for Uniformity (SU) is a trajectory based 

sampling scheme which uses a fixed grid to generate samples 

[14]. Fixed grid implies that each parameter can take only q 

values. EE sampling methods literature indicates that q is 

commonly set at 4. Figure 2a schematically shows the three-

step sampling procedure of SU. In the first step the first and the 

last points of all trajectories are sampled such that each level is 

sampled evenly for each of the parameters and the points are 

unique. The second step consists of randomly generating a 

unique perturbation vector for each trajectory so that the sample 

is unique. In the third step, steps 1 and 2 are repeated Q times 

and the trajectory set for which the spread is highest is selected 

as the final sample.   

In eSU, modifications were made to step 2 of SU (Fig. 2b). 

Instead of generating a separate perturbation vector for each 

trajectory, a fixed perturbation vector was proposed for all 

trajectories. Elements of this fixed vector are {1, 2, 3, 4, …, k-

1}. In other words, for all trajectories parameter coordinates are 

changed sequentially from 1 to k to form the remaining 

trajectory points. That is, the second point is formed by 

changing the first parameter coordinate of the first point, the 

third point is formed by changing the second parameter 

coordinate of the second point and so on (see Fig. 3). 

Two sets of numerical experiments were conducted to 

compare SU and eSU. The first targeted solely towards testing 

the efficacy of modifications to SU algorithm for uniformity 

enhancement. Following settings were used in these uniformity 

experiments. 

k = {10, 15, 20, 25, 30},  

r = {6, 8, 10,12}, Q = {300},  

Sampling Strategies = {SU, eSU} 

The uniformity of the generated samples, considering all 

sample points, was evaluated through  

(1) statistical testing using the Chi-square goodness of fit test 

for discrete uniform distribution at 5% significance level, and  

(2) exact match between generated and theoretical distributions.  

A second set of numerical experiments was conducted with 

the following settings to test impacts of Q and r on the overall 

efficiency of SU and eSU sampling in EE method (i.e., 

sampling and screening) considering: (a) Euclidian Distance 

(ED), (b) screening efficiency, and (c) sample generation time 

under following setting. 

k = {10, 15, 20},  

r = {4, 8, 20, 40},  

Q = {1,10,30,50,100,300,500,1000},  

q = 4,  

Sampling Strategies = {SU, eSU},  

Test Functions = {K10, O15, M20, B20, G20, GS20} 

Note that all experiments were repeated 100 times. 

Euclidean Distance (ED) has been used as a standard 

measure for the spread of sample points in the parameter 

hyperspace in OT, MOT, SU and QOT. We visually compared 

ED obtained for SU and eSU for all combinations of Q-r-k. For 

a given sample, first the distance between any two sample 

trajectories ‘a’ and ‘b’ is calculated (Eq. (4)) to obtain distance 

matrix of size r * r. Distances in this matrix are geometrically 

summed (Eq. (5)) to calculate ED of the sample. 

 

𝑑𝑎,𝑏 = ∑ ∑ √∑ [𝑋𝑖
𝑎(𝑧) − 𝑋𝑗

𝑏(𝑧)]2𝑘
𝑧=1

𝑘+1
𝑗=1

𝑘+1
𝑖=1                (4) 

 

𝐸𝐷 =  √∑ ∑ 𝑑𝑖,𝑗
2𝑟

𝑗=1
𝑟
𝑖=1                                                      (5) 

 

Sample generation time, on a given machine, for a specific 

dimensionality is affected by Q, r, and optimization scheme for 

ED/sampling strategy. To compare relative time efficiency of 

eSU with respect to SU, ratio of corresponding sample 

generation time for each combination of Q-r-k was calculated. 

As presented later, it was clear that eSU requires less 

computation time. Hence, effects of Q-r were analyzed for eSU 

alone. To study the impact of Q on time, raw time values were 

normalized as TimeQ using Eq. (6) 

 

𝑇𝑖𝑚𝑒 𝑄 =  
𝑡𝑖𝑚𝑒(𝑒𝑆𝑈,𝑟,𝑄,𝑘)

𝑡𝑖𝑚𝑒(𝑒𝑆𝑈,𝑟,𝑄=1,𝑘)
                                            (6) 

On the other hand, effect of r on time was studied by 

calculating Timer using Eq. (7) 

 

𝑇𝑖𝑚𝑒𝑟 =
𝑡𝑖𝑚𝑒(𝑒𝑆𝑈,𝑟,𝑄,𝑘)

𝑡𝑖𝑚𝑒(𝑒𝑆𝑈,𝑟=4,𝑄=1,𝑘)
                                                (7) 

The last evaluation criteria used in this study is the 

parameter screening efficiency, defined as the skill score gST, 

the ratio of the number of important parameters correctly 

identified by EE analysis to the number of important 

parameters (Eq. (8)).  

 

𝑔𝑆𝑇 =  
𝐶𝑜𝑢𝑛𝑡(𝑇𝜇∗∩𝑇𝑆𝑇)

𝐶𝑜𝑢𝑛𝑡(𝑇𝑆𝑇)
                                                      (8) 

This screening efficiency concept was also used in other 

works [14,17,20] to assess the impact of sampling strategies on 

parameter screening. As noted earlier, sensitivity measure μ* is 

equivalent to the total effect sensitivity index from variance-

based GSA, making usage of gST justifiable.  
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For all six test functions (K10, O15, B20, G20, GS20, and 

M20) used in this screening efficiency study, important 

parameters can be identified through analytical expressions or 

are known from the literature. The number following the 

function indicates the dimensionality of the corresponding test 

functions. For example, B20 means that test function is B and it 

has 20 parameters. Details of these functions are given in the 

Appendix A. 

gST can range between 0 and 1, with 1 being the perfect 

screening. Unlike sampling time, gST is not affected by 

machine used for computations or by dimensionality of the 

model. The only factors affecting it are Q, r, and sampling 

scheme. To study the effect of Q on gST we further normalized 

gST scores (gSTQ) by corresponding gST for eSU at Q = 1 as 

shown in Eq. (9). Note that gSTQ can be greater than 1. gSTQ 

results were plotted for all r-test function sampling strategy 

combinations. 

 

𝑔𝑆𝑇 𝑄 =  
𝑔𝑆𝑇(𝑆𝑆,𝑟,𝑄,𝑓𝑢𝑛)

𝑔𝑆𝑇(𝑒𝑆𝑈,𝑟,𝑄=1,𝑓𝑢𝑛)
                                        (9) 

 

where, SS = sampling strategy (SU or eSU); fun = test function. 

Effect of r on gST was studied by plotting gST averaged 

over all Q values for each of the six test functions (Table 2 and 

Table 3). This was possible because for any given function, 

variation of gST with Q was found to be minimal and without 

any increasing trend. 

RESULTS 

Uniformity 

The average fraction of parameters passing the Chi-square 

goodness of fit tests for the discrete uniform distribution are 

presented in Table 2. It can be observed that for all 

combinations of r–k–sampling strategy, uniformity deteriorated 

with increasing k, except for r = 8 and 12 in the case of eSU 

(where there were no failures i.e., samples were perfectly 

uniform). For SU uniformity improved with increase in r (for 

any given k). Overall for any given r-k combination eSU 

samples were more uniform compared to SU samples and the 

rate of uniformity deterioration was smaller. 

When the uniformity was tested using a different criterion 

(average fraction of parameters with a perfect discrete uniform 

distribution), it was observed that samples were far away from 

being perfectly uniform for all r–k combinations for SU (Table 

3).  

On the other hand, in the case of eSU samples were 

perfectly uniform irrespective of k for r = 8 and 12. 

Euclidean Distance (ED) 

Figure 4 shows ED plotted against Q for various k (10, 15 

and 20) for r = 8. For all three model dimensionalities, ED 

between trajectories for eSU was higher than that of SU. Also, 

ED for eSU did not show much variation with Q. In the case of 

SU, ED values somewhat increased, however this trend was 

marked by considerable fluctuations. Similar results were 

observed for other k-r combinations. Importantly, eSU 

produced better and stable sample spread regardless of the 

oversampling size.  

Sample Generation Time 

Table 4 summarizes the time requirement of eSU sampling 

relative to SU. The sampling time ratio was found to be less 

than 1 irrespective of Q-r-k combinations. The ratio varied 

between 0.73 and 0.97, indicating eSU marginally reduced 

sampling time with respect to SU. This study considered 

dimensionalities only up to 20. Since in higher dimensions 

(often the case with complex models) sampling time can be of 

the order of days, even this marginal time improvement can 

prove to be beneficial [21]. 

Effect of Q and r on Sample Generation Time 

Normalized sample generation time TimeQ was plotted 

against Q for each combination of k-r used in numerical 

experiments. Figure 5 shows results for k = 15 and r = 8. It can 

be observed that TimeQ increased linearly with Q. Note that 

TimeQ vs. Q plots for other k-r combinations were identical to 

Fig. 5. Figure 6 shows plots of normalized sample generation 

time (Timer) against r for all values of Q considered in 

numerical experiments for k = 15. For each Q, Timer followed 

power law, Timer = a rb, with b varying in a narrow range of 

1.58 to1.6. Timer-r relationships for k = 10 and 20 are not 

presented here for the sake of convenience. However, results 

were similar to those for k = 15. These Timer results indicate 

sample generation time increases very rapidly with r. 

Screening Efficiency 

The main purpose of any EE exercise is to identify 

important model parameters which makes screening efficiency 

the most important evaluation criteria used in this study. We 

studied effects of both the ingredients of sample size, i.e., r and 

Q on gST. Since the interest was in identifying relative 

efficiency of eSU against SU, appropriate normalizations were 

applied to raw gST scores to segregate corresponding effects. 

Effect of Q on Screening Efficiency 

The relative normalized skill score gSTQ was plotted 

against Q for each test function for both SU and eSU at 

different values of r as shown in Fig. 7. Each row of subplots 

corresponds to one test function, while each column 

corresponds to one r value. Each subplot has two lines: solid 

line for eSU and dotted line for SU. It can be observed that 

irrespective of the test function, eSU performed better 

screening as SU curves were always lower or overlapping with 

eSU curves. Surprisingly, neither eSU nor SU showed 

improvement in gSTQ scores with respect to Q for any test 

function at any r. 

The vertical differences between SU and eSU curves 

varied from function to function. For example, in case of M20 

SU and eSU curves very much overlapped, while for O15 and 

G20 they remained well separated. For remaining functions, 

i.e., K10, B20, and GS20 relative performances were strongly 
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affected by r as vertical differences between SU and eSU 

curves distinctively diminished at higher r. 

Effect of r on Screening Efficiency 

To explicitly evaluate effect of r on gST, gST scores 

averaged over all Q values were plotted along with 

corresponding standard deviations as error bars as shown in 

Fig. 8. Both SU (dotted lines) and eSU (solid lines) showed 

saturation curve type behavior with respect to r. For all six 

functions eSU had higher (or same) gST score compared to SU, 

irrespective of r. Also, error bars for eSU were smaller than 

those of SU indicating that eSU results in more stable 

screening. The vertical separation between SU and eSU curves 

varied from function to function. For K10, B20, and GS20 

functions the two curves came closer with increasing r while in 

O15 and G20 the behavior was opposite. 

DISCUSSION 
Sampling for EE experiments is constrained by many 

aspects such as sample size (number of trajectories), 

computational time requirements, and other sampling concepts 

like sample spread and uniformity. This multi-faceted nature of 

the problem has driven EE sampling research in different 

directions. In this study, our focus was to verify finding of [14] 

that sample uniformity plays extremely important role in the 

successful application of EE method, through the development 

of eSU algorithm. At the same time, attempts were made to put 

light on optimal sampling setting for the proposed method. To 

emphasize, EE sampling being a multi-faceted problem one 

needs to look at all possible aspects simultaneously to draw any 

concrete conclusions.  

The uniformity results indicated that the new algorithm for 

the perturbation vector enhanced uniformity of SU. 

Interestingly in the SU – eSU comparison, perfect sample 

uniformity was achieved only for eSU when r = 8 and 12. Note 

that in this study q = 4 was used. Based on this we hypothesize 

that eSU generates perfectly uniform samples when r is a 

multiple of q. Values of r used in second set of experiments 

were selected based on this. With these perfect uniformity 

settings, in second set of experiments, eSU was found to 

produce higher EDs compared to SU along with higher gST 

score across suite of 6 test functions. Also, effect of Q on ED 

and gST was found to be minimal. Again, we can attribute this 

to the improved uniformity of eSU. These findings also imply 

that oversampling is not necessary for eSU. Since oversampling 

has been the main reason of excessive sample generation time 

requirements, ‘no oversampling necessary’ finding for eSU is a 

significant breakthrough. 

Results of gST variation with r indicated that ideal sample 

size (i.e., number of trajectories necessary for robust screening) 

depends on characteristics of model/function under 

consideration. Yet, for the suite of 6 test functions eSU could 

correctly screen 96% and 98% of parameters with r = 8 and 20, 

respectively.  

On the other hand, r = 40 was not able to produce 100% 

accurate screening, implying that increasing number of 

trajectories may not guarantee accurate screening due to the 

asymptotic behavior of gST vs. r curve. Based on these results, 

an initial recommendation of r between 8 and 20 can be made 

for screening type of EE applications. These findings need to be 

further studied by analyzing a wider range of test functions. 

SUMMARY 
The algorithm for the perturbation vector in the sampling 

strategy of SU for the screening method of EE was modified 

with the aim of enhancing uniformity of generated samples. 

This modified version of SU called eSU indeed enhanced 

sample uniformity along with substantial improvement in 

screening efficiency without adversely affecting the 

computational demand. Rather, it was found that oversampling 

is not necessary in the case of eSU paving the way for 

substantially reducing sample generation time. Overall, eSU 

outperformed SU across all four (uniformity, parameter spread, 

sampling time and screening efficiency) evaluation criteria. We 

attribute superior performance of eSU to its ability to produce 

perfectly uniform samples with larger sample spread without 

oversampling when the number of trajectories is a multiple of 

number of parameter levels. Pending further investigation, it is 

recommended to use 8 to 20 trajectories for eSU when it is used 

in EE screening exercises. MATLAB implementation of eSU is 

available for free download from 

http://abe.ufl.edu/carpena/software/SUMorris.shtml. 
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Maxwell, R.M., 2014. “Insights on geologic and 

vegetative control over hydrologic behavior of a large 

complex basin – Global Sensitivity Analysis of an 

integrated parallel hydrologic model,” Journal of 

Hydrology 519: 2238-2257. doi: 

10.1016/j.jhydrol.2014.10.020. 

[12] Fezi, K. and Krane, M.J.M., 2017. “Uncertainty 

quantification in modelling equiaxed alloy solidification,” 

International Journal of Cast Metals Research, 30(1), 34-

49. 

[13] Rodea-Palomares, I., Gonáalez-Pleiter, M., Gonzalo, S., 

Rosal, R., Leganés, F., Casellas, M., Muñoz-Carpena, R., 
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APPENDIX A 

TEST FUNCTIONS 
Details of test functions and the sets of important 

parameters are as presented below:  

 

SOBOL’ G FUNCTION 

Sobol’ G function or simply G function [22] is one of the 

standard test functions used in many studies (e.g., [16,23,24]). 

It is a strongly non-linear and non-monotonic function (JCR 

EC, 2010). 

Sets of function coefficients, important parameter, in the 

descending order of ranks, for the G function configurations in 

this study are as follow: 

a = {0.03, 0.05, 0.78, 0.79, 1, 1.25, 2.6, 2.8, 6, 40, 41, 49,     

50, 52, 89, 90, 91, 92, 93, 94}, 

TST = {X1, X2, X3, X4, X5, X6, X7}, 

#T = 7 

Analytical expressions to calculate total effect sensitivity 

indices for this function can be found in [25]. 

 

MODIFIED G OR G* FUNCTION 

The G function was modified by [25] to add complexity 

and flexibility (curvature, shift, etc.) to the function. The G* 

function has been used consistently in recently published works 

(e.g., [17]).  

Sets of function coefficients, important parameter, in the 

descending order of ranks, for the G* function configurations in 

this study are as follows: 

a = {100, 0, 100, 100, 100, 100, 1, 0, 100, 100, 0, 100, 100, 

100, 1, 100, 100, 0, 100, 1}, 

α = {1, 4, 1, 1, 1, 1, 0.5, 3, 1, 1, 2, 1, 1, 1, 0.5, 1, 1, 1.5, 1, 

0.5}, 

TST = {X2, X8, X11, X18},  

#T = 4 

Analytical expressions to calculate total effect sensitivity 

indices for this function can be found in [25]. 

 

B FUNCTION 

The B function is a non-additive test model developed by 

[1]. It has been used as a test case in a number of recent studies. 

Sets of function coefficients, important parameter, in the 

descending order of ranks, for the B function configurations in 

this study 

μ ={2, 2, 3, 1.5, 3, 3, 2, 2, 2, 1, 1, 2, 2, 2, 3, 3, 1.5, 3, 2, 2}, 

σ ={0.5, 0.5, 1, 1, 2, 2, 1, 0.5, 1.5, 2, 2, 2, 1, 1, 1, 3, 3, 3, 5, 

5}, 

TST = {X10, X20, X6, X9, X19, X5, X16},  

#T = 7 

Analytical expressions to calculate total effect sensitivity 

indices for this function can be found in [25]. 

 

M FUNCTION  

The 20-parameter polynomial test function proposed by [6] 

has been the most regularly used test case in parameter 

screening experiments. The first and total effects sensitivity 

indices were calculated in an independent experiment using 

Sobol’ method and verified with values published in [17] based 

on which following parameters were identified as important  

TST = {X1, X4, X2, X9, X10, X8, X5, X3, X6, X7},  

#T = 10 

 

O FUNCTION 

The O function is a 15-parameter test model proposed 

by [31].  

Model coefficient values can be downloaded from 

http://www.jeremy-oakley.staff.shef.ac.uk/psa_example.txt. 

Sets of important parameters were identified from the analytical 

sensitivity indices in [1]. 

TST = {X15, X11, X12, X13, X14, X9, X8}, 

#T=7
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TABLE 1. Summary of Sampling Strategies for the Method of Elementary Effects (EE). 

Method 
Trajectory 

Based
1
 

Fix Step Random Principle Authors 

Morris Y Y Y -- [6] Morris (1991) 

Optimized Trajectories 

(OT) 
Y Y Y Sample Spread  

[16] Campolongo et al. 

(2007) 

LH-OAT Y N Y LHS 
[26] van Griensven et al. 

(2006) 

Simplex Based Y N Y 
Simplex 

Formation 
[27] Pujol (2009) 

Cell Based N Y Y -- [28] Saltelli et al. (2009) 

Radial Sampling N N N Extended OAT 
[17] Campolongo et al. 

(2011) 

Modified OT Y Y Y Sample Spread  [29] Ruano et al. (2012) 

Constellation Based Y N Y 
Constellation 

Formation 

[30] Santiago et al. 

(2012) 

Quasi-OT Y Y Y Sample Spread [15] Ge et al. (2015) 

SU Y Y Y 
Uniformity and 

Sample Spread 
[14] Khare et al. (2015) 

Radial Morris N Y Y Radial [20] Xiao et al. (2016) 

Radial Quasi-Random N Y Y Radial [20] Xiao et al. (2016) 

1 – Trajectory based implies winding staircase type structure 

TABLE 2. Average fraction of parameters passing the Chi-square goodness of fit test for a discrete uniform  

distribution at 5% significance level considering all sample points, for Sampling for Uniformity (SU) and  

enhances Sampling for Uniformity (eSU).
 
Q = 300 was used and the averages are from 100 experiments. 

  SU eSU 

k r = 6 r = 8 r = 10 r = 12 r = 6 r = 8 r = 10 r = 12 

10 0.693 0.754 0.706 0.727 1.000 1.000 1.000 1.000 

15 0.539 0.550 0.548 0.559 0.867 1.000 1.000 1.000 

20 0.456 0.445 0.444 0.450 0.800 1.000 1.000 1.000 

25 0.376 0.362 0.357 0.384 0.680 1.000 0.920 1.000 

30 0.291 0.314 0.316 0.324 0.667 1.000 0.800 1.000 

 

 

TABLE 3. Average fraction of parameters with a perfect discrete uniform distribution considering all sample  

points, for Sampling for Uniformity (SU) and enhances Sampling for Uniformity (eSU).
 
Q = 300 was used  

and the averages are from 100 experiments. 

  SU eSU 

k r = 6 r = 8 r = 10 r = 12 r = 6 r = 8 r = 10 r = 12 

10 0.000 0.009 0.000 0.000 0.000 1.000 0.000 1.000 

15 0.004 0.001 0.000 0.003 0.067 1.000 0.067 1.000 

20 0.000 0.000 0.000 0.000 0.000 1.000 0.000 1.000 

25 0.000 0.001 0.000 0.001 0.040 1.000 0.040 1.000 

30 0.000 0.000 0.000 0.000 0.000 1.000 0.000 1.000 
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TABLE 4. Summary of ratio of sample time generation for eSU and SU under various combinations of  

oversampling size (Q), number of trajectories (r) and model dimensionality (k) 

Q 1 10 30 50 100 300 500 1000 

r k = 10 

4 0.85 0.79 0.81 0.80 0.81 0.80 0.80 0.80 

8 0.83 0.83 0.83 0.82 0.83 0.82 0.81 0.84 

20 0.92 0.90 0.90 0.89 0.90 0.90 0.90 0.91 

40 0.97 0.93 0.94 0.93 0.94 0.94 0.93 0.92 

r k = 15 

4 0.75 0.81 0.78 0.78 0.76 0.79 0.80 0.77 

8 0.78 0.80 0.80 0.80 0.80 0.80 0.81 0.81 

20 0.90 0.88 0.89 0.88 0.88 0.89 0.90 0.88 

40 0.92 0.93 0.93 0.91 0.94 0.94 0.94 0.94 

r k = 20 

4 0.75 0.76 0.77 0.75 0.77 0.76 0.78 0.77 

8 0.73 0.74 0.75 0.75 0.75 0.76 0.75 0.76 

20 0.85 0.84 0.85 0.86 0.84 0.84 0.86 0.86 

40 0.96 0.93 0.92 0.93 0.92 0.92 0.93 0.91 

 

 

 

FIGURE 1. SCHEMATIC OF PARAMETER SCREENING USING METHOD OF EE  

(MODIFIED FROM [32]) 
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Generate end points of 

trajectories such that all 

parameter levels are sampled 

evenly and points are 

unique. 

 

Generate unique perturbation 

vector for each trajectory to 

complete sample and check if 

all points are unique or not. 

 

Calculate  
Euclidean Distance ED

i
 

If i > 1 and ED
i
 > ED

i-1
 

Sample = Sample
i
 

else 
Sample = Sample

i-1
 

 

 STOP 

i = Q? 

NO 

NO 

NO 

i = i +1 
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STEP 3 

 

 
Generate end points of 

trajectories such that all 

parameter levels are sampled 

evenly and points are 

unique. 

 Use fix perturbation 

vector {1,2,3,..., k} for 

each trajectory to 

complete parameter 

sample. 

 

Calculate  
Euclidean Distance ED
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FIGURE 2. SCHEMATIC REPRESENTATION OF ALGORITHMS USED TO GENERATE 

PARAMETER SAMPLES USING SU AND ESU. 
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FIGURE 3. EXAMPLE OF TRAJECTORY FORMATION USING FIXED PERTURBATION  

VECTOR IN ESU FOR A 4-PARAMETER MODEL. 
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FIGURE 4. VARIATION OF EUCLIDEAN DISTANCE (ED) OF GENERATED SAMPLE WITH  

OVERSAMPLING SIZE (Q) FOR THREE MODEL DIMENSIONALITIES (K) AND  

8 TRAJECTORIES (I.E., R = 8). 

 

 

 

FIGURE 5. VARIATION OF NORMALIZED SAMPLE GENERATION TIME (TIME
Q

) WITH  

OVERSAMPLING SIZE (Q) FOR DIMENSIONALITY (K) = 15 AND NUMBER OF TRAJECTORIES  

(R) = 8. FOR ALL OTHER K-R COMBINATIONS TIME
Q

 VS. Q, PLOTS WERE IDENTICAL. 
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FIGURE 6. VARIATION OF NORMALIZED SAMPLE GENERATION TIME (TIME
R
)  

WITH NUMBER OF TRAJECTORIES (R) FOR K = 15. NOTE THAT RESULTS FOR K = 10  

AND K = 20 WERE SIMILAR. 
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FIGURE 7. VARIATION OF NORMALIZED SCREENING EFFICIENCY GST
Q 

WITH Q FOR  

THE SIX TEST FUNCTIONS (K10, O15, M20, B20, G20, GS20) FOR TWO SAMPLING STRATEGIES  

(SU AND ESU) AT FOUR SAMPLE SIZES I.E. NUMBER OF TRAJECTORIES (R). 
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FIGURE 8. VARIATION OF SKILL SCORE (GST) W.R.T. NUMBER OF TRAJECTORIES (R) FOR ALL  

SIX TEST FUNCTIONS. THE GST SCORES PLOTTED HERE WERE AVERAGED OVER ALL  

OVERSAMPLING SIZES (Q). ERROR BARS CORRESPOND TO STANDARD DEVIATION.

 


