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approach was able to identify the pre-mixed and diffusive 
combustion phases, for different engine loads. Results were 
compared with a simple inversion procedure, showing a 
good agreement. The combustion ignition delay was also 
calculated, showing its variation with the engine load.
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List of symbols
A  Area
A/F  Air/fuel ratio
B  Piston bore
CA  Crankshaft angle
f  Linear or non-linear function of the state variables
g  Linear or non-linear function representing the 

observation model
h  Heat transfer coefficient
LHV  Lower heating value
m  Mass
n  Engine speed in Hz
n  Vector of noise associated with the observation 

model
P  Pressure
Q  Heat
t  Time
T  Temperature
v  Average gas velocity within the cylinder
v  Vector of noise associated with the evolution model
V  Volume
w  Weights of particles
W  Covariance matrix
x  Mass fraction of burned fuel
y  Vector of state variables
z  Vector of observation variables

Abstract The rate of heat released during the combustion 
in Diesel engines is important for many reasons, including 
performance evaluation, pollutant formation, and control. 
Combustion in Diesel engines can be generally divided 
into three phases: pre-mixed, diffusive or mixed-controlled, 
and late combustion. The objective of this paper is to 
estimate the rate of heat released by the fuel in a marine 
Diesel engine, in order to identify the pre-mixed and dif-
fusive phases, using the Sampling Importance Resampling 
(SIR) Bayesian Particle Filter. Experimental pressure data 
obtained from a piezoelectric sensor, installed in a research 
marine diesel engine (MAN Innovator 4c), was used to 
feed the observation model in such Bayesian approach. The 
evolution model for the pressure was formulated in terms 
of a set of ordinary differential equations, coming from 
the First Law of Thermodynamics, together with a random 
walk model for the unknown state variable. The proposed 
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Greek letters
γ  Polytropic coefficient
θ  Crankshaft angle
π  Probability density function

Subscripts/superscripts
d  Displaced
f  Fuel
gas  Gas mixture
m  Mixture
meas  Measured
mot  Motored
r  Reference
w  Wall

1 Introduction

Diesel engines are widely used for terrestrial and marine 
transportation of goods and people. They are very efficient 
given the fact that they can operate at very high compres-
sion ratios. Since they usually work with excess of air, 
their emissions of total unburned hydrocarbons (THC) 
and Carbon monoxide (CO) are very low. However, these 
two characteristics (high compression ratios and tempera-
tures, and excess of air) make them a substantial source 
of Nitrogen oxides (NOx) [1]. The combustion process in 
Diesel engines is very complicated, since it involves differ-
ent physical processes. Once the fuel is injected in the com-
bustion chamber, there is an ignition delay before it starts 
burning. During such delay, fuel vaporizes and mixes with 
the surrounding air, which is at a high temperature. Then, 
the combustion begins, initially consuming this pre-mixed 
mixture of air and fuel, and releasing energy at a very high 
rate. Longer ignition delays cause a more dramatic release 
of energy during this pre-mixed combustion phase, which 
is often an undesirable phenomenon. This problem affects 
the durability of the engine and also increases the emissions 
of NOx [2]. Therefore, fuels used in Diesel engines must 
have a short ignition delay, which can be characterized 
by an ASTM standard test [3]. After the pre-mixed phase, 
the combustion continues, consuming the remaining fuel, 
as it mixes with the air, in a diffusive or mixed-controlled 
combustion phase. Recently, a paper [4] used a Bayesian 
technique to estimate the ignition delay in a Diesel engine. 
Another paper [5] also used Bayesian techniques to esti-
mate some parameters in internal combustion engines.

In marine applications, two types of fuels are used in 
Diesel engines: high viscosity oils, named bunker oils or 
heavy fuel oils (HFO), and marine Diesel oils (MDO), 
which have high concentrations of Sulfur. Due to its physi-
cal characteristics HFO is less expensive than the MDO 
and also has a low combustion quality. In most cases, MDO 

is used close to the coast and HFO for open sea transporta-
tion. The development of new heavy fuel oils for marine 
applications that keep their cost low while increasing their 
combustion quality characteristics is important for several 
reasons. Since large vessels make the transportation of 
goods between countries, non-expensive fuels are required 
to keep the associated costs at a low level. However, the 
combustion quality of these fuels has to be increased, in 
order to reduce the gaseous emissions and not harm the 
environment.

The evaluation of fuel quality in Diesel engines is, there-
fore, a very important task. This involves both numerical 
and experimental studies and it is the main objective of this 
paper. The numerical simulation of the combustion process 
in Diesel engines involves a turbulent and unsteady flow 
of a reacting non-homogeneous mixture with temperature-
dependent properties. Different models for this problem 
can be found in the literature, depending on the simplifying 
hypothesis used [1, 6].

One of the most used models by the industry, although 
being very simple, considers the burned and unburned 
gasses as an ideal homogenous gas with uniform temper-
ature and pressure. This model is generally called a zero-
dimensional model [1, 6] and can be derived from the First 
Law of Thermodynamics and the equation of state for an 
ideal gas. Since they do not include any sub model for the 
chemical reactions, these models rely on some empirical 
or semi-empirical correlation for the rate of heat released 
by the fuel. The most used correlation is the Wiebe’s 
model, which has two adjustable parameters, or the dou-
ble-Wiebe’s model that has four parameters [1–10]. These 
models also use some correlation for the heat transfer coef-
ficient at the cylinder walls and piston head, to model the 
amount of heat lost [1, 6, 11]. Although these models are 
very simple and easy to use, they are limited by the type 
of function used in the Wiebe’s model, or by the correla-
tion for the heat transfer coefficient. Also, as reported by 
[11], correlations for the heat transfer coefficient that were 
obtained for a specific engine running under specific condi-
tions, in general do not give good results for other engines 
and can present discrepancies in excess of 100 %. Thus, 
the estimation of these functions is also very important, but 
will not be considered in this paper.

The objective of this paper is to use experimental data 
available from tests made in the Laboratory of Thermal 
Engines (LMT) of Federal University of Rio de Janeiro 
(UFRJ) to validate a Bayesian technique [12] used to esti-
mate the rate of heat released by an MDO fuel in a marine 
Diesel engine. The main advantage of this procedure is that 
the heat release rate is no longer dependent on the Wiebe’s 
model, and therefore, different functions can be recovered.

Finally, it is worth mentioning that other recent works 
also proposed some procedures to estimate the mass 
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fraction of burned fuel [13–22], but none of them used 
Bayesian techniques.

1.1  Physical problem

The physical problem considered in this paper involves the 
combustion process in a MAN Innovator research marine Die-
sel engine, shown in Fig. 1. This engine is capable of burning 
marine Diesel oil (MDO) or heavy fuel oil (HFO). It has aux-
iliary equipment capable of centrifuging the fuel and lubricant 
and also to adjust fuel’s viscosity. The engine is also equipped 
with a pressure transducer installed inside one of the combus-
tion chambers and a sensor to detect the start of fuel injection. 
Some of the engine parameters are shown in Table 1. 

In this paper, we used a zero-dimensional model to sim-
ulate the combustion occurring in one of the cylinders of 

the engine shown in Fig. 1. The mixture inside the cylin-
der was considered an ideal gas with uniform properties. 
From the equation of state for an ideal gas, together with 
the First Law of Thermodynamics, the following equation 
can be obtained when both the inlet and outlet valves are 
closed [1]

where P(θ) is the time-varying pressure, θ is the crank-
shaft angle (which is related to time), V(θ) is the instan-
taneous volume of the cylinder (which can be obtained 
from the engine speed and geometrical data), Q(θ) is the 
heat released and γ is the polytropic coefficient, which was 
assumed constant and equal to   1.33 in this work.

Assuming a combustion process with 100 % efficiency, 
the rate of heat released in the combustion chamber, dQ/dθ, 
can be obtained as

where Qf is the total heat released by the fuel, Qw is the 
heat lost through the combustion chamber walls and pis-
ton head, mf is the mass of fuel injected in the combustion 
chamber, LHV is the lower heating value of the fuel and 
x is the mass fraction of burned fuel. The objective of this 
paper is to estimate dQf/dθ using a Bayesian approach.

The wall heat transfer can be modeled considering a 
time-varying convection heat transfer coefficient h(θ) [1]

where T(θ) is the temperature of the gas mixture inside the 
combustion chamber, A(θ) is the area of the combustion 
chamber and piston head, Tw(θ) is the temperature at the 
walls, and n is the engine speed in Hz. Although the esti-
mation of the wall heat transfer coefficient h(θ) in itself is a 
challenging task [23–25], in this paper we modeled it using 
the Woschni’s equation [1, 6, 11]

where B is the bore (diameter) of the cylinder and v is the 
average cylinder gas velocity. For a four-stroke, water-
cooled engine, it can be expressed as [1, 6, 11]

Here, Vd is the displaced volume, Pr, Vr and Tr are 
taken at some reference state, Pmot is the motored cylinder 

(1)
dP

dθ
= −γ

P

V

dV

dθ
−

(γ − 1)

V

dQ

dθ

(2a)
dQ

dθ
=

dQf

dθ
−

dQw

dθ

(2b)
dQf

dθ
= mfLHV

dx

dθ

(3)
dQw

dθ
=

hA(T − Tw)

2πn

(4)
h(W/m2K) = 3.26B(m)−0.2P(kPa)0.8T(K)−0.55v(m/s)0.8

(5)v =

[
C1S̄p + C2

VdTr

PrVr
(P − Pmot)

]

Fig. 1  MAN Innovator research marine Diesel engine at LMT-UFRJ

Table 1  Engine parameters

Parameter Value

Engine manufacturer MAN

Engine model Innovator research diesel engine

Fuel MDO or HFO

Number of cylinders 5

Valves per cylinder 2

Bore 160 mm

Stroke 240 mm

Connecting rod length 480 mm

Compression ratio 15.2

Speed 1200 rpm

Imep 20.7 bar

Maximum rated power 500 kW

Inlet closing valve 146.5° BTDC

Outlet opening valve 126.5° ATDC
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pressure at the same crank angle as P, and the constants C1 
and C2 are given as functions of the engine stroke as

The pressure inside the combustion chamber can, there-
fore, be obtained by the solution of Eqs. (1)–(6), given an 
appropriate initial condition. In this paper, we used a four-
stage Runge–Kutta algorithm to solve them. It is worth 
noticing, however, that the rate of heat released by the fuel, 
dQf/dθ, is unknown in these equations, and therefore, must 
be determined. This will be discussed in the next section.

1.2  Inverse problem

The inverse problem considered in this paper deals with the 
estimation of the rate of heat released by the fuel, dQf/dθ, 
given pressure measurements performed inside the com-
bustion chamber of the engine shown in Fig. 1. For this 
purpose, we used a Bayesian approach, where the results 
are obtained in terms of a posterior probability density. 
Such function is the conditional probability of the unknown 
variables y = {P,dQf/dθ}, given some measurements 
z = {Pmeas}. In the Bayesian approach some prior informa-
tion about the unknown variables used are combined with 
the information given by the measurements, to produce bet-
ter estimates.

The posterior probability density π(y|z) is related to the 
prior model, π(y), which is the model for the probability 
density of the unknowns without the information obtained 
from the measurements, and the information about the 
measurements, which is given as the conditional prob-
ability density of the measurements given the unknowns, 
π(z|y). According to Bayes’ theorem [26, 27]:

where π(z) is the marginal probability density of the meas-
urements, which plays the role of a normalizing constant. 
This is the base for state estimation problems, also referred 
as non-stationary inverse problems [26], such as the one 
addressed in this paper.

If the measurements errors are Gaussian with zero mean, 
known covariance matrix W, additive and independent of 
the unknown variables y, it can be shown [26, 27] that the 
likelihood function π(z|y) is given by

(6)

Gas exchange: C1 = 6.18; C2 = 0

Compression: C1 = 2.28; C2 = 0

Combustion and expansion: C1 = 2.28; C2 = 3.24 × 10−3

(7)π(y|z ) =
π(y)π(z|y )

π(z)

(8)

π(z|y ) = (2π)−D/2|W|−1/2

× exp

{
−

1

2

[
z − f(y)

]
T

W−1
[
z − f(y)

]}

where D is the dimension of the problem (one in the pre-
sent paper), and f is the solution of the direct problem, 
given by Eqs. (1)–(6) for the estimated variables y.

According to Eqs. (7) and (8), to evaluate the posterior 
probability density π(y|z), a prior model π(y), which is 
related to the data, and a likelihood function π(z|y), which 
is related to the measurements, are needed. For state evolu-
tion problems these can be translated into two models: an 
evolution model and an observation model. Considering 
that the state variables y have state noise v, and the meas-
urements z have noise n, these two models can be written 
as

where k = 1,2,3,… denotes a time instant tk in a dynamic 
problem.

The dynamic estimate of the state variables y can be 
obtained initially by a prediction step, using the evolution 
model given by Eq. (9a). Then, an update step is performed, 
using the observation model, given by Eq. (9b), and the 
likelihood function, given by Eq. (8), in conjunction with 
the Bayes’ theorem, given by Eq. (7). This process is called 
a filtering problem [26, 27].

For linear problems with Gaussian and additive noises, 
the optimum filter is the Kalman filter [26–30], whereas for 
non-linear problems, other strategies must be used. Some 
of those strategies involve the linearization of the Kalman 
filter [31, 32] or the use of the so-called particle filters. Par-
ticle filters can be applied to non-linear models with non-
Gaussian errors [30, 33–40].

The main idea of the particle filter is to represent the 
required posterior density function by a set of random sam-
ples with associated weights and to use them to compute 
new estimates [30]. In this paper, we used the SIR algo-
rithm summarized in Table 2. More details of this algo-
rithm can be found in [30].

1.3  Experimental setup

As mentioned before, in this paper we used experimen-
tal data obtained from an Innovator research marine Die-
sel engine, manufactured by MAN, currently installed at 
Federal University of Rio de Janeiro and shown in Fig. 1. 
This is a special engine, built for lubricant oil testing and 
equipped with three segregated lubricant oil circuits. This 
engine became operational in 2010 and since then is also 
being used for fuel oil development in constant speed 
tests. Several engine parameters can be found in Table 1. 
The engine is connected to an electrical generator and the 
electricity produced is dissipated as heat in a load bank that 
allows for nominal load variation of 12.5 % (62.5 kW) of 

(9a)yk = fk(yk−1, vk)

(9b)zk = gk(yk , nk)
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the engine rated power (500 kW). Gaseous and particulate 
matter emission equipments are also available in the test 
bench where the Innovator engine is installed.

General engine operational parameters, such as fuel, 
cooling water, lubricant oil and combustion air pressures 
and temperatures are measured and controlled by MAN-
EDS, a system provided by the engine manufacturer. An 
AVL GU21D pressure transducer, installed in the cylin-
der 2 head is used to measure the instantaneous pressures 
inside the combustion chamber. These data are processed 
in an AVL indicating system, where the frequency of meas-
urements was taken as 28.8 kHz. Instrumentation also 
included an AVL SL31D sensor to measure the fuel line 
pressure at cylinder 2, a Honeywell 3010 optical sensor to 
measure the engine speed, and a modified fuel injector noz-
zle that allows identifying the needle lift profile.

During tests data is acquired for nominal engine loads of 
25, 50, 75 and 100 % of the engine maximum rated power. 
Engine loads are swept three times in alternating orders. 
For each load, after engine parameters stabilize, in-cylinder 
pressure data is acquired for 200 engine cycles and aver-
aged for use in the present work.

2  Results and discussion

In this work we used the SIR algorithm of the particle fil-
ter to estimate the rate of heat released by the fuel, dQf/
dθ, in the marine Diesel engine shown in Fig. 1. The fuel 
used was marine Diesel oil (MDO), whose lower heating 
value (LHV) is 42.7 MJ/kg. This engine operates under a 

constant speed of 1200 rpm and its torque can be varied 
by applying different loads in an electrical generator con-
nected to it. In this paper, four loads were analyzed: 25, 50, 
75 and 100 % of the engine’s full power. For these operat-
ing conditions, the power, fuel mass flow rate (ṁf ), and air/
fuel ratio (A/F) are given in Table 3.

For the state estimation problem, the unknown state var-
iables are the pressure, P, inside the combustion chamber 
and the rate of heat released by the fuel, dQf/dθ. Therefore, 
y = {P,dQf/dθ}. Although there is a state evolution model 
for the pressure, given by the solution of Eqs. (1)–(6), we 
assume that no such model exists for dQf/dθ. In this case 
the following artificial state evolution model, given as a 
random walk model, was considered

Here, σh is the step size of the random walk (taken as 1), 
ε is a random variable with zero mean and uniform distri-
bution between −1 and 1, and the bar indicates the mean 
value at the previous time step. The initial value, at time 
tk = 0, was taken as zero.

(10)
dQf

dθ
(θk) =

dQf

dθ
(θk−1) + σhε

dQ̄f

dθ
(θk−1)

Table 2  SIR algorithm [25]

Table 3  Operational parameters

Load (%) Power (kW) ṁf(kg/h) A/F

25 125 32.1 34.21

50 250 53.4 31.12

75 375 75.0 31.44

100 500 99.6 31.07
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For each engine condition, 200 cycles were recorded 
where the mean pressure at each crankshaft angle was cal-
culated and adopted as the measured variable z = {Pmeas}. 
Also, the standard deviation of the data at each angle was cal-
culated considering these 200 cycles and taken into account 
in the experimental noise of this model. Typical values of the 
standard deviation varied from 0.0095 to 0.8049 bar.

In this paper, we analyzed a different number of parti-
cles to verify the convergence of the particle filter. Also, 
since the particle filter relies on several random numbers, 
we used the procedure presented in [25] to check its con-
vergence and present the averaged computational time 
required for the estimate.

Figure 2 shows the estimate of dQf/dθ and pressure 
for 25 % load using (a) 50, (b) 100, and (c) 200 particles. 
Results show that there is not much difference among the 
results indicating that the filter already converged for 50 
particles. The computational time required to perform this 
estimate on a 1.8 GHz Intel Core i7 with 4 Gb of RAM was 
3, 7, and 15 s, for 50, 100, and 200 particles, respectively. 
From these figures it is clear that the estimated pressure 
matched the measured one, with the 95 % confidence inter-
vals coinciding with the estimated value. Also, from the 
estimates of dQf/dθ it is possible to identify the pre-mixed 
and diffusive phases of combustion. This is an important 
result since no empirical equation was used to model this 

Fig. 2  Estimate of dQf/dθ and P for 25 % of load, using a 50, b 100, and c 200 particles
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function. Thus, the Bayesian particle filter was capable of 
dynamically identifying, at each time instant, what was 
the instantaneous value of dQf/dθ that generated pressure 
data capable of matching the experimental data. Consider-
ing that the entire procedure is automatic and can be done 
without any user interference, its application to real time 
monitoring of engines could be very useful.

Once the convergence of the method was verified, and 
the matching between the experimental and measured 
pressure curves was checked, Fig. 3 shows the estimation 
of dQf/dθ for all loads using 50 particles. This figure also 
shows the calculated rate of heat released by the fuel, which 
can be obtained from equation Eq. (11) [1], while neglect-
ing the heat loss through the piston head and cylinder walls.

Notice that the derivative of pressure, P, with respect to 
the crankshaft angle, θ, can be obtained using a finite dif-
ference approximation of the experimental data. There-
fore, the calculated values are prone to some oscillations, 
as shown in Fig. 3. It is quite interesting that the confi-
dence interval embraces the calculated values, except at 
the beginning of the combustion. Also, the mean values 
obtained by the particle filter are much smoother than the 
ones obtained by Eq. (11). This comparison shows that the 

(11)
dQf(no heat loss)

dθ
=

1

γ − 1

[
γ P

dV

dθ
+ V

dP

dθ

]

values predicted by the particle filters are in good agree-
ment with those calculated by Eq. (11).

For these operational conditions the ignition delay was 
also calculated, using the method based on the maximum 
of the second derivative of the pressure [41–43]. For this 
purpose, the ignition delay was calculated for each one 
of the 200 pressure curves as well as its mean value and 
the associated variance. Table 4 shows these results. As 
expected, when the load is increased, the ignition delay 
decreases, mainly due to the high temperatures and pres-
sures associated.

Analyzing Fig. 3 and Table 4, it is clear that for 25 % 
load, where the mean of the ignition delay is equal to 3.93 
CA degrees, the rate of heat released by the fuel presents 
a very strong pre-mixed phase (Fig. 3a). When the load is 

Fig. 3  Estimate of dQf/dθ for a 25 %, b 50 %, c 75 %, and d 100 % load

Table 4  Ignition delay calculated from the pressure data

Load 
(%)

Mean of ignition 
delay (CA°)

Variance of igni-
tion delay (CA°)

99 % uncertainty 
interval of ignition 
delay (CA°)

25 3.93 0.04 [3.57, 4.29]

50 2.72 0.04 [2.39, 3.05]

75 1.73 0.07 [1.09, 2.37]

100 1.31 0.04 [0.84, 1.78]
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increased to 50 %, the mean ignition delay decays to 2.72 
CA degrees and the pre-mixed phase is less pronounced 
(Fig. 3b). Also, one can notice by comparing Fig. 3a, b that 
the integral under the diffusive phase of the combustion 
increases when a shorter ignition delay is found. Finally, 
for 75 % (Fig. 3c) and 100 % (Fig. 3d) loads, the ignition 
delays become very short and the rate of heat release plots 
show an almost pure diffusive combustion phase.

Figure 4 presents the mean results for the rate of heat 
released by the fuel, where the ignition delay (ID), pre-mixed 
diffusive combustion phase (PMD) and diffusive combustion 
phase (DC) are marked. The integral under the curves plotted 
in this figure were used to calculate the duration of the pre-
mixed combustion phase and the percentage of total energy 
released during this phase. Table 5 shows these values where 
it is clear that as the load increases, the percentage of energy 
released during the pre-mixed combustion phase decreases, 
while the diffusive phase releases more energy. It is also 
clear that although the duration of the pre-mixed phase is 
almost constant in crankshaft angle degrees, the amount of 
energy released during this phase varies substantially. This is 
mainly due to the larger ignition delays for low loads where 
more fuel is evaporated and mixed with the air prior to com-
bustion. From the analysis of Tables 4 and 5, a decrease in 
the ignition delay from 3.93 CA degrees (for 25 % load) to 
2.72 CA degrees (for 50 % load) reduces the percentage of 
energy released by the pre-mixed combustion phase from 

18.07 to 7.88 %. Thus, the development of fuels with shorter 
ignition delays is crucial for better combustion characteris-
tics in marine Diesel engines.

As a final result, Table 6 compares the overall estimated 
energy released by the fuel, given as the integral of dQf/dθ, 
with the real value taken into account the mass of fuel (mf) 
multiplied by its lower heating value (LHV). The values are 
very close, with differences varying from 10 % (for 25 % 
load) to 21 % (for 100 % load). This difference is probably 
due to the correlation used for the heat transfer coefficient. 
Therefore, although the estimate is reasonably good, for a 
more accurate result a simultaneous estimation of dQf/dθ 
and h(θ) is necessary and shall be investigated in the future.

Fig. 4  Combustion phases for a 25 %, b 50 %, c 75 %, and d 100 % load (ID ignition delay, PMC pre-mixed combustion phase, DC diffusive 
combustion phase)

Table 5  Mean combustion parameters obtained from the estimated 
rate of heat released by fuel

Load  
(%)

Duration of pre-
mixed combus-
tion (CA°)

Percentage of 
total energy 
released during 
the pre-mixed 
combustion 
phase (%)

Percentage of total 
energy released 
during the dif-
fusive and residual 
combustion phases 
(%)

25 5.32 18.07 81.93

50 4.78 7.88 92.12

75 5.27 5.32 94.63

100 4.44 2.64 94.36

Author's personal copy



1843J Braz. Soc. Mech. Sci. Eng. (2017) 39:1835–1844 

1 3

From the previous analysis, it is clear that Bayesian 
techniques provide a good way to estimate state variables 
in the combustion process, where the rate of heat released 
by the fuel could be estimated without using any empirical 
model, such as the Wiebe’s function. This tool can be used 
to monitor engines in real time and also to help developing 
new fuels with desired combustion characteristics.

3  Conclusion

In this paper, we used a Bayesian technique to estimate the 
transient rate of heat released by the fuel in a marine Die-
sel engine. Pressure data was taken by a pressure transducer 
located inside the combustion chamber and was used as an 
observation model. A zero-dimensional model was employed 
as the evolution model. A comparison between the estimated 
functions and the calculated ignition delays was conducted, 
showing good physical agreement between them. The Bayes-
ian particle filter was capable of identifying the pre-mixed 
and diffusive combustion phases without using any correla-
tion for the sought function. Therefore, such methodology 
could be used for real time monitoring of Diesel engines to 
identify possible anomalies during their operations.
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