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Abstract Many modern global optimization algorithms
are inspired by natural phenomena rather than classes
of mathematical functions. Theorems such as No Free
Lunch imply that an algorithm’s performance on an ob-
jective function is determined by the compatibility be-
tween the function and its structure. Grouping by inspi-
ration blurs the distinction between algorithms, making
it harder to study compatibility. Therefore, this work
treats algorithms as sequential sampling algorithms,
and groups them by sampling scheme: 1. perturb every
design (e.g., Particle Swarm), 2. perturb a subset of
designs (e.g., rand/1/bin Differential Evolution), 3. per-
turb a single design (e.g., best/2/bin Differential
Evolution), 4. deterministically modify and then perturb
the design (e.g., Quantum Particle Swarm). Using 295
analytical test cases, the structure and performance of
38 biologically inspired algorithms (major and minor
variations of 5 algorithms) are compared by group.
The groups are evaluated by 1. how performance scales
with dimensionality, and 2. trends in mean convergence
rates and accuracy. Controlling for sample size, number
of algorithms/group, convergence criteria, and tuning
parameters, Groups 2 and 3 demonstrate superior accu-
racy and convergence rates on 80 % of test cases com-
bined, implying greater overall compatibility than other
groups, and scale much better than other groups on 2nd

and 4th order polynomials up to 100-dimensions, con-
verging to minima 3–6 orders of magnitude lower.
Statistical significance testing reveals overlap in the be-
havior of certain Group 2 and 3 algorithms on 52 test
cases. Group 3 is a special case of Group 2, further
implying structural compatibility with certain test cases.

Keywords Global optimization . Comparative analysis .

Single-objective optimization

Nomenclature
BAT Bat-inspired algorithm
CKO Cuckoo search algorithm
DE Differential evolution family of algorithms
BST best/2/bin DE variant
DN3 Donor3 DE variant
STD rand/1/bin DE variant
TDE Trigonometric DE variant
FFA Firefly algorithm
MQP Modified quantum-behaved particle swarm algorithm
QPS Quantum-behaved particle swarm algorithm
PSO Particle swarm optimization algorithm
PRD Particle swarm with random differences

1 Introduction

Biologically inspired algorithms are usually analyzed as
independent entities. However, it has been observed that
steps from one algorithm can often appear in another,
making several of these algorithms similar, sometimes
to an extreme (Weyland April-June 2010). In the case
of algorithms introduced as a collection, such as
Differential Evolution (DE), the similarity is intentional
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(Storn and Price 1997). In other cases, it is the result of
merging two algorithms into one, as in PSO-DV from
(Das et al. 2008). In still other algorithms, it appears
unintentional. An example could be a comparison of the
“difference vector” in PSO-DV to the “empty nest” op-
eration in (Yang and Deb 2010) discussed below.

Since most of these methods are zeroth order (no
gradient information is used), the authors must rely on
roughly the same set of mathematical operations in or-
der to develop their algorithm, and similarities naturally
emerge. For example, they may use relative objective
function values, simple linear combinations of vectors,
or statistical measurements, which partially explains the
prevalence of ranking techniques, weighted averages, or
random perturbations (such as those presented below).

In light of this trend, this paper will examine 38 algo-
rithms (variations of five principal algorithms) grouped by
their common traits, and connect these traits to trends in
their performance. In order to identify broad trends, the
algorithms will be executed on 295 analytical test cases
from the Schittkowski & Hock standard test case collec-
tion (SHC) (Schittkowski and Hock 1981; Schittkowski
1987). The SHC contains analytical problems ranging
from 2-dimensional, unconstrained problems to 100-
dimensional unconstrained problems, as well as heavily
constrained problems of varying dimensionality, and con-
tinuous or discontinuous objective functions with and
without symmetries. Although no set of test cases is ex-
haustive, this set is too diverse to perfectly tune any
known algorithm on, improving the resulting analysis’
utility (Ahrari et al. 2010). Readers unfamiliar with the
SHC should note that the test cases are not all numbered
sequentially (e.g., there are no test cases numbered 120-
199), therefore, the final test case is #395.

Rather than simply compare algorithm convergence
speeds, this paper seeks to address some questions of
why a particular algorithm works well on the SHC (see
(Hooker 1995)). Completely answering the question is a
daunting task beyond the scope of this work (see
(Culberson 1998)). An ideal metric for this would be
some easily quantifiable measure of compatibility.
Although Wolpert, Macready and other authors have dem-
onstrated that an algorithm’s relative superior performance
on a problem is caused by its compatibility with that
problem (Wolpert and MacReady 1997; Droste et al.
2002; Radcliffe and Surry 2005), such measures do not
appear to be widely circulated, and may still be very few
in number. In an effort to quantify compatibility based on
algorithm characteristics, this paper will associate perfor-
mance with the common traits of algorithms using special
analyses including: (a) how performance scales with the

number of design variables, (b) how types of algorithms
(based on their common features) fare on the SHC set of
test problems as a whole, and (c) how optimization algo-
rithms of a certain type compare to one-another on the
SHC.

2 Optimization algorithms

Classical optimization algorithms are often developed by
making assumptions about the nature of the objective
function. Many modern global optimization algorithms,
however, are based on observations from biology or
physics (these will be referred to as MGOAs) and make
few or no assumptions about the problem (Culberson
1998). Since the MGOAs examined here stochastically
update their designs within some vector space, the algo-
rithms will be treated as sequential sampling algorithms
with no regard given for their sources of inspiration. As
such, these algorithms have three key features: (a) a
sample size, (b) an equation for generating a new sam-
ple, and (c) convergence criteria. This research focuses
on the equation for generating new samples, and
Section 2.1 discusses how algorithms will be grouped
based on similarities in these equations. The remainder
of this subsection will briefly discuss the remaining key
features of these algorithms.

As with any sampling algorithm, the sample size is
crucial to the accuracy of the statistic being estimated.
MGOA authors have suggested everything from increas-
ing the sample size exponentially, linearly, or even loga-
rithmically with problem dimension, to suggesting values
that do not require scaling the sample size with problem
dimension (Das et al. 2008; Gendreau and Potvin 2010;
Yang 2010a). This ambiguity does not exist in methods
that guarantee the identification of the global minimum
(referred to as “exact optimization algorithms,” EOAs, in
the literature (Rothlauf 2011; Rardin and Uzsoy 2001)).
An exhaustive search algorithm can solve a combinatorial
black-box minimization problem with a sample size equal
to a full factorial of the problem dimension (the sample
size is infinite if the problem is continuous). In cases
when the objective function is known, EOAs can be prov-
en to require polynomial time/memory, exponential time,
etc. The ambiguity in MGOAs suggests that the sample
size required by an algorithm on a known problem can be
correlated with its compatibility to that problem, provided
that the MGOA has a non-zero probability of identifying
the global minimum. The question then becomes, how can
this correlation be used to measure an increase or decrease
in compatibility between algorithms? Following that
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thought to its extreme: if an algorithm is systematically
altered such that its compatibility successively increases,
is it not possible, in principal, to reverse engineer an exact

optimization algorithm? In this paper the sample size for
all algorithms is determined by (1), a nonlinear function
developed for (Inclan 2014),

T ¼ ceil
ceil 12:59

ffiffiffiffiffiffiffiffiffiffi
dim23

p� �
þ ceil 14:142

ffiffiffiffiffiffiffiffi
dim

p� �þ ceil 65:5log10dimð Þ
3

0
@

1
A ð1Þ

where T is the sample size, dim is the dimension of the
design space, and ceil is a function that rounds a number
up to the nearest integer. Currently, no theoretical justifi-
cation exists in the literature for why an MGOA ought to
have a particular sample size for a particular problem. All
recommendations are empirical and case-specific, includ-
ing (1), which was developed using the SHC. Although
sample size is often treated as a tuning parameter, it is a
control variable in this work. Standardizing tuning param-
eters in this way enables statements about performance to
be more easily attributed to an algorithm’s structure.
Readers will find that the performance of the MGOAs
discussed here will vary with sample size on individual
problems within the SHC as a direct consequence of the
No Free Lunch Theorem (Wolpert and MacReady 1997).

A variety of convergence criteria exist in the literature,
which, like optimization algorithms (Droste et al. 2002),
can be “deceived” when applied to an incompatible prob-
lem, resulting in premature or poor convergence. For ex-
ample, convergence based on the improvement in the val-
ue of the objective function can fail when the objective
function is nearly flat. Convergence based on satisfying
the Karush-Kuhn-Tucker conditions will fail when the
gradients of the constraints are linearly dependent at the
point of interest. Some authors have incorporated multiple
convergence criteria along with a rule system that decides
which criterion to activate in an effort to avoid this issue
(e.g., Dulikravich et al. 1999), but even a hybrid conver-
gence criteria is “a” convergence criteria that can be de-
ceived by some unforeseen circumstance. Poorly selected
convergence criteria can make an algorithm that is com-
patible with a problem appear incompatible, thereby bias-
ing the analysis of the algorithm. Although it is impossi-
ble to decouple convergence criteria from an algorithm,
the algorithms in this paper are simply stopped after 200
iterations so that any bias can be attributed exclusively to
premature convergence.

For constrained optimization, some additional mechanism
is needed to guide the algorithm’s sample into the feasible
design space and prevent it from escaping. Constraint enforce-
ment techniques typically either modify the algorithm or the

objective function (Coello Coello 2002). The method chosen
here is a penalty function developed for (Inclan 2014) given
by (2):

P x!
� �

¼
XI

i¼1

hi x!
� ���� ���þXJ

j¼1

max 0; g j x!
� �h i

þ k F x!
� �

; k≤ I þ J ð2Þ

where k is the number of violated constraints, and I + J is the
total number of constraints. Note that the objective function, f,
is translated according to (3):

F x!
� �

¼ f x!
� �

− f min ð3Þ

where fmin is the published global minimum value. The com-
plete objective function is,

U x!
� �

¼ F x!
� �

þ P x!
� �

ð4Þ

Thus, the constrained objective function’s global minimum
is always zero, which facilitates debugging.

Side constraints, which bound a design variable, are
enforced by projecting the violating point to the edge of the
boundary it violates (see “Nearest” method in (Helwig and
Branke 2013)). Some of the SHC are unbounded in one or
both directions for some or all of the dimensions of the design
space. Although the algorithms presented here do not require
explicit bounds, the random number generator used to create
the initial set of designs requires them (Sobol’s algorithm, see
(Burkardt 2009; Bratley and Fox March 1988; Sobol 1976)),
therefore unbounded problems were truncated to some “large
interval.” With few exceptions, unbounded domains were set
to [−300,300] with no special consideration given to how it
affects problem symmetry (if any).

2.1 Algorithm groups

Wherever possible, this paper will preserve the notation uti-
lized by the authors in their original papers. However, in order
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to avoid confusion, all of the algorithms described in the pro-
ceeding subsections will utilize the notation that follows. Let
Xg be the set of all vectors in the algorithm’s sample during a

given iteration, and the vectors, x!g
, are elements of Xg. The

superscript, g, is the symbol for iteration number because
MGOA literature often uses the term “generation” to mean
iteration. Let Y g be a proper subset of Xg of size S < T.

x!
g
j x!

g
∈X g

n o
ð5Þ

Yg⊂X g ð6Þ

Let the subscripts i and j denote an element of Xg and Y g,
respectively. Let the subscript c denote a vector in Xg that con-
tains some special characteristic, such as being the vector with
the lowest objective function value inXg (it need not be unique).

x!
g

i j x!
g

i ∈X
g ∀i∈T

n o
ð7Þ

x!
g

j j x!
g

j∈Y
g ∀ j∈S

n o
ð8Þ

x!
g

c j x!
g

c∈X
g; c∈T

n o
ð9Þ

The algorithm categories are all based on the general for-
mula in (10):

x!
gþ1

i ¼ d
!g

þ p!
g

ð10Þ

This means that these algorithms generate a new sample for

the next iteration (g + 1), by selecting a vector d
!
, and perturbing

it using a vector p!. The vector, d
!
, is computed deterministical-

ly, while the perturbation vector, p!, is computed stochastically.
Another interpretation of (10) is that these algorithms iteratively
sample a region bounded by p!. If p! has a mean value of zero,

then this region is also centered at d
!
. Let us define one more

vector, w!g
, as a vector that is not an element of Xg,

w!
g
jw!

g
∉X g

n o
ð11Þ

Although w!g
is not an element of Xg, it may be determin-

istically constructed from elements of Xg. Similarly, p! may
be constructed from elements of X g. Finally, the algorithm
groups are,

Group 1 x!gþ1

i ¼ x!g
i þ p!g ð12Þ

Group 2 x!gþ1

i ¼ x!g
j þ p!g ð13Þ

Group 3 x!gþ1

i ¼ x!g
c þ p!g ð14Þ

Group 4 x!gþ1

i ¼ w!g þ p!g ð15Þ

Group 1 algorithms produce a new sample by perturbing
every vector in the current sample. In this sense, Group 1
algorithms operate like a Random Walk algorithm (Yang
2010a) with an initial sample size greater than one. Group 2
algorithms produce a new sample, by perturbing a subset of
the vectors in the current sample. The subset may be selected
randomly or deterministically. Group 3 algorithms are a spe-
cial case of a Group 2 algorithm. Here, a specific element is
selected to be perturbed, usually because of some desired at-
tribute. The vector possessing this attribute may change from
one iteration to the next. Group 3 algorithms include older
methods such as Grid Search and Random Search
(Vanderplaats 2005). Group 4methods generate a vector using
some formula, and perturb that vector. For the purposes of this
paper, methods containing equations from multiple groups
will be classified as hybrids, and their resemblance to other
methods will be discussed.

Some of the algorithms discussed here will contain two
other features that significantly affect their performance. The
first is a recursive perturbation vector that takes the form,

p!g ¼ f p!g−1� �
ð16Þ

Recursion introduces a form of “memory” to the algorithm,
which moves it away from the blind-search approach common
to many MGOAs (Culberson 1998). The second feature is
elitism, which, in the simplest case, takes the form,

Ygþ1⊂X g ð17Þ

That is, some members of the new sample are simply copied
over from the previous sample (as often seen in Genetic
Algorithms (Gendreau and Potvin 2010)). The algorithms here,
however, contain operations that function like elitism without
explicitly copying over old vectors. They include: (a) compara-
tive updates, in which the vector in the new sample only re-
places the vector in the old sample if it is superior to the old
vector, and (b) reference points, in which the perturbation equa-
tion includes vectors specifically selected to “guide” the search
(usually due to having lower objective function values than the
rest of the sample). Comparatives updates is a strong form of
elitism, whereas reference-point elitism is a weak form (it is
possible for the reference point to disappear from the sample).
The precise impact of recursion and elitism within groups and
across groups will be the subject of future investigations.

2.2 Particle swarm optimization (PSO)

PSO (Kennedy and Eberhart 1995) is a very popular algorithm
that has been the topic of several individual and comparative
studies (for example (Das et al. 2008; Vesterstrom and
Thomsen 2004; Angeline 1998; van den Bergh and
Engelbrecht 2006)), and has inspired numerous variations
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including some described below. It is a Group 1 algorithm
with recursion and reference-point elitism that uses (18–19):

x!gþ1

i ¼ x!g
i þ p!g

i ð18Þ

p!g ¼ α p!g−1
i þ βR1 x!g

best;i− x!g
i

� �
þ γR2 x!g

best;G− x!g
i

� �
ð19Þ

where the perturbation vector is known as the “velocity vector,”
α, β and γ are user defined scalars, and R1 and R2 are uniformly
distributed random numbers ϵ [0,1]. Some authors cast the equa-
tion in such a way that the coefficients α, β and γ are related to
another scalar called the “constriction factor” (Das et al. 2008;
van den Bergh and Engelbrecht 2006), which can be tuned to
control the overall behavior of the perturbation term. Here, the
scalars are tuned independently. The recursive term is called the
“inertia,” that reflects a swarm’s resistance to changing direction.
In problems where the global minimum is located at the bound-
ary of the search domain, the inertia term can cause PSO to
repeatedly overshoot the domain boundary. Since side con-
straints are enforced by projecting the violating vector compo-
nent back to the boundary, PSO’s inertia term enables it to iden-
tify the global minimum faster (Helwig and Branke 2013). The
vector x!best;i corresponds to the best value ever held by the ith

design vector (referred to as the “individual best”). If γ=0, the
algorithm can be referred to as “individuality-only PSO,” be-
cause each vector’s search direction becomes decoupled from
the other vectors (the “individual’s” behavior is independent of
the others). The vector x!best;G is the best solution ever found by
the algorithm (referred to as the “global best”). If β=0, the
algorithm can be referred to as “sociability-only PSO,” indicat-
ing that the vectors all move toward the same point (i.e., “social”
behavior). In this work, the global best is updated at the end of a
full iteration, rather than immediately after a superior design is
identified. The algorithm can be described as follows:

1. Initialize sample

2. Initialize set of individual best vectors (copy of initial sample)

3. Store global best vector

4. Initialize perturbation vector

5. While convergence criteria not met…

a. For every design in the sample …

i. Apply (19) to every design in sample (generates new sample)

ii. If new point is superior to old individual best, replace old
individual best with new point

b. If any point in new sample is superior to global best, replace global
best with new point

6. Check convergence criteria

Thus, we see that due to PSO’s recursive nature it
must store the sample in memory, in addition to a set of
individual best vectors, the global best vector, and a set
of perturbation vectors.

2.3 Quantum-behaved particle swarm (QPS)

Drawing some inspiration from PSO, QPS borrows the con-
cept of a set of individual best vectors and also utilizes the
global best vector (Inclan et al. 2013; Sun et al. 2004), but it is
a fundamentally different algorithm. QPS does not use recur-
sion (no inertia term) but does use a form of reference-point
elitism. QPS is a Group 4 algorithm that uses (20–23),

x!gþ1

i ¼ 0
!þ p!g

i ¼ p!g
i ð20Þ

Original:

p!g
i ¼ ϕ x!g

best;i þ 1−ϕð Þ x!g
best;G þ αU C

!g
− x!

g

i

��� ��� ð21Þ

ϕ ¼ βR1

βR1 þ γR2
ð22Þ

αU ¼ �αln 1
�
R3

� �
ð23Þ

Relaxed:

p!g
i ¼ ϕ x!g

best;i þ 1−ϕð Þ x!g
best;G þ αU C

!g
− x!

g

i

� �
ð24Þ

where C
!g

is the “mean best value” which is simply the arith-
metic mean of the individual best vectors for each iteration. The
first two terms of (21) (the terms scaled by ϕ) are collectively
called the “local attractor.” Note that (20) is centered at zero,
whichmeans that thismethod samples probabilistically through-
out the domain, with no deterministic focus on one region. The
scalars R1, R2 and R3 are uniformly distributed random numbers
ϵ [0,1], and α, β and γ are user-defined scalars. The original
form of the perturbation equation in (Sun et al. 2004) is (21),
which computes the difference between C

!g and x!g
i within an

absolute value rather than parentheses. The ± operation in (23) is
resolved simply by assigning a 50 % probability that the term
will be either positive or negative. Since the absolute value
function and the ± operation serve similar purposes, then (24),
which is the relaxed form of (21), will be examined in order to
draw attention to the characteristics of αU. Since the scalars ϕ
and αU are functions of randomly generated numbers, their
probability distributions are no longer uniform.

Thus ϕ ϵ [0,1], while αU ϵ (−∞,∞). Note that the x-axis of
Fig. 1b is logarithmic. The majority of αU observations range
from −100 to 100, which can cause large variations in the per-
turbation vector. Therefore, this sampling scheme (i.e., the loca-
tion of the perturbation vector for each new sample) is some-
where along the line segment connecting x!best;i to x!best;G, and
then displaced by some modest, but potentially large value
along the line connecting the current sample point to the mean
individual best. If all of the individual best points are clustered
close together, (23) can still cause sampling far from this cluster,
which may or may not be desirable for a given problem.

Demonstration of effective global optimization techniques 183

Author's personal copy



The algorithm can be described as follows:

1. Initialize sample

2. Initialize set of individual best vectors (copy of initial sample)

3. Store global best vector

4. Compute/store mean of individual best vectors

5. While convergence criteria not met…

a. For every design in the sample …

i. Use (21) to generate new design

ii. If new point is superior to old individual best, replace old
individual best with new point

b. If any point in new sample is superior to global best, replace global
best with new point

6. Check convergence criteria

Due to the lack of an inertia term, QPS requires less mem-
ory than PSO.

2.4 Modified quantum-behaved particle swarm (MQP)

The only difference between the MQP algorithm presented
here (Sun et al. 2007), and QPS, is the local attractor. Recall
(24) from QPS,

p!g
i ¼ ϕ x!g

best;i þ 1−ϕð Þ x!g
best;G þ αU C

!g− x!
g

i

� �

In MQP, the second term is replaced by (25–26),

p!
g

i ¼ ϕ x!best;i þ 1−ϕð Þ G!þ αU C
!g

− x!
g

i

� �
ð25Þ

if U x!
g

best; j

� �
< U x!

g

best;i

� �

G
!g

¼ x!
g

best; j
else

G
!g

¼ x!best;G

ð26Þ

where x!g
best; j is the individual best of a randomly selected

vector such that j ≠ i (Sun et al. 2007). The rest is identical
to QPS. Since the change is applied only to the perturbation
vector, MQP is also a Group 4 algorithm.

2.5 Firefly algorithm (FFA)

Although it has been demonstrated that FFA can reduce to a
special form of PSO (Yang 2009), FFA distinguishes itself from
all other algorithms here due to its relative complexity. Each
design in the sample is compared to every other design in the
sample. This structure causes a naïve implementation of the
algorithm to be O(T2) with respect to the number of compari-
sons it performs, while remaining O(T) in terms of the number
of objective function evaluations per iteration. All other algo-
rithms here are O(hT), where h is a constant. When applied to
problems with high dimension (dim >50) and rapidly computed
objective functions, the difference in performance is noticeable
even on modern computers. Additionally, FFA is classified as
Group 4 without recursion, and with reference-point elitism
based on its current implementation, but can be easily converted
into a Group 1 algorithm. The equations are:

x!gþ1
i ¼ w!g

i þ p!g
i ð27Þ

w!g
i ¼ a0 x!g

i þ
Xm
j¼1

aj x!g
j ð28Þ

p!g
i ¼ b u! ð29Þ

u!¼
Xdim
k¼1

αR1Lkêk ð30Þ

wherem is a number less than T that varies per design vector, a0,
aj, and b are scalar functions that vary for each design at each
iteration, and u! is a randomized vector comprised of the user-
defined constant α, the uniformly distributed random number R1
ϵ [−0.5,0.5], and the constant Lk, which is the width of the
domain along a coordinate direction of the design space, denoted
by êk. The scalars a0, aj, and b are derived from the expressions,

if U x!g
j

� �
< U x!g

i

� �

x!g;new
i ¼ x!g

i þ βi j x!g
j− x!g

i

� �
þ u!

ð31Þ

βi j ¼ β0−βminð Þe−γ r2i j þ βmin ð32Þ

Fig. 1 Histogram of a ϕ, for
β= γ= 2 and b αU, for α= 1,
based on 10 million random
samples. These plots highlight the
way in which standard
distributions can be combined to
produce new behavior. Critically,
αU can take on enormous values,
which can dramatically alter the
performance of QPS in
unbounded domains
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where β0, βmin, γ are user-defined scalars, and rij is the
Euclidean distance between x!g

j and x!g
i . Note that

x!g;new
i is not the same as x!gþ1

i . FFA checks the con-
dition in (31) for all pairs of design vectors i ≠ j, and
displaces x!g

i each time the condition is true. FFA only
evaluates the objective function after each design has
been displaced according to (31).

For example, suppose T= 3, and the sample is sorted
from lowest to highest objective function value. We
now loop over the sample to apply (27). In order to
compute (27), each design must be checked against ev-
ery other design and (31) must be applied as many

times as the condition holds. For x!g
1, the condition

always fails, therefore it is not displaced. For x!g
2, how-

ever, the condition is true once (when it is compared to

x!g
1 ). Therefore, x!g;new

2 becomes,

x!g;new
2 ¼ x!g

2 þ β21 x!g
1− x!g

2

� �
þ u! ð33Þ

Now consider x!g
3. In this case, the first time the condition

is triggered ( x!g
3 vs. x!g

2 ), x!g;new
3 becomes,

x!g;new
3 ¼ x!g

3 þ β32 x!g
2− x!g

3

� �
þ u! ð34Þ

When x!g
3 is compared to x!g

1, the condition is triggered
again (recall that the objective function was not evaluated on

x!g;new
3 ). Let us call the previous result from (34), x!*

3

x!g;new
3 ¼ x!3

* þ β31 x!g
1− x!3

*
� �

þ u! ð35Þ

x!g;new
3 ¼ x!g

3 þ β32 x!g
2− x!g

3

� �
þ u!

þ β31 x!g
1− x!g

3−β32 x!g
2− x!g

3

� �
− u!

� �
þ u! ð36Þ

Therefore, the reader can confirm that,

x!gþ1
1 ¼ x!g

1 ð37Þ

The algorithm’s reference-point elitism is made explicit
in (37). PSO’s reference point elitism would operate the
same way were it not for the inertia term. Notice also in
(38) and (39) that the magnitude of the perturbation vector
is also a function of the design vector’s rank (in terms of its
objective function value). This function becomes approxi-
mately linear when the sample is spaced very far apart.
Therefore, if the design vector in question is located far
from the rest of the sample, and the sample size is large,
it can experience very large fluctuations (especially if it is
the worst design in the sample), but if the design vector is
close to the rest of the sample, the perturbations are
governed by the values of α and Lk. The algorithm can
be summarized as follows:

1. Initialize sample

2. While convergence criteria not met…

a. For every design in the sample …

i. Compare “this” design to “every other” design using the condition
in (31)…

A. If the condition is true, apply (31)

3. Check convergence criteria

As stated earlier, it is the inner loop (step i) that drives the
computational expense of this algorithm. A MATLAB imple-
mentation of this algorithm can be downloaded from (Yang
2010b).

2.6 Differential evolution (DE)

DE is a family of algorithms. Although these algorithms con-
tain the same essential structure, each of the variants discussed
here fall into a different category. All of the DE algorithms use
comparative updates, and none use recursion. A comparative
update takes the form,

if U x!
new

i

� �
< U x!

g

i

� �

x!
gþ1

i ¼ x!
new

i
else

x!
gþ1

i ¼ x!
g

i

ð40Þ

Strictly speaking, since every method uses a condition
to form its new design vectors, these methods could be
classified as hybrids. However, since the alternative of
each condition is simply the unperturbed vector, it would
not properly fall into the Group 1 category. Therefore,

(38)

(39)
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these methods will be classified based on their primary
equation, which is a reasonable classification when the
condition is triggered at a high frequency. The four forms
of DE reviewed here include the so-called rand/1/bin
(STD), proposed in (Storn and Price 1997), which is a
Group 2 algorithm,

x!
new

i ¼ x!
g

j þ p!
g

ð41Þ

if R < CR; or k ¼ k*
xnewi;k ¼ xgj;k þ pgk

else
xnewi;k ¼ xgi;k

ð42Þ

pgk ¼ F xa;k−xb;k
� � ð43Þ

best/2/bin (BST) also proposed in (Storn and Price 1997),
which is a Group 3 algorithm,

x!
new

i ¼ x!
g

c þ p!
g

ð44Þ
if R < CR; or k ¼ k*

xnewi;k ¼ xgbestG;k þ pgk
else

xnewi;k ¼ xgi;k

ð45Þ

pgk ¼ F xa;k þ xb;k−xc;k−xd;k
� � ð46Þ

Donor3 (DN3), proposed in (Fan et al. 2003), which is a
Group 4 algorithm,

x!
new

i ¼ 0
!þ p!

g
ð47Þ

if R < CR; or k ¼ k*
xnewi;k ¼ pgk

else
xnewi;k ¼ xgi;k

ð48Þ

pgk ¼
R1xa;k þ R2xb;k þ R3xc;k

R1 þ R2 þ R3
þ F xb;k−xc;k

� � ð49Þ

and Trigonometric DE (TRG), proposed in (Lampinen and
Fan 2003), which, in this form, is a modification of rand/1/
bin. This variant applies a “trigonometric mutation” equation
with a certain user-defined probability, Mt, and Eqs. (42) and
(43) with the complement of that probability. Since the trigo-
nometric mutation is a deterministic combination of three ran-
domly selected vectors, it will be treated as a modification of a
Group 2 algorithm, rather than a hybrid of a Group 2 algo-
rithm with a Group 4 algorithm. That is, if the same three
vectors are selected for this operation, the end result will be
the same. The probability of selecting the same three vectors
increases as sample size decreases, therefore, in some appli-
cations, this operation can produced several copies of the same
vector if used frequently. The presence of duplicates would be

essentially zero if the operator contained a random number.
The equations for TRG are,

if RM < Mt

x!
new

i ¼ w!
else

Apply 42ð Þ; 43ð Þ
ð50Þ

where,

w!¼ 1

3
x!
g

a þ x!
g

b þ x!
g

c

� �
þ qb−qað Þ x!

g

a− x!
g

b

� �

þ qc−qbð Þ x!
g

b− x!
g

c

� �
þ qa−qcð Þ x!

g

c− x!
g

a

� �
ð51Þ

q0 ¼ U x!
g

a

� ���� ���þ U x!
g

b

� ���� ���þ U x!
g

c

� ���� ��� ð52Þ

qa ¼ U x!
g

a

� ���� ���.q0

qb ¼ U x!
g

b

� ���� ���.q0

qc ¼ U x!
g

c

� ���� ���.q0

ð53Þ

In the preceding equations, CR is a user-defined con-
stant called the “cross-over rate,” F is a user-defined
scalar, R, R1, R2, R3, and RM are uniformly distributed
random numbers ϵ [0,1], the subscripts a, b, c, and d
denote that the vector was randomly selected from the
sample, and the subscript k denotes the component of the
vector being modified. The index k* is randomly selected
to guarantee that at least one component of each vector
in the current sample is modified according to the DE
equations. The majority of the randomness in the stan-
dard form of these equations is introduced through CR.
Were it not for CR, the argument could be made that
these equations should all be treated as essentially deter-
ministic formulations (similar to the argument made for
the TRG variation). While not proposed for the purpose
of increasing randomization, three types of modifications,
presented in (Inclan and Dulikravich 2013), draw more
performance out of DE while minimizing the changes
made to the implementation of DE.

2.6.1 Randomly varying parameters (-R)

Randomly varying both F and CR within some interval,
rather than setting them as constants, dramatically im-
proves the convergence speed and robustness of the DE
methods in many test functions. Setting F as a random
number causes the perturbation vectors to fully match
the definition stated for this paper. The randomized
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values of F and CR used here were tuned on the SHC
(Inclan and Dulikravich 2013). See also (Das et al.
2005, 2008) for discussions of similar ideas.

2.6.2 Special vectors (-V)

Including special vectors in the population (such as the
weighted average) after each iteration has been shown
to improve performance on a variety of problems due to
symmetries within the function (Inclan and Dulikravich
2013). An average vector, and a weighted average vec-
tor are used for this purpose. This modification is sim-
ilar to the TRG modification in that it is a deterministic
formula. However, these particular special vectors are
introduced to the new sample by replacing the worst
designs of the current sample.

2.6.3 Sorted comparisons (-S)

DE normally compares a newly created design to an
original design based on the order in which it was gen-
erated. This technique sorts the newly created popula-
tion from best to worst, and the original population
from worst to best before executing the comparison.
This modification was also applied to every variation
of DE. For example, rand/1/bin with sorted comparisons
will be denoted as STD-S.

The DE family of algorithms is structured as follows:

1. Initialize sample

2. Create empty container of size T to store xnew sample

3. While convergence criteria not met…

a. For every design in the sample …

i. Apply (41-53 depending on type)

ii. If new design is superior to current design, replace, as in (40)

4. Check convergence criteria

The use of comparative updates eliminates the need
to store the global best vector separately. Therefore, DE
requires more memory than FFA, which does not save a
secondary sample, but less than the other algorithms
presented thus far.

2.7 Bat-inspired algorithm (BAT)

The BAT algorithm discussed here was originally pro-
posed in (Yang 2010c) (not to be confused with
(Malakooti et al. 2012)). In essence, this is a method
that merges together a form of PSO (Group 1) with a
type of Group 3 algorithm. It also utilizes recursion (an

inertia term identical in form to sociability-only PSO),
reference-point elitism, and comparative updates.

if R1≤r
x!
new

i ¼ x!
g

i þ p!
g

1
else

x!
new

i ¼ x!
g

c þ p!
g

2

ð54Þ

p!
g

1 ¼ p!
g−1

i þ f x!
g

i − x!
g

best;G

� �
ð55Þ

f ¼ f min þ f max− f minð ÞR2 ð56Þ

x!
g

c ¼ x!
g

best;G ð57Þ

p!
g

2 ¼ A1R3 ð58Þ

where r, A1, fmin, and fmax are user-defined scalars, R1, and R2

are uniformly distributed random numbers ϵ [0,1], and R3 is a
uniformly distributed random number ϵ [−1,1]. Note that (55)
causes the algorithm to search some distance from x!g

i in the
direction away from the global best (the direction opposite
sociability-only PSO) when inertia is zero, while (58) causes
BAT to search in the vicinity of the global best using a random
walk. Similar to DE, the BATcomparative update condition is,

if U x!
new

i

� �
< U x!

g

i

� �
and R4 < A2

x!
gþ1

i ¼ x!
new

i
else

x!
gþ1

i ¼ x!
g

i

ð59Þ

where R4 is a uniformly distributed random number ϵ [0,1]. It
is unclear from (Yang 2010c) whether or not the A1 in (58) is
different fromA2 in (59), but theMATLAB implementation of
the code, found in (Yang 2012), suggests that they are
different.

The structure of this algorithm brings to light an interesting
feature about some of the operations used in these algorithms.
Reference-point elitism and comparative updates are certainly
not mutually exclusive. However, comparative updates can
easily decouple the recursion term from the design vector it
is supposed to reflect. In this algorithm, the perturbation term
is always computed according to (55), regardless of which
condition in (54) was triggered. Therefore, as the algorithm
proceeds, if the second condition is triggered rather than the
first, the recursive term no longer has the same meaning that it

would in PSO. Additionally, if x!new
i is rejected during the

comparative update, the perturbation is totally decoupled from

x!g
i because it no longer reflects the true perturbation of x!g

i
during the iteration prior to the comparison.
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The algorithm’s structure can be summarized as follows,

1. Initialize sample

2. Create empty container of size T to store xnew sample

2. While convergence criteria not met…

a. For every design in the sample …

i. Compute p!g
1 according to (55)

ii. Execute condition in (54) and apply appropriate equation

iii. Execute condition (59) and, if true, replace current design vector
with new design

3. Check convergence criteria

This very compact algorithm utilizes the same amount of
memory as DE.

2.8 Cuckoo search (CKO)

The final algorithm considered here is CKO (Yang and Deb
2010). It is a Group 1 algorithm that uses DE-style compara-
tive updates. Recall that these have the form,

if U x!
new

i

� �
< U x!

g

i

� �

x!
gþ1

i ¼ x!
new

i
else

x!
gþ1

i ¼ x!
g

i

The main drawback of this algorithm is that it requires two
objective function evaluations per iteration. The first update,
called the Lévy flight operation, is executed according to (60-61),

x!
new

i ¼ x!
g

i þ p!
g

i ð60Þ

pgi;k ¼ 0:01
σN 1N3

N 2j j1
.

β

xgi;k−x
g
bestG;k

� �
ð61Þ

where, N1, N2, N3 are normally distributed random numbers
centered at zero, β is a user-defined parameter, k is the dimen-
sion number, and σ is a scalar function of β, depicted in Fig. 2,

The σ is a discontinuous, complex-valued function,
but for β ϵ [1,1000], the real values of σ ϵ (0,8) as
computed using the MATLAB 7.10.0 R2010a imple-
mentation of the gamma function. For all practical pur-
poses, is can be assumed that σ increases smoothly with
β for small, positive values of β, and remains O(1).

As with QPS, the combination of random numbers in (61)
results in a new distribution. Let us collect the coefficients in
(61) into one coefficient, σN. Rewriting (61),

pgi;k ¼ σN xgi;k−x
g
bestG;k

� �
ð62Þ

σN ¼ 0:01
σN 1N3

N2j j1=β
ð63Þ

Although σN varies with β, users typically implement
MGOAs with uniquely specified constants. Suppose the user
sets β = 1.5, as recommended in (Yang and Deb 2010).
Sampling from σN yields (Fig. 3).

The resulting distribution returns values very close to
zero with very high frequency. The implementation of
CKO used here was written in C++ and uses uniformly
distributed random numbers (R1, R2, and R3) bounded
by [−1.1, 1.1] in the place of N1, N2, and N3. This form
is called σU, and is given by,

σU ¼ 0:01
σR1R3

R2j j1
.

β

ð64Þ

The distribution of σU is sharper than σN, but produces very
similar behavior near zero. Thus, in general, perturbation
Eq. (61) moves the design point some very small distance
toward or away from the global best. It has the same form as
(55) from BAT, without recursion.

The second update in CKO, called the “empty nest” oper-
ation, is based on a condition with (65-66),

if R4 > q

x!
new

i ¼ x!
g

i þ p!
g

i

ð65Þ

R4 > q

x!
new

i ¼ x!
g

i þ p!
g

i
ð66Þ

where q is a user-defined scalar, R4 and R5 are uniformly
distributed random numbers ϵ [0,1], and the subscripts a and
b denote vectors randomly selected from the current sample. If
the same design vector is selected for both the Levy Flight and
Empty Nest operations, and retained by the algorithm, then

Fig. 2 Plot of σ vs. β. Complex valued σ not shown. The non-uniqueness
and discontinuities of this function indicate the unusually significant
impact tuning β can have on CKO performance
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the final form of the update for that design vector at the end of
the iteration is,

x!
gþ1

i ¼ x!
g

i þ σN x!
g

i − x!
g

bestG

� �
þ R5 x!

g

a− x!
g

b

� �
ð67Þ

which has the same form as the equation for the “current-to-
best” variant of DE (Storn 1996). The complete CKO algo-
rithm can be summarized as follows,

1. Initialize sample

2. Create empty container of size T to store xnew sample

3. While convergence criteria not met…

a. For every design in the sample …

i. Apply (60),(61)

ii. If new design is superior to current design, replace, as in (40)

iii. Execute condition (65), and if true, apply the equation (65),(66)

iv. If new design is superior to current design, replace, as in (40)

4. Check convergence criteria

The question of when the additional computational ex-
pense of separating (67) into two steps is warranted will be
the subject of future research. Interested readers are referred to
(Yang 2010d) for a MATLAB implementation of CKO.

3 Numerical results

3.1 Numerical experiment setup

A numerical experiment is the application of an optimization
algorithm to a test case in the SHC (test cases 85, 356, 360,
and 365 were omitted). For each numerical experiment, the
optimization algorithm was executed for 200 iterations. In
order to establish statistical significance, the numerical exper-
iments (per test case, and per algorithm) were repeated 50
times, each with a new, randomly generated initial population.

Tuning an algorithm’s parameters to a set of test cases can
make it difficult to generalize conclusions drawn from those

experiments (Rardin and Uzsoy 2001). To further complicate
matters, recall that as a consequence of the No Free Lunch
Theorem (Wolpert and MacReady 1997), “even a computer
program (implementing an Evolutionary Algorithm) contain-
ing programming errors can perform better than some other
highly tuned algorithms for some test functions” (Oltean
2004). Recall that this work seeks to measure performance
based on group type and treats this measurement as a possible
indicator of fundamental compatibility between an algorithm
and a test case. An example of fundamental compatibility
would be an algorithm that guarantees the identification of a
descent direction on a convex optimization problem because
such a property would make convergence to the global mini-
mum inevitable for a range of user-defined parameters. An
example of trivial compatibility would be any algorithm that
converges to the global minimum solely because the right
user-defined parameters were luckily selected. Therefore,
tuning each algorithm to the whole SHC (rather than individ-
ual test cases) is used here solely for the purpose of making
performance across the SHC more easily attributable to group
type. However, exhaustively tuning each algorithm, as in
(Pedersen 2010), is prohibitively computationally expensive
for this research, outside its scope, and would require more
thorough testing to determine whether or not observations
based on those parameters can be generalized. The values of
the user-defined parameters provided for each algorithm in
Table 1. With the exception of DE variants -V, -S, and -VS,
all algorithms are tuned to the SHC. The un-tuned DE variants
use parameters suggested in literature because the variants that
include -R are their tuned counterparts. In some cases, the
tuned algorithms were close enough to their published recom-
mended values that the published values were used instead.
The references are provided to facilitate comparisons.

For the reader’s convenience, the group numbers for
each algorithm are provided in Table 2. Recall that the
objective functions used here have a global minimum
value of zero. If an algorithm converges to an objective
function value of 10−7 or lower, it is deemed to have
found the global minimum. In this sense, the objective

Fig. 3 Histogram of a σN for
β= 1.5, and b σU for β= 1.5,
based on 10 million random
samples. Although b is more
sharply peaked than a, the
similarity in these plots
demonstrates that (64) can be
used in lieu of (63) without
dramatically altering the behavior
of CKO
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function is being used as a measure of accuracy, although,
the true measure of accuracy is the Euclidean distance
between the converged design vector and the true global
minimum design vector. Since this paper focuses on large
trends over hundreds of test cases, the objective function
measure of accuracy will suffice.

3.2 General results

3.2.1 Highest accuracy and convergence rate by group – all
algorithms

The first performance metric to be considered is the highest
mean accuracy and highest convergence rate (HAHC). This
metric measures performance on a given objective function
by identifying the algorithm that was both the fastest

(converged in the fewest number of objective function evalua-
tions), and most accurate (lowest objective function value) on
average for a given problem. The algorithm with HAHC is the
algorithm that attained the lowest mean objective function val-
ue for a given objective function. If multiple algorithms attained
the same result, the algorithm with the fastest convergence rate
is selected as the one with HAHC for that objective function.
The algorithm’s convergence is measured based on the objec-
tive function value of the global best design vector after each
objective function evaluation. Recall that for CKO this means
that its convergence rate per iteration is halved. Note, also, that
this metric does not incorporate a Kolmogorov-Smirnov test to
determine whether the converged results are statistically distin-
guishable (see Section 3.2.2 for additional comments on this).

Figure 4 shows the proportion of test cases for which
any algorithm from a given group attained the HAHC.
The most successful strategies were in Groups 2 and 3.
Figure 5 shows the proportion of test cases for which the
algorithms in each group attained the HAHC (the total of
the bars in each sub-plot is the height of the bar for the
corresponding group in Fig. 4). The single most success-
ful algorithm was BST-RV (best/2/bin with randomized
parameters that also copied the sample mean, and sample
weighted mean into the sample for the next iteration). The
five best performing variations of BST each attained

Table 1 User-defined parameter values for each algorithm, including modified algorithms

Algorithm/Acronym Parameter values References

PSO
Particle Swarm

α = 0.5, β = γ = 2
initial perturbation = 0

(Inclan et al. 2013)

QPS
Quantum-Behaved Particle Swarm

α decreases linearly from 1 to 0.5, per iteration
β = 2.95, γ = 1.16

(Sun et al. 2007)

MQP
Modified Quantum-Behaved Particle Swarm

α decreases linearly from 0.83 to 0.4, per iteration
β = 0.96, γ = 2.71

(Sun et al. 2007)

FFA
Firefly Algorithm

α decreases linearly from 0.563 to 0, per iteration
γ = 0,66, β0 = 2.88, βmin = 0.35

(Yang 2009)

BAT
Bat-Inspired Algorithm

A2 decreases exponentially from 0.25 to 0, per iteration
fmin = 0.6757, fmax = 0.7902, A1 = 0.2792, r = 0.1405

(Yang 2010c, 2012)

CKO
Cuckoo Search

β = 1.6246 (σ ≈ 0.6103), q = 0.0111 (Yang and Deb 2010)

DE (type – modification)
Differential Evolution Family of Algorithms

Recall modification labels are: (-R) randomized parameters,
(-V) special vectors, and (-S) sorted comparisons.
Randomized parameters are recalculated for each design
vector, each iteration.

(Inclan and Dulikravich 2013)

STD, STD-V, STD-S,
STD-VS
rand/1/bin

F = 0.8, CR = 0.9, (no tuning performed)

STD-R, STD-RS,
STD-RV, STD-RVS
rand/1/bin

F ϵ [0.4,0.8], CR ϵ [0.7,0.9]

BST, BST-V, BST-S,
BST-VS
best/2/bin

F = 0.8, CR = 0.9, (no tuning performed)

BST-R, BST-RS,
BST-RV, BST-RVS
best/2/bin

F ϵ [0.2,0.8], CR ϵ [0.6,1]

DN3, DN3-V, DN3-S,
DN3-VS
Donor 3

F = 0.8, CR = 0.9, (no tuning performed)

DN3-R, DN3-RS,
DN3-RV, DN3-RVS
Donor 3

F ϵ [0.4,0.8], CR ϵ [0.4,0.8]

TRG, TRG-V, TRG-S,
TRG-VS
Trigonometric

F = 0.8, CR = 0.9, (no tuning performed)

TRG-R, TRG-RS,
TRG-RV, TRG-RVS
Trigonometric

F ϵ [0.4,0.8], CR ϵ [0.7,0.9]

Table 2 Algorithms
listed by group number Group Number Algorithms

1 PSO, CKO
2 STD, TRG
3 BST
4 QPS, MQP, FFA, DN3
Hybrid of 1,3 BAT
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success rates higher than any other single algorithm. Four
of those five included randomized parameters, which

clearly demonstrates the advantage of increasing the sto-
chastic nature of this algorithm.

More importantly Figs. 4 and 5 suggests that of all the
update equations presented here, there are two general
strategies capable of solving a wide range of problems:
(a) iteratively searching around the neighborhood of the
global best design with some random distribution, and (b)
iteratively searching around the neighborhood of subsets
of the population with some random distribution. It is not
necessary (as done in PSO and CKO) to perturb every
design in the population, nor does using complicated sam-
pling schemes necessarily improve overall performance.

Now consider the case where the algorithms are compared
based on their form of elitism. Figure 6a demonstrates that in
the case of reference-point elitism, Group 4 algorithms dom-
inate PSO in performance, which further reinforces the con-
clusion that it is not necessary to perturb every design, every
iteration to obtain good performance over a broad set of prob-
lems. However, none of the Group 4 algorithms utilize recur-
sion, therefore more experimentation is required to distinguish
its impact from that of reference-point elitism.

When comparative updates are considered (Fig. 6b), it ap-
pears that Group 1 algorithms can perform competitively
against the other groups. However, since the CKO equation
can be viewed as a special case of a DE variant, it is unclear

HAHC Rating per Group

Fig. 4 Percentage of objective functions for which group attained highest
mean accuracy and highest mean convergence rate (HAHC), averaged
over 50 trials. Although based on mean values without regard for higher
moments or statistical significance testing between algorithms, these
general trends are found to hold in subsequent, more detailed tests.
These large-scale trends suggest compatibility between Groups 2 and 3,
and the SHC exists

HAHC Rating per Algorithm, per Group 

(a) (b)

(c) (d)

Fig. 5 Percentage of objective
functions for which an algorithm
attained the HAHC (averaged
over 50 trials), listed by group
number. These are a breakdown
of the results summarized in
Fig. 4. The performance of Group
3 is dominated by a minority of its
algorithms, while Group 4
performance is more evenly
distributed. Group 2 performance
is also dominated by a minority of
algorithms, but contains more
variants than Group 3
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whether its performance is competitive because it is Group 1,
or because it is approaching the performance of DE on the
SHC. Sorted comparisons, controlled also for randomized pa-
rameters and special vectors, (Fig. 6c) suggest that Group 2
and Group 3 algorithms perform strongly against Group 4.
That is, searching around known points is likely to perform
better than searching around a randomly-weighted average of
points. Since only two algorithms utilize recursion, conclu-
sions cannot be drawn for this discussion.

3.2.2 Highest accuracy convergence rate by group – single
algorithm

Based on the analysis in 3.2.1, it is possible that the groups
appear to do better than they ought, because there are so many
small variations of DE in some groups, while other groups
contain only one or two members. These slight variations
may spread the group’s viability over larger subsets of the
SHC. An alternative approach is to use a single algorithm from
each group to represent the performance of that group. Based
on the information in Fig. 5, the top four algorithms from each
group were selected (where possible) and compared to one-
another using the HAHC rating. In addition to the HAHC

rating, the Kolmogorov-Smirnov (KS) test was used to ensure
that the algorithm with the apparent HAHC rating is statistical-
ly distinguishable from all other algorithms being evaluated.
Here “statistically distinguishable” means that the null hypoth-
esis of the KS-test is rejected for the distribution of the con-
verged objective function values and is also rejected for the
distribution of the number of iterations required to achieve
convergence with a confidence interval of 5 %. Figure 7 sum-
marizes the results of these analyses. In each plot, the only
algorithms compared are those explicitly listed. If the KS test
null hypothesis is not rejected for a particular algorithm, it is
labelled “similar” to another algorithm. Due to similarities in
performance, the HAHC rating bars do not sum to 100 %. In
general, the trends in Fig. 7 strongly resemble those of Fig. 4
suggesting that the distinction between groups is founded, and
holds at least for the top performing algorithms. In each case,
Group 2 and 3 perform best on roughly 80 % of all test cases.
Figure 7b shows the greatest overlap in the performance of two
groups. In this case, STD-VS and BST-VS are statistically in-
distinguishable on 52 objective functions. Although this might
suggest that the –VS modifications drive their performance
more than their group structure, such similarities are also facil-
itated by the fact that Group 3 is a proper subset of Group 2.

HAHC Rating by Algorithm for Given Type of Elitism

(a) (b)

(c)

Fig. 6 Percentage of objective functions for which a subset of algorithms
attained the HAHC (averaged over 50 trials), controlling for elitism: a
reference point, b comparative updates, and c sorted comparative updates.
Cases b and c also control for randomized parameters, and exclude

special vectors in the DE algorithms. The success of Group 3 over
Group 2 in Fig. 4 is due to algorithms with unsorted comparative
elitism. Other forms of elitism do not significantly impact trends
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Other examples of similarity are much more specific. For ex-
ample, the BAT algorithm is “similar” to BST-R, BST-RS, and
BST-RVon test cases 45 and 234, as well as being similar to
BST-VS on test case 234. In this case, the similarity is a direct
consequence of the incorporation of Group 3 behavior into the
BAT algorithm using (57).

3.3 Trends with problem dimension

The second performance metric to be considered is the
manner in which a group’s mean performance scales with
problem dimension. Full histograms of each group’s per-
formance are provided in the Appendix, along with brief
supplementary discussion. Consider a set of unconstrained
second and fourth order polynomials with domains of
[−300,300] in each dimension.

It is clear from Fig. 8 that Group 1 algorithms scale poorly
on these four sets of test cases. Although some deterioration in
performance is expected due to the curse of dimensionality
(Kleywegt and Shapiro 2001), this poor performance can be
attributed to incompatibility with the objective function.
Whatever the performance of Groups 2-4 may be, they appear
to scale much better with the exception of Group 3 on cases
303-305. Thus, we may begin to say that on even polynomials
it is not necessary to iteratively perturb every point. The BAT

algorithm does not outperform any method in this set.
Furthermore, on test cases 294-299 it consistently converges
to the same local minima, suggesting that the objective func-
tion “perfectly deceives” this algorithm, as pointed out in
Section 2. More detailed statements will require further exper-
imentation. For example, these experiments do not consider a
group’s sensitivity to the value of the function’s coefficients.
Furthermore, future experiments can use the BAT algorithm
(or similar Hybrid 1,3 algorithms) to explore the transition
between Group 1 performance and Group 3 performance on
these functions to determine if the transition is smooth, or
otherwise informative.

Sets of test cases for which the problem dimension in-
creases by small factors reveal a pattern of behavior more
complex than those indicated in Fig. 8. The BAT algorithm
displays strongly non-monotonic behavior in Fig. 9a that, at
first glance, appears to depend on whether or not the problem
is of even or odd dimension. Such a dependency is uncom-
mon, but can occur if an even dimension imposes symmetry
that the algorithm implicitly exploits. If this hypothesis holds,
then this convergence behavior can be attributed to trivial
compatibility when the function is of even dimension.
Further testing is required to determine if this is the case,
and if so, why it does not appear to affect the other groups.
Group 2 and 3 algorithms demonstrate the same superior

HAHC Rating per Group – Single Algorithm Representation

(a) (b)

(c) (d)

Fig. 7 Percentage of objective
functions for which an algorithm,
representative of its group,
attained the HAHC (averaged
over 50 trials). Light grey
represents the test cases where
performance in one group is
statistically indistinguishable
from another group. The
algorithms in b use the VS
modifications, and since Group 3
is a subset of Group 2, there is
substantial overlap in
performance. Trends consistent
with Fig. 4 do not depend on
algorithm
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performance in Fig. 9b and c that they did in the even, uncon-
strained polynomials of Fig. 8. However, the penalty function
for Fig. 9c contains a linear term, causing the overall form of
test cases 277–280 is a polynomial with step discontinuities.
This appears to reduce the compatibility between Groups 2
and 3, and the objective functions as indicated by the increase
in slope in their respective curves.

The results of this and the previous subsection appear to
support the idea Group 3 algorithms in particular possess
some advantage over the other groups on a large set of func-
tions. A brief thought experiment will produce a hypothesis
regarding why this may be the case: Suppose a second order
polynomial of one variable with positive leading coefficient
were sampled using a set of points (the precise distribution is

immaterial), and that Jensen’s inequality (a necessary condi-
tion of convexity) were computed on this sample. For any
sample, the resulting test would yield “convex.”

Now suppose that this process was repeated for a fourth order
polynomial with some finite sample. Independent of the sample,
and no matter which form of the fourth order polynomial, if the
sample points are spaced “far enough” apart, there will always
be a sample that will pass Jensen’s inequality. In other words, if
the sample points are spaced far enough apart, all fourth order
polynomials appear convex to the human eye (and to Jensen’s
inequality) even when they are not truly convex.

The same can be said for all even polynomials and
extended to large groups of functions with exponential
terms. Note that the Group 3 algorithms used here all

Mean Objective Function Value vs. Dimension

(a) (b)

(c) (d)

Fig. 8 Mean objective function
value (averaged over 50 trials)
obtained by groups on objective
functions designed to scale with
problem dimension (see Table 3).
Values based on best-performing
algorithm within group for each
test case. Groups 2 and 4 show the
lowest sensitivity to problem
dimension, suggesting better
compatibility. Hybrid-1,3
performs consistently in b
suggesting it is trapped in local
minima (the function is
“deceptive”)

Table 3 Objective functions
depicted in Fig. 8. Note that (c) is
the only second-order
polynomial, and that all
polynomials tend to positive
infinity far from the origin

U x!� � ¼ ∑
dim

i¼1
ix2i

	 
2

(a)

U x!� � ¼ 1
10;000 ∑

dim−1

i¼1
100 xiþ1−x2i

� �2 þ 1−xið Þ2

(b)

U x!� � ¼ dimþ x21−2x1 þ 2∑
dim

i¼2
x2i −xi−1xi

(c)

U x!� � ¼ 1
4 ∑

dim

i¼1
ixi

	 
2

þ 1
16 ∑

dim

i¼1
ixi

	 
4

þ ∑
dim

i¼1
x2i

(d)
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sample around the global best design. One can conclude
from intuition that such an algorithm will monotonically
converge to the true global minimum of a convex func-
tion (assuming properly specified parameters, including
sample size). Following intuition, one can imagine that
such Group 3 algorithms possess superior convergence
properties in non-deceptive situations where an objective
function “appears” convex. One can also suppose that
these algorithms will retain this advantage until the
sample converges to a region in which the non-
convexity becomes appreciable. The other groups, which

do not have this advantage, may perform better in the
nonconvex region, but due to the initial size of the
search space simply fail to converge to that region.
Thus, it appears Group 3 algorithms possess an advan-
tage for functions that appear convex throughout the
majority of their domain. However, to confirm that this
is the case will require more studies to test a variety of
hypotheses addressing questions such as: (a) Do all
Group 3 algorithms outperform all other algorithms on
convex problems, or it is a result of the algorithm’s
elitism, or its choice to perturb the global best rather
than some other vector? (b) Which metrics capture this
apparent convexity, and how can such metrics be ap-
plied to known functions to provide a statistical measure
of this appearance?

3.4 Additional remarks

This preliminary investigation is an extension of research
presented in (Inclan 2014). More studies are required,
utilizing the guidelines presented in (Rardin and Uzsoy
2001), in order to quantify the contributions of elitism,
group classification, and recursion with greater statistical
rigor. However, this work highlights some fundamental
challenges to the analysis being performed. For example,

Mean Objective Function Value vs. Dimension

(a) (b)

(c)

Fig. 9 Mean objective function
value (averaged over 50 trials)
obtained by groups on objective
functions designed to scale with
problem dimension (see Table 4).
Values based on best-performing
algorithm within group for each
test case. Due to their low
sensitivity to problem dimension,
Groups 2 and 3 are most
compatible with these objective
functions. Since Group 3 is a
subset of Group 2, the
incompatibility of other groups is
further reinforced

Table 4 Objective functions depicted in Fig. 9. Note that (c) is the
constrained version of (b), which causes a pronounced change in
performance for Groups 2 and 3

U x!� � ¼ P x!� �
−1:3626568 þ ∑

dim

i¼1
x2i

Constraint: discontinuous, heavily
nonlinear, inequality

(a)

U x!� � ¼ x!• H x!� �
where H is the Hilbert matrix,

and • is the dot product
operation

(b)

U x!� � ¼ P x!� �
− f min þ x!• H x!� �

where H is the Hilbert matrix, and • is the dot product operation
Constraint: linear inequality
(c)
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this work seeks to identify compatibility between algo-
rithm and objective function without access to widely ac-
cepted metrics that quantify that compatibility. While not
totally prohibitive, it means that there is no guarantee that
any of the test cases used here are fundamentally compat-
ible with any of the algorithms selected. Therefore, the
conclusions drawn here from the analysis of broad trends
will need to be analyzed in greater detail. For example,
when examining how an algorithm scales with problem
dimension, future studies should consider computing two
values: (a) the trend in probability of attaining the global
minimum with problem dimension, and (b) the trend of
computational cost of successful instances with problem
dimension. This will further quantify compatibility, since
such a measure must reflect the actual probability of suc-
cess. It would be informative to see how sensitive an
algorithm’s probability of success is to variation of the
objective function’s coefficients.

Another fundamental challenge to this analysis is the
number and type of optimization algorithms included in
each group. In addition to the “results-smearing” issue
highlighted in 3.2.2, it was found during the course of
this research that very different parameter settings can
cause the same algorithm to perform well over large sub-
sets of the SHC (e.g., QPS αmax= 0.8, β= 0.25, γ= 0.19).
Clearly this suggests that more algorithms, such as the
current-to-best DE variant, ought to be included. This also
raises a number of possibilities for future work: (a)
Consider whether or not to treat successful, but widely
different parameter settings on an algorithm as a different
variation of that algorithm, (b) construct additional varia-
tions based on the modifications already available includ-
ing CKO-S, BAT-S, QPS with recursion, or PSO without
recursion, etc., (c) construct variants of the same algo-
rithm such that they fall into different groups, such as
Group 1 FFA, (d) construct variants that are hybrids with
tuning parameters that enable a smooth transition from
full group A behavior to full group B behavior, and (e)
construct algorithms that apply the various forms of elit-
ism and convergence criteria to pure random-number gen-
erators using well-known distributions in order to further
study their effects. The next concern will be how to de-
cide which collection of variants to use in a particular
analysis, how many, and why.

Once the set of algorithms has been determined, ques-
tions of statistical significance arise. For example, are
there problems for which entire groups of algorithms ap-
pear statistically indistinguishable, and how does this re-
late to problem compatibility? If compatibility between a
group/algorithm and a subset of the SHC is suspected (a
subset representative of a larger class), these tools can be
used to search for an algorithm from another group whose
performance is statistically indistinguishable from the

group/algorithm in question by using the probability of
rejecting the null hypothesis as an objective function. If
a second group is found to be indistinguishable from the
first, it would suggest that some trait other than group
type is leading to improved performance (possible exam-
ples of this are seen in Fig. 7). A second, and important
aspect of statistical significance is the estimation of algo-
rithm performance metrics within some confidence. A ro-
bust approach, outlined in (Shilane et al. 2008) was pro-
hibitive for this work, but will be considered for future
studies. For this work, the common approach of multiple
executions was utilized not only due to practical consid-
erations, but also because such hypothesis testing requires
that specific algorithm traits and performance metrics be
easily measureable so they can be correlated. This work is
a step toward such experiments.

4 Conclusions and future work

By examining similarities in various global single-objective
optimization algorithms and measuring their relative perfor-
mance on a set of 295 analytical test cases, this research has
shown that a small set of commonly used heuristics can pro-
duce relatively good global search behavior on a large set of
distinct optimization problems. Specifically, the top
performing heuristics on 80 % of the test cases are based on:
(a) iteratively searching the neighborhood of the global best
design with a random distribution of designs (that is, random-
ly perturbing the current best design), (b) iteratively searching
the neighborhood of random subsets of the population with
some random distribution (that is, randomly perturbing a sub-
set of the population); and (c) retaining designs based on some
superiority comparison measure (that is, a form of elitism).

Given the relationship between the individual heuristics
and their effectiveness on different sets of problems, it will
now become possible to begin answering the following ques-
tions: What mathematical qualities can be identified that de-
fine a problem as deceptive, or not, with respect to the heuris-
tics presented here? Do Group 3 algorithms demonstrate su-
perior performance on all of the convex problems in the SHC?
If so, do the nonconvex problems on which Group 3 algo-
rithms perform well also demonstrate some apparent convex-
ity? If the “curse of dimensionality” is a symptom of
algorithm-problem incompatibility, can we expect compatible
algorithms to exhibit polynomial scaling, exponential scaling,
or some other scaling?

With these questions in mind, possible avenues for future
research are also presented such as incorporating more algo-
rithms in each group, constructing algorithms with the ability
to transition from one group to another, and utilizing statistical
tests to identify problems on which multiple algorithms are
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statistically indistinguishable. Furthermore, improvements to
the classification scheme ought to be further explored.
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Appendix

To supplement the discussion in Section 3.3, this section pre-
sents the complete set of data used to create the plots in his-
togram form. The source codes of the algorithms, test cases,
and MATLAB scripts used to generate these results will be
available for download at http://maidroc.fiu.edu. Note that the
distributions shown are that of the best algorithm in each
group, for each objective function. In general, Group 3
algorithms appear to provide the best performance on
second and fourth order, convex polynomials. The
occasional success of Hybrid-1,3 suggests there is room for
improvement over Group 3 on this class of objective functions
(Figs. 10, 11, 12, 13, 14, 15, 16).

(b) 

(c)

(d)

(a)

Fig. 10 Histograms
corresponding to data shown in
Fig. 8a. Count vs. objective
function value. Distributions of
converged objective function
values for Groups 1–5 on a set of
test cases that scale with
dimension. Group 1 and the
Hybrid-1,3 are very sensitive to
problem dimension as shown by
their rapid deterioration in
performance relative to Groups
2–4. Groups 3 and 4 compete for
best performance with the support
for Group 3’s distribution
spreadingmuch wider than that of
Group 4. Group 3 retains its
ability to find better solutions than
Group 4, but at the cost of
robustness
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(a)

(b)

(c)

(d)

(e)

(f)Fig. 11 Histograms corresponding to data shown in Fig. 8b. Count vs.
objective function value. Distributions of converged objective function
values for Groups 1–5 on a set of test cases that scale with dimension.
Hybrid-1,3 converges consistently to the same range of objective function
values (10−4 – 100). This suggests that the objective function is

“deceptive,” causing it to repeatedly converge to local minima. Group 1
scales very poorly, indicating incompatibility. The trends in Groups 2–4
strongly suggests that Group 3 behavior (searching only in the vicinity of
the global best) is the most compatible strategy
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(a)

(b)

(c)

Fig. 12 Histograms
corresponding to data shown in
Fig. 8c. Count vs. objective
function value. Distributions of
converged objective function
values for Groups 1–5 on a set of
test cases that scale with
dimension. Groups 2–3 have
largely overlapping supports.
Hybrid-1,3 has a much wider
distribution, indicating worse
robustness, but is the only
algorithm capable of
outperforming Group 3 in 20D
and 50D. This suggests it may be
a better starting point for
designing an algorithm
specifically tuned to this objective
function than Group 3
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(a)

(b)

(c)

Fig. 13 Histograms
corresponding to data shown in
Fig. 8d. Count vs. objective
function value. Distributions of
converged objective function
values for Groups 1–5 on a set of
test cases that scale with
dimension. Remarkably, the
Group 3 algorithms consistently
identify solutions near the global
minimum in a very small
percentage of cases. Generally,
Group 3 rapidly deteriorates in
performance with increasing
problem dimension, while all
other algorithms begin with poor
performance and deteriorate
further
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(a)

(b)

(c)

(d)

(e)

Fig. 14 Histograms
corresponding to data shown in
Fig. 9a. Count vs. Objective
Function Value. Distributions of
converged objective function
values for Groups 1–5 on a set of
test cases that scale with
dimension. The presence of a
highly nonlinear penalty function
added to the quadratic polynomial
objective function causes the
distributions of every Group to
spread wider relative the
distributions seen in Figs. 10, 11,
12 and 13. An odd characteristic
of Hybrid-1,3 on this problem is
that its distribution contains
outliers at very high objective
function values for even-
dimension problems only,
suggesting that the algorithm is
sensitive to problem symmetry
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(a)

(b)

(c)

Fig. 15 Histograms
corresponding to data shown in
Fig. 9b. Count vs. objective
function value. Distributions of
converged objective function
values for Groups 1–5 on a set of
test cases that scale with
dimension. Groups 2–3 appear
ideally suited to the objective
function based on this range of
problem dimension. Groups 1, 4,
and the Hybrid-1,3 are very
sensitive to dimension. The
behavior of Group 1 is consistent
with previous unconstrained
even-order polynomials, while
Group 4 appears unusually
sensitive compared to Groups 2
and 3
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