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A methodology for non-destructive, accelerated inverse estimation of spatially varying material properties
using only boundary measurements is presented. The spatial distribution of diffusion coefficient in 3D solid
object is determined by minimizing the sum of the least-squares difference between measured and calculated
values. The forward problem is solved using the finite volume and finite element methods, both of which

were compared against analytical solution. The inverse problem was solved using an optimization technique

Keywords:
Non-destructive testing
Inverse problems
Parameter identification
Minimization

to minimize the sum of the least-square errors. The non-destructive estimation was accelerated by the use of
surrogate models to solve the forward problem. The presented methodology is applied to measurements con-
taining varying levels of noise. Finally, it is used to detect both the location, size and shape of a subdomain
within a solid object and material property of the subdomain material.

© 2016 Published by Elsevier Ltd.

1. Introduction

In many practical problems, physical properties of the material of
an arbitrarily shaped three-dimensional object varies spatially, that
is, throughout that object. Non-destructive methods that require only
boundary measurements of the field variables to determine parameters
defining the spatial distribution of the physical property of the mater-
ial within the domain are needed.

The material properties such as thermal conductivity, electric per-
mittivity, magnetic permeability, and concentration diffusivity, influ-
ence the spatial variation of the field quantities such as temperature,
electric field potential, magnetic field potential, diffusion of non-re-
acting particles in a solid. These field problems can be modeled by an
elliptic partial differential equation governing the steady-state diffu-
sion of the field variable ¢ = ¢ (x, y, z).

V-(AV¢) = 0 )

where A = A(x, y, z) is the diffusion coefficient. Using this mathemat-
ical model, the question to answer becomes: Using the boundary val-
ues of the field function, ¢, or its normal derivatives on the boundary
of the solid, how can the spatial distribution of the diffusion coeffi-
cient A be determined throughout the arbitrarily shaped solid object?
In the case of a forward or analysis problem, Eq. (1) can be nu-
merically integrated inside the arbitrarily shaped three-dimensional
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object using finite element or finite volume methods for a known dis-
tribution of A and Dirichlet or Neumann boundary conditions.

In the case of an inverse problem, the spatial distribution of A is not
known and is to be determined iteratively. Non-destructive determina-
tion of the diffusion coefficient requires measured boundary values of
¢ = ¢ (x,y, z) and/or the measured values of the normal derivative of
¢ = @ (x, y, z) on the boundary of the solid object [1-3].

A variety of analytical, statistical, numerical and algorithmic ap-
proaches have been used by researchers to inversely determine spa-
tially varying thermal conductivity in solid objects [4—-10]. For ex-
ample, Rodrigues et al. [6] and Naveira-Cotta et al. [7] determined
non-isotropic thermal conductivity from the over-specified thermal
boundary conditions using Bayesian statistics employing Kalman fil-
ter or non-linear filters. Fu et al. [8], Gu et al. [9] and Chen et al.
[10] identified anisotropic thermal conductivity in 2D and 3D media.
It should be pointed out that all of these methodologies focused on de-
termining constant coefficients in a tensor representation of thermal
conductivity. None of these works, however, address estimation of the
more general spatially varying thermal conductivity.

However, an entirely different and computationally efficient ap-
proach to inverse determination of spatially varying physical prop-
erties of solid media is based on a combination of a field analysis
algorithm (using finite volume, finite element, finite difference, ra-
dial basis function, efc.) or experimental data, and an accurate, fast
and robust minimization algorithm [11-13] capable of avoiding local
minima. This paper demonstrates extension of the inverse parameter
identification methodology from two-dimensional arbitrarily shaped
objects [14,15] to three-dimensional arbitrarily shaped objects with
known outer geometry and possible internal inclusions.

The challenging inverse problem of determination of spatial dis-
tribution of diffusion coefficient in an arbitrarily shaped three-dimen-
sional object is somewhat more tractable if A = A(x, y, z) is known to
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vary as a function of x, y, z according to an analytic function defined
by a number of unknown parameters. The easiest and the most ver-
satile method for solving this inverse problem is minimization of the
properly scaled sum of squares of differences between the computed
¢ or d¢p/on values on the boundaries subject to chosen values of these
parameters, and the measured ¢ or d¢p/dn values on the boundaries. In
this case, these unknown parameters need to be iteratively optimized
to give an accurate match between the calculated and the measured
boundary values of ¢ or d¢p/dn. This method will be now presented on
sequence of examples dealing with inverse determination of parame-
ters governing spatial variation of one of the most common diffusion
coefficients 4 = A(x, y, z) known as thermal conductivity, k(x,y,z).

It should be pointed out that an unrelated inverse problem is in-
verse determination of thermal conductivity as a function of temper-
ature (not space) which can be efficiently and accurately solved with
the use of Kirchoff's transformation [16].

2. Validation of numerical solvers for forward problem

With advances in additive manufacturing, it is now possible to
create three-dimensional objects that feature spatially varying
thermo-physical properties. Also, it can often become imperative to
non-destructively determine the thermo-physical properties of such
objects.

The previously posed inverse problem, when applied to the ther-
mal diffusion problems, can be stated as: For a specified temperature/
heat flux distribution on the boundaries of a solid object, what should
be the spatial variation of thermal conductivity in this domain that will
create such temperature/heat flux distribution at the boundaries?

As previously mentioned, the methodology in this work uses a
least-squares minimization technique that requires the temperature
and/or heat flux to be calculated at the boundary of the domain. This
was done by numerically integrating Eq. (1) using the finite volume
method in ANSYS Fluent [17] software package. The spatial variation
of thermal conductivity was incorporated using a User-Defined Func-
tion (UDF) in this analysis software package.

In this inverse parameter identification method, it is necessary to
solve the forward (analysis) problem several times. For this reason,
the accuracy of the numerical integration code needs to be verified.
The accuracy verification was performed against analytical solutions.
One such analytical solution test case can be formulated as a three-di-
mensional cube x € [0,1], y € [0, 1], z € [0, 1] with the distribution
of thermal conductivity defined by

k(x,yaz)=[(A+X)(B+y)(c+z)]l—n (2)

Here, A, B, C and n are arbitrary parameters. The corresponding
analytical solution for the temperature field then has the general form

T(x,y,2)=(A+x)"+(B+y"+(C+2)" 3)

The accuracy verification was performed by solving Eq. (1) in
a cube subject to Dirichet conditions specified in Table 1 where
A=B=C=1.0and n=2. Equation (1) was solved using ANSYS
Fluent [17] with UDF on a computational grid of 62 , 62 x 62 grid
cells.

Fig. 1 shows the analytical distribution of thermal conductivity
defined by Eq. (2), analytical temperature field, computed tempera-
ture field and the relative error between the computed and analytical

Table 1
Dirichlet boundary conditions, when A = B=C = 1.0 and n = 2.

Location Dirichlet boundary conditions
East boundary x=1.0 T(Ly.z2)=4+1+y?>+(1+2)?
West boundary x=0.0 TO,y,2)=1+1+ y)2 +(1+2)?
North boundary y=1.0 T 1,z)=4+1+x)2+1+2z)>
South boundary y=0.0 Tx0,z)=1+0+x?+1+2z2)7
Top boundary z=1.0 Ty ) =4+0+x>+1+y)?
Bottom boundary z=0.0 T(x,y,0)=1+(+ X%+ 1+ y)2

temperature fields subject to boundary conditions in Table 1. It can be
seen that the maximum relative error is 0.015%. It shows that the pro-
posed numerical method is capable of producing accurate results and
therefore can be used for the proposed inverse problem method.

3. Inverse problem solution methodology

The solution of the inverse problem results in the determination
of parameters defining thermal conductivity variation throughout the
domain. This methodology minimizes the sum of normalized
least-squares differences between measured and calculated boundary
values of the field variable by iteratively adjusting these parameters.
Let us refer to temperature or temperature gradient on the boundaries
obtained from experiments or analytical solution as “measured” val-
ues. Let us refer to temperature or temperature gradient on the bound-
aries obtained from the solution of the forward problem with guessed
values of the parameters defining spatial distribution of thermal con-
ductivity as “calculated” values. Then the functional to minimize be-
comes

gl

where ¢ is a very small positive number of the order 1.0E-06 (to pre-
vent division by zero when measured boundary temperature is zero)
and summation is performed over 4.5, the boundary of the arbitrarily
shaped solid object.

The minimization of Eq. (4) was performed using a hybrid of
particle swarm and Broyden-Fletcher-Goldfarb-Shanno (BFGS) al-
gorithms [11-13]. The optimizer iteratively modifies the parameters
defining the distribution of thermal conductivity in the forward prob-
lem during minimization of the J functional. A hybrid optimization al-
gorithm was chosen because it is highly reliable and fast. That is, sin-
gle-objective optimization algorithms based on gradient search have
good convergence rates, but their search will often terminate in the
nearest feasible minimum instead in the global minimum. Non-gra-
dient population-based optimization algorithms converge at a slower
rate, but are able to successfully converge to the immediate vicinity of
the global minimum. A typical hybrid optimizer [11-13] is a set of one
or more of the gradient-based optimizers and one or more of the pop-
ulation-based optimizers, with an automatic switching logic among
these algorithms after every iteration (or population generation) in or-
der to maximize the overall convergence rate and avoid local min-
ima. In this work, instead of automatically switching back-and-forth
between the BFGS and the particle swarm optimizers, the population
based algorithm was used exclusively until the search converge to the
vicinity of the global minimum (when the convergence rate became
very low) and then switched [18] to exclusively using BFGS fast gra-
dient-based optimizer to quickly converge to the actual global mini-
mum point.
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Fig. 1. Distribution of: a) analytical thermal conductivity, b) analytical temperature field given by Eq. (3), ¢) calculated temperature field using ANSYS Fluent and analytical thermal
conductivity given by Eq. (2), and d) relative error of temperature computed using ANSYS Fluent.

In certain cases, it can be computationally expensive to compute
the forward problem especially when using a very fine computational
grid. The forward problem needs to be solved a large number of times,
each time for different guessed values of thermal conductivity para-
meters. Thus, it is more economical to replace the finite volume or the
finite element solver with a less accurate, but much faster surrogate
model. For this reason, a response surface [12,13] was created for the
J functional and then used to extremely quickly predict the forward
problem solutions for any guessed values of the parameters defining
thermal conductivity spatial variation. The response surface of the J
functional was created by interpolating J values calculated using high
fidelity ANSYS analyses corresponding to a relatively small set of
randomly distributed values of the unknown thermal conductivity pa-
rameters created using Sobol's algorithm [19]. The entire methodology
is summarized in Fig. 2.

All simulations were run on a single core of an Intel Xeon CPU
E5-4620. Each finite volume analysis took approximately 15 s, while
the response surface was constructed in less than 10 s. Once the re-
sponse surface was constructed using the J functional values from the
analysis runs, the optimizer, when coupled with the response surface,
took approximately 20-30 s for each case to minimize Eq. (4).

4. Numerical results

4.1. Case 1: inverse determination of smoothly varying thermal
conductivity

The proposed inverse problem solution methodology was validated
for a simple cube. The thermal conductivity was defined by Eq. (2),
in a cube where x € [0, 1], y € [0,1] and z € [0, 1], and subjected to
boundary conditions defined by Eq. (3) where the parameters were
A =1.25, B=1.34,C =3.20 and n = 2. The east, west, north, south
and top faces were subject to Neumann boundary conditions, while the
bottom face was subjected to Dirichlet boundary condition. The Neu-
mann boundary condition can be computed by analytically differenti-
ating Eq. (3).

The “calculated” values were obtained using ANSYS Fluent and
guessed values of 4, B and C, while the “measured” values were ob-
tained from the analytical solution Eq. (3). The three-dimensional re-
sponse surface was created using Shepard's K-Nearest algorithm [18]
that was supported by 30 values of the J functional obtained using 30
guessed sets of parameters 4, B and C in Eq. (2). In this example, the
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Fig. 2. Inverse problem methodology.

hybrid particle swarm-BFGS optimizer [18] was coupled with the
three-dimensional response surface to minimize the J functional.

Table 2 shows converged value of the parameters 4, B and C that
best minimized the J functional. Relative error of the inversely deter-
mined parameters was less than 1%. The maximum computing time
required to converge the three unknown parameters was less than
45 min. This includes times to construct the response surface as well
as the optimization. In previous work dealing with two-dimensional
problems only [14,15], which did not use a response surface, the com-
puting times were more than 10 h.

Fig. 3 shows the distribution of analytical thermal conductivity, an-
alytical temperature field, converged distribution of thermal conduc-
tivity and the relative error between analytical and converged distrib-
ution of thermal conductivity. It shows that the difference between the
analytical thermal conductivity and converged thermal conductivity is
less than 0.01%, thereby validating the proposed methodology for in-
verse determination of spatially varying thermal conductivity.

4.2. Case 2: determination of sharp gradient thermal conductivity

It has been shown that the proposed methodology is able to deter-
mine the distribution of smoothly varying thermal conductivity when
it follows a simple function. Its ability to determine sharply varying
3D distribution of thermal conductivity is investigated. In this test
case, the “measured” solution is no longer obtained using the analyt-
ical solution, but rather by using analysis from COMSOL software
[20].

Table 2
Case 1: Converged values of coefficients for n = 2.

A B (e}
Exact 1.250 1.340 3.20
Inversely Determined 1.248 1.337 3.20
Relative error 0.8% 0.22% 0%

The thermal conductivity was assumed to have the form

(kmax + Kumin)
k(x,y,z)= % + (kmax - kmin) [xx
max
A G (27tx)] [ Y _BnE (27ty)]
2z Ymax 2

x[ 2 _Cnf (2711)]
Zmax T

®)

The “measured” solution was obtained by solving Eq. (1) using
the distribution of thermal conductivity given in Eq. (5) (with bound-
ary conditions given in Table 4) using the finite element method in
COMSOL. When solving inverse problems, one must avoid the so
called “inverse crime”. This is because in a numerical study, the in-
verse problem will converge exactly to the measurements if the “mea-
surements” were obtained using the same analysis code as that used
in the inverse problem. To avoid this, two different solvers must be
used; one to obtain the “measurements” (COMSOL) and another (AN-
SYS) to solve the forward problem. It should be pointed out that, once
the response surface is used to solve the forward problem, this inverse
crime issue is avoided altogether as the response surface is a very
crude but efficient approximation to the J functional. It does not know
anything about the physics of the heat transfer problem. In Case 1,
the “measurements” were given as an analytic solution instead of been
simulated by any computer code. In other cases, the “measurements”
were generated using COMSOL, while forward solutions needed for
the generation of the response surface were generated using ANSYS.
The J functional was then calculated using these “measured” and “cal-
culated” values.

An eight-dimensional response surface was created using 80 sup-
port points by means of the Shepard's K-Nearest algorithm [18]. The
optimizer was then coupled with this response surface to find values
of the eight parameters that best minimized the J functional. The range
for each variable that the optimizer was allow to search is given in
Table 3.

Table 4 shows the boundary conditions applied to the cube, where
q is the heat flux. The J functional was constructed using the tempera-
ture value on the east, west, north, south and top boundaries. The com-
putational grid has the same size as the one used in Case 1 study.

As is often the case, the “measured” values that are obtained from
an experiment often have some level of noise. To account for this,
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Fig. 3. Case 1 - Distribution of: a) analytical thermal conductivity, b) analytical temperature distribution, ¢) inversely determined thermal conductivity, and d) relative error between

exact and estimated thermal conductivity.

Table 3
Case 2 - Allowable range and step size for

each unknown parameter in Eq. (5).

kmin kmax A B C D E F
Min 100 1000 0 0 0 1 1 1
Max 500 6000 1.0 1.0 1.0 100 100 100
Step Size 10 10 001 001 001 1 1 1
Table 4

Case 2 - Boundary conditions, when ki,
D=E=F=50.

=200, kg = 5000, A=B=C = 0.85 and

Boundary conditions

East boundary q(1,y,2)=10xk(1,y,2)
West boundary q(0,y,2)=10%x k(0,y,z)
North boundary q(x,1,2) =10X k(x,1,2)
South boundary q(x,0,z) =400 X k (x,0, z)

Top boundary q
Bottom boundary

(x,y,1) =600 X k (x,y,1)

T(x,y 0)=8XK

Table 5 shows the values of the converged six parameters in Eq.
(5) with varying level of noise. It is evident that the inverse problem
methodology is also able to determine a highly non-linear distribution
of the diffusion coefficient. The table also shows the values of the J
functional when the analytical values of the six parameters are used to
solve Eq. (1) and perturbed “measured” values are used to construct
the J functional. It can be seen that the J functional rapidly increases
for noise levels greater than approximately 2%.

Fig. 4 shows the distribution of converged thermal conductivity
for varying levels of noise in “measured” thermal boundary condi-
tions. Good convergence can be seen for noise levels up to 3%. This
shows that the methodology is able to inversely determine even a
sharp gradient distribution of thermal conductivity for high measure-

Table 5
Case 2: Converged values of coefficients, and J functional with randomly perturbed
boundary values.

noise was added to the “measured” values obtained from COMSOL.
The noise model used was additive white Gaussian [21]. The “mea-
sured” values were perturbed by a noise-signal ratio of 1%, 3%, 5%
and 10%. In reality, the actual Type J, K, E, T thermocouples and re-
sistance temperature detectors (RTDs) all have a maximum error of
approximately 1% [22].

kmin ~ kmax A B Cc D E F  Juaptica
Analytical 200 3000 085 085 085 50 50 50 -
Emeas =0% 200 3000 085 085 085 50 50 50 3E-8
Emeas = 1% 200 3000 085 085 085 50 50 50 8E-6
Emeas =3% 200 3000 085 085 085 50 50 50 433
Emeas =5% 410 4210 083 070 052 95 21 34 28E7
Emeas = 10% 340 4910 032 082 071 85 4 35 59E6
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ment noise levels, considering the maximum noise experienced by an
actual thermocouple is less than 1%.

Fig. 5 shows the relative error of the converged calculated distri-
bution of thermal conductivity and its analytical distribution. The rel-
ative error is zero for noise levels below 5%. It can be seen that the
distribution of the thermal conductivity is still predicted relatively ac-
curately despite the large noise present in the measured data.

4.3. Case 3: determination of sharp gradient thermal conductivity in
arbitrary domain

In the previous two cases, a cube was used to demonstrate the effi-
ciency of the proposed methodology. However, the proposed method-
ology can also be applied to arbitrary shaped domains. In this sec-
tion, an arbitrary three-dimensional configuration featuring no pla-
nar symmetry or axis-symmetry is used (Fig. 6). The parametric

Error (%): 0

a)

10 20 30 40 50 60 70 80 90 100

900 1190 1480 1770 2060 2350 2640 2930 3220 3510 3800

b) ©)

0%, €meas = 1%, Emeas = 3%, b) Epeas = 5%, ) Emeas = 10%.

equations defining this geometry are given by Lame curves as

r=ry— Acos(30) wherero—lA 02, 00<6<2n

]« e [ ] -

] o[ o

Fig. 6 shows the arbitrary multiply-connected geometry defined by
Eq. (6). Each of the four boundaries is revolved by a different angle
o about the axis which is offset by 2 m from the origin. This ensures
there is neither a planar symmetry nor axisymmetry.

The assumed distribution of thermal conductivity is again given by
Eq. (5), where the eight parameters are given in Table 5. The gov-
erning Eq. (1) was subject to boundary conditions given in Table 6.
The “measured” values were once again obtained using COMSOL.
The J functional was constructed using temperature values on bound-

A

b)

Fig. 5. Relative error in Case 2 between analytical and converged distribution of thermal conductivity for: a) €,,.4s = 5% and b) €,,.4s = 10%.
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Fig. 6. Case 3: Arbitrary three-dimensional geometry example: a) vertical cross section plane of a torus showing cross-sections of three cavities, and b) an isometric translucent view

of the complete 3D torus with three cavities.

Table 6
Case 3: Boundary conditions when ky;, =420, k. =3160, 4=0.44, B=0.62,
C=0.33and D=34, E=42, F=21.

Boundary conditions

Boundary #1 T=330K

Boundary #2 g = 30000 X k (x, y, z)
Boundary #3 g = 60000 X k (x, y, z)
Boundary #4 q = 40000 X k (x, y, z)

aries #2, #3 and #4. A total of 80 support points (80 numerical analy-
ses with different values of the eight parameters) were used to create
the response surface again by means of the Shepard's K-Nearest algo-
rithm [18].

Table 7 shows the converged values of the eight parameters in
Case 3 under varying noise levels for the three-dimensional configu-
ration given in Fig. 6. It can again be seen that the J functional grows
exponentially for noise levels greater than approximately 1.5%.

Fig. 7 shows the converged distribution of thermal conductivity for
the Case 3. It can be seen that again for noise levels up to 3%, the pro-
posed methodology is able to accurately determine the distribution of
diffusion coefficient.

Fig. 8 shows the relative error between the converged distribution
of thermal conductivity and its analytical distribution. It was observed
that a sensitive distribution of assumed thermal conductivity as in Eq.
(5) leads to a highly non-linear and highly multimodal objective func-
tion topology featuring sharp gradients near the global minimum. For
this reason a powerful and robust optimizer is needed to avoid the lo-
cal minima. An improvement in accuracy could be expected when us-
ing strictly high fidelity analyses instead of a relatively low fidelity re-
sponse surface metamodel.

Table 7
Case 3: Converged values of the six parameters and J functional with randomly per-
turbed boundary values.

kmin kmax A B C D E F JAnal Iytical

Analytical 420 3160 044 062 033 34 42 21

Emeas = 0% 420 3160 044 062 033 34 42 21 2E-8
Eeas = 1% 420 3160 044 062 033 34 42 21 2E-6
Emeas = 3% 420 3160 044 062 033 34 42 21 109
Emeas = % 450 4860 0.83 047 025 95 95 49 260
Emeas = 10% 450 4860  0.83 047 025 95 95 49 5.5E6

It can be reported that the optimizer took longer to converge in
Case 2 and in Case 3 than in Case 1, due to the highly non-linear and
sensitive assumed distribution of thermal conductivity. With the use of
high fidelity finite element or finite volume for each of the analyses,
the computing time would have been an order of magnitude longer.

4.4. Case 4: determination of subdomains within solid objects

Using this general approach, it is possible to detect subdomains
(one material subdomain imbedded within another material domain)
by minimizing the J functional. This will be demonstrated on a simple
cube made of silicon with an embedded subdomain of gold. It will be
assumed that the subdomain general shape inside the cube is defined
by a modified Lamé super-ellipsoid whose location, size and shape
and its thermal conductivity are unknown.

<x - X )2/}12 N (y - Y )2/;12 ny/ny
A B

zZ— 2z >2/"1
+
(~e

=1 0

f(x.y.2)

It will also be assumed that the property of the encasing material is
also unknown.

Distribution of thermal conductivity can then be assumed to have
the discontinuous form

S, 2)>1 = k= kgjion
2 S 1=k =kgoy (8)

The “measured” values of thermal boundary conditions were ob-
tained by means of the finite element method using the exact values
(Table 8) of thermal conductivities, geometry definition parameters
used in Eq. (7) and thermal boundary conditions given in Table 4.
A total of 110 support points were used to create a response surface
using the Shepard's K-Nearest algorithm. To allow for the accurate
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Fig. 8. Case 3 - Relative error between analytical and converged thermal conductivity
fOr €,peqs = 5% and €045 = 10%.

Table 8
Case 4 - Converged values of ten parameters in Eq. (8) with randomly perturbed ther-
mal boundary values.

Kyiticon kgald X0 Yo 20 A B C ny n

Analytical 149 385 -05 0.0 -0.15 025 025 025 05
Emeas =0% 149 385 —05 00 -0.15 025 025 025 05
Emeas =1% 149 385 —05 00 -0.15 026 024 0245 05
Emeas =3% 149 385 056 00 -0.15 027 024 0245 061

—_ -

analysis of vastly diverse shapes, the computational grid resolution
was increased to 110 x 110 x 110.

The ten converged parameters from Eq. (8) for varying levels of
noise in the “measured” thermal boundary conditions are shown in
Table 8. It can be seen that the optimizer was able to accurately deter-
mine the location, size and shape of the subdomain and thermal con-
ductivities of the materials in the two domains.

Fig. 9 shows the location and the shape of the identified subdo-
main. It can be seen that the location is exact for all three cases. The
assumed distribution of thermal conductivity was relatively sensitive
with respect to each of the ten variables.

This demonstrated that this non-destructive evaluation method is
also capable of identifying sizes, shapes and locations of imbedded
subdomains and discontinuous distribution of diffusion coefficient in
such subdomains.

The number of parameters that can be determined using this
methodology can be much higher. For example,

The accuracy of this methodology is dependent on the accuracy of
the forward problem solver (which was verified), the assumed func-
tion distribution (which can be overcome using a product of two or
three Fourier series), the accuracy of the response surface generation
algorithm used, and the reliability and accuracy of optimizer used
to perform the minimization. It is true that for larger number of un-
knowns, a more powerful optimizer is needed. One such optimizer is
1I0SO which can cope with hundreds of unknowns. Our hybrid sin-
gle-objective optimizer successfully performed on analytical problems
with up to 100 design variables having different degrees of nonlinear-
ities.

5. Conclusion

The continuous and discontinuous distribution of material prop-
erties within a solid object can be non-destructively determined us-
ing a minimization of a sum of the least squares between the calcu-
lated and measured boundary conditions. Numerical integration of the
governing PDE was performed using the finite volume and finite ele-
ment methods and was validated against analytical solution. This in-
verse parameter identification technique showed promising results for
both a continuous and discontinuous, smoothly varying and sharply
varying distribution of the diffusion coefficient in arbitrary domains.
Total computing time was significantly reduced from 10 + hours to
under 1 h by the use of metamodels. It was demonstrated that even
a sensitive and highly non-linear distribution of the material proper-
ties can be estimated. The presented methodology was able to deter-
mine the distribution of the diffusion coefficient for boundary temper-
ature measurement noise levels up to 3% when using response sur-
face metamodels, which is appealing as a typical temperature mea-
surement apparatus has a noise level of 1%. This approach to inverse
identification of unknown parameters was also demonstrated as ca-
pable of accurately determining sizes, shapes and locations of subdo-
mains and material properties in the subdomains imbedded within a
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Fig. 9. Case 4 - Inversely determined location, size and shape of a subdomain containing gold for: a) €,,.4s = 0%, b) €,eas = 1%, and ¢) €005 = 3%.

solid object. Finally, it should be pointed out that this parameter iden-
tification method is directly applicable to determination of parameters
defining spatial distributions of thermal conductivity, electric permit-
tivity and magnetic permeability and that it is truly non-destructive.
It took approximately 30 min to 1 h to obtain objective function val-
ues needed to construct the response surface. The actual construction
of the response surface took less than 5 s. Once the response surface
was coupled with the optimizer, the minimization process took ap-
proximately 30 s. Thus, the most computationally expensive task in
this entire procedure is obtaining the objective function values needed
to construct a response surface. An alternative would be to use re-
duced order modeling instead of the response surface approach, al-
though both approaches require a number of high fidelity forward so-
lutions as a starting point.
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