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Abstract. Hodgkinand Huxley, in their classical paper of 19520posed that the action potential in eatile cells,

such as axons or Purkinje fibersan be modeled in terms of an electric circuit with capacitance and ionic electrical
currents. Sodium and Potassium ions are the most influential in the action potential and are distinguished in terms of
their own proper currents, in comparison to other ion this paper, we apply the Markov Chain Monte Carlo
(MCMC) method for the estimation of parameters appearing in Hodgdliey’'s model, by using simulated
measurements of the action potential. The MCMg&hod is implemented in the form of the Metropbléstings'
algorithm. A araelyss of the sensitivity coefficienis used for the selection of the prior distributions for the
parameters The parameters are successfully estimated with Gaussian priorswéteassociated large variancaad

large measurement errars

Keywords Action Potential, HodgkitHuxleys model, inverse problenvarkov Chain Monte Carlethod

1 INTRODUCTION

It is widelyknown that our neurological system propagates signals via abringescross the neurons membranes
(Guyton and Hall, 2006 The resulting electric potential between the intracellular and extracellular media has been
denoted as the action potent{@uyton and Hall, 2006 Failures or abnormalities in the ionic clgas and in their
resulting action potentials can be associated to several neurological disturbs, like epilepsy, Parkinson's and Alzheimer's
disease¢Buhry et al, 2012).

A typical normal action potential in neurons is presente#fign 1, where thetime periodscorresponding to the
occurrence of different physiathemical phenomena are designated by nun@argton and Hall, 2006 Such periods
can be described as folloGuyton and Hall, 2006

Period 1- Rest: In this period, the action potential iagically stable.

Period 2— Un-polarization: During this period, the cell membrane allows the transfer of positive charges from the
extracellularto the intracellulamedium. The sodium ion is the most likely to cross the membrane at this period, due to
its larger concentration gradients. As a result, the action potential undergoes a fast increase.

Period 3— Repolarization: As the maximum potential is reached, the sodium channels across the cell membrane
gradually close and the potassium channelsugihdopen. Due to the concentration gradients of the potassium ion
across the cell membrane, it is transferred towards extracellular region and the action potential is reduced. The cell is
then repolarized. Depending on how fast this period takes pthesmext period might occur or not.

Period 4- Hyperpolarization: This period occurs when thepaarization period is too fast, and the slow potassium
channels do not close in time sufficient for the potential to reach the stable level of the facst(ipest). As a result, the
potential becomes smaller than that of the first period.

Period 5- Action of theionic pumps: The final period of the potential variation involves the pumping of sodium and
potassium ions across the cell membrane in order storee their initial concentrations in the intracellular and
extracellular media. This period brings the action potential back to the levels of the first period (rest), so that another
cycle can be started.
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Fig. 1: Action potential inneurons.

Hodgkin-Hu x | e y ', slespite ling proposed in 1952s still usednowadaysto represent theonic flux in
excitable cellsStudies involving this model with differembjectivescan be found in the literatur€or example, in
mathematicsstudies can be fmd regarding the solutiobifurcations resulting from the notinear character of the
problem,andabout the problenti#f nesg(Wang et al. 2007Che et al. 20L,2Vloehlis 2008. The solution of the inverse
problems of parameter estimationdaof state eghation canbe foundin (Meng et al. 2011Buhry et al. 2012,
Estumano et al., 2018H. Extensions of Hodgkingduxley's model have also been developed, based on the
morphology, structure and electrophysiolagfyneurons(Cepeda et al, 200Riera et al. 2006, Riera et 2011)

In this paper we revisit the wio by Estumano et al. (2013.b) and extdine inverse analysis for the estimation of
several parameters appearing in Hodglixley's modelSimulated measurements of the action potential are used for
the solution othe inverse problepwhich is solved within the Bayesian framework through the Markov Chain Monte
Carlo methodThe sensitivity coefficients with respect to the unknown parameters are examined in the paper.

2 Hodgkin-Huxley’s Model

Hodgkin and Huxley,ri their dassical paper of 1952 (Hodgkin aktlixley, 1952) examined the behavior of an
axon under the effects of an imposed electric current across the cell membrane. The cell electric potential was assumed
to be independent of the position within the cdikttis, the intracellular electric resistance was neglected. In their
experiments, Hodgkin and Huxley observed that the conductance of some ions across the cell membrane, like sodium
and potassium, varied with changes in the axon potential. The impostitadarrent across the cell membrane was
then modeled in terms of capacitive aodic currents. Being the sodium and potassium ions recognized as the most
important in this process, their currents were treatgrhratelyrom those of the other ions, wh were quantified in a
global manner and referred to as leakage current. Hodgkin and H€8g) proposed their model based on the
electrical circuit depicted iRig. 2. For the model, the transfer of ions towards the cell interior was assumedtias.pos

EXTRACELULAR
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Fig. 2: Electric circuit for HodgkirHuxley's mode(Hodgkin andHuxley, 1952)

The current across the cell membrane is then given by:
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dv_(1)
I =1 ions mL @)
dt
whereC,, is the cell capacitance. Thanic current is giva by:
Iionslea +k I+L (2)

which ismodeled by the conductances of the channels corresponding to each ion. Such conductances for the sodium
and potassium ions were experimentallyedetined and written as (Hodgkin aHdxley, 1952):

G, =Grnih 3

G =G 4

wherem andn represent the open fract®nor probabilites of the channels being open, for sodium and potassium,
respectively, whiléh is the probability of the chanrsdbeing closed for the sodium ions. Tluactonsmandn are also

referred to as the activations of thadium angotassiurmionstransfer through the cell membranespectivelywhile h

is referred to as the inactivation for the sodium ion transfer. In equations (3) an@ {4)and G refer to the
maximum sodium and potassium conductances, respectively. The electric currents resulting from the sodium and
potassium ions flowing across the cell membrane are thus given by

I Na — GE‘:XH]S h(vm _VNa) (5)
I =G™n*(V,, V) (6)

whereV,, andV, give the equilibrium potential for the sodium and potassium ions, respectively.
Similarly, the electric current resulting from the flow of the other ion$visngby:

L =G, (Vm 'VL) @)
By substituting equations (§Y) into equations (1) and (2) we obtain

d
1=C, TR SR, W) GTA(Y W G, ) ®

Hodgkin and Huxley (1952) proposed the following ordinary differential equations to describe the ion channels
openirg/closing dynamics

Ezam(l 'm) #Hm 9)
dh

oo (@) n (10
dn _ i

a =a, (1 n) -b?n (11

where the coefficientga andb in each equation are givaisfunctions ofV,, (Hodgkin andHuxley, 1952)

While the coefficientsa represent the inflow of ions towards the cell interior, the coefficiéntepresent the
opposite #ect. For thestudiedaxon it was proposedHodgkin andHuxley, 1952)

0.1 25 V,)

= 12
An expg0.1 25 V,)) -1, (12
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Vm

b, =4expg (13
e
e V.
a, =0.07exp —= 14
" & 20 (14
1
b, = 1
" expg0.130V,) +1 (19
10- V,
a,=0.01— (10- v, (16)
expg0.{10V,) -1
e V.
b, =0.125exrg = 1
h R 80 a7

whereV,, is given in milivols. The initial conditions for the cases addressed herein were takén (@ = -5 mV,

m = 0,n = 0.33 andch = 0.5(Estumano et al. ®3a,h. Other parameters appearing in the model were measured by
Hodgkin and Huxley1952); such parameters are presentediab. 1.

Tab.1. Parameters for Hodgkiduxley's model for an axon
Parameter Value | Parameter Value

C.(nF) 1 | Vi(mv) -12
GX(n8) 120 | G™(n8) 0.3
Via(MV) 115 | V. (mV) 10.6
G™(n8) 36 |I(mA 6

3 INVERSE PROBLEM

Inverse problemsan be broadly defad as thosdealng with the estimation of unknown quantities appearing in the
mathematical fonulation of any kind of procesdy using measurements gfme dependent variable of the problem
(observable response of the syst€Bgck and Arnold, 1977Tikhonov and Arsenin, 1977; Sabatier, 19T&lderdn,
1980; Morozov, 1984; Beck eal., 1985; Tarantola, 1987Hensel, 1991Bertero and Boccacci, 199&)urio, 1993;
Alifanov, 1994;Kurpisz and Nowak, 199%lifanov et al, 1995; Trujillo and Busby, 199Denisov, 1999; Yagla et
al., 1999;0zisik and Orlande, 2000 oodbury, 20020rlande et aJ 2011 Kaipio and Somersalo, 200%Fan et al
2006; Calvetti and Somersalo, 2007

In the direct problem associated with Hodgkloxley's model given by equatiof®) to (17),all the parameters and
initial conditions are known; the objective thife direct problem is then to determine the time evolutions of the action

potential,V., (t) , as well as of the sodium and potassium channel dynamics representdd agdn.
On the other hand, the inverse problem under analysis in this work involves the use of measurements of the action
potentia] V. (t) to recover parameters appearing in Hodghinxley's model. Such parameters include

C..Gu.G™ G, V,, . Vyand V_ , as well as the empirical constants appearing in equafibt?s to (17) of

coefficientsa and b, yielding atotal of twenty six parameters. Wedenote the vector of parameters appearing in the
formulation as

PT 1 [Py,Py,... P

(18
whereN is the number of parameters.
The vector containing the measueedionpotentialis denotedas:
Y =(% YY) (19

where Y, * Y(p),i= 1., ..

By assuming that the measurement errors are Gaussian random variables, with zero means and known covariance
matrix W and that the measuremaemntors are additive and independent of the parametehe likelihood function can
be expressed gBeck and Arnold, 197 7Tarantola, 1987Qrlande et a] 2011 Kaipio and Somersalo, 200%an et al
2006; Calvetti and Somersalo, 2007)
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pOYIPY=(@ W et 5 IY-V, @ W Y-V, )] | 20

whereV, (P) is the solution of the direct (forward) problem with knolrthat is,

Vi (P) =@V, (t:P). Vo (tiP) . V(1 P) (22

The likelihood function gives the relative probability density of different measurement outtomids a fixed P
(Beck and Arnold, 1977; GamermamQ9l/; Kaipio and Somersal®@004 Orlande et al, 2031 A very common
approach for the solution of inverse problems, dealing with the estimation of the pardmeittrshe measurements
Y, is to maximize the likelibod probability densitygquation(20). This can be accomplisheddlugh theminimization
of its exponentresulting in the popular maximum likelihood objective function. One important remark is that such
classical approach for the solution of parameter estimation problems is not based on the modeling of prior information
and related uncertainty about the unknown parameters. On the other hand, in approaches based on Bayesian statistics
the probability distribution models for the measurements and for the unknowns are constructed separately and
explicitly.

The solution ofthe inverse problem within the Bayesian framework is recast in the form of statistical inference from
the posterior probability density, which is the model for the conditional probability distribution of the unknown
parameters given the measurements. Thasorement model incorporating the related uncertainties is called the
likelihood, given in this work by equatior2Q). The model for the unknowns that reflects all the uncertainty of the
parameters without the information conveyed by the measuremerdiestbe prior mode{Beck and Arnold, 1977;
Tarantola, 19870Qrlande et a) 2011; Gamerman, 199Winkler, 2003; Lee, 200&aipio and Somersalo, 200%an et
al., 2006; Calvetti and Somersalo, 2007

The formal mechanism to combine the new informafimeasurements) with the previously available information
(prior) i s known malel (BebkeandBlanyld, sl977Tardntela, rl@8wOrlande et aJ 2011;
Gamerman, 199AVinkler, 2003; Lee, 2004Kaipio and Somersalo, 200Fan et al 2006; Caletti and Somersalo,

2007. Therefore, the term Bayesian is often used to describe the statistical inversion approach, which is based on the
following principles (Kaipio and Somersalo, 2004). All variables appearing in the model are random; 2. The
randanness describes the degree of information concerning their realizations, which is coded in probability
distributions; and 3. The solution of the inverse problem is the posterior probability distribution, from which
distribution point estimates and otheatigttics are computed.

Bayes'’ t heor @esk and Arneld, 497 & drantala 19870rlande et a) 2011; Gamerman, 1997;
Winkler, 2003; Lee, 200&aipio and Somersalo, 200%an et al 2006; Calvetti and Somersalo, 2007

_P(P) AY|P)
pY)
where p,.....(P) is the poterior probability density,o(P) is the prior densityp(Y|P) is the likelihood function and

p(Y) is the marginal probability density of the measurements, which plays the role of a normalizing constant.

Sampling of the posterior distribution by using Markov Chain M&@#do (MCMC) methods is the most general
technique for the computation of estimates within the Bayesian framework. The most common MCMC technique is the
MetropolisHastings algorithm{Gamerman, 1997; Kaipio and Somersalo, 208dstings, 1970Winkler, 20@; Lee,

2004; Kaipio and Somersalo, 200&an et al, 2006; Calvetti and Somersalo, 2007lande et al, 20)1 The

implementation of the Metropolidastings algorithm starts with the selection of a proposal distribui@, P ),

pposterior(P) = /QP|Y) (22)

which is used to draw a new candidate sRtegiven the current staR" ' bf the Markov chain. Once the proposal
distribution has been selected, the Metropblistings sampling algorithm can be implemented by repeating the
following steps:

1. Sample Lardidate PointP” from the proposatistributionp(P",P" 7).
2. Calculate the acceptance factor:

. €
a=mingl, -
gl p(PUYIY)p(P" P )

. D o
PP 1Y)p(P™",P) f (23)

3. Generate a random valUewhich is uniformly distributed on (0,1).

4.1fU ¢ a, setP” = P". Otherwise, seP” =p*"
5. Return to step.1
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In this way, a sequence is generated to represent the posterior distribution and inference on this distribution is

obtained from inference on the samplél){, p? , Pf',')}. However we note that values " must be ignored

while the chain hasot converged to equilibrium (the buin period).
In this paper, the proposal distribution was taken in the form of a Gaussian distribution, so that,

PP=( 4 PV (24)

wherel is the identity matrixand U is adiagonal matrixof Gaussiarmrandom variablewith zero meas andstandard
deviatiors w = [wy, W, ..., W] ".

4 RESULTS

The objectiveof this workis to estimate parameteeppearingn HodgkinHu x| ey’ s mod e lthentd he f i
performan analysis of the sensitivity coefficientith respect tahe different parameter$he sensitivity coefficient is
defined as the first derivative of theeasuredesponse of the physical systeon of dependent variable of the problem
(in this case, the action potentjalyith respect to a paraster appearing in the formulation of the probldinis
desirable to havknearly-independent sensitivity coefficients with large magnitudes, so that the inverse problem is not
very sensitive to measurement errors and accurate estimates of the pareendbersbtaine(Beck and Arnold, 1977,
Ozisik and Orlande, 2000The reduced sensitivity coefficiesxtan be more conveniently used for this analysis, since
theycan be directly compared to the measured variable. The reduced sensitivity cogfir@ebtaned by multiplying
the original sensitivity coefficiestby the parameterthat they referto (Beck and Arnold, 1977, Ozisik and Orlande,
2000). Since the present parameter estimation problem ifineam, the analysis of the sensitivity coefficients is not
global; in the present work, it was based on the values of the parameters preséated iand on equations (417),
which were also used to generate the simulated measurements.

We focus in this work on the analysis of the sensitivity coefficientstfe parameter€, , G2, G, G, , V., -

V,and V.. The sensitivity coefficients were computed in this work by central fufifterences.Fig. 3.a presents the

reducel sensitivity coefficients with respetti these parameters, as well as the action potential (black line). Since some
sensitivity coefficients attain very large values in thepotarization periodFig. 3.b was prepared with a zoomify.

3.a in the rempn where the action potential variations take place. An analysisgof3.b shows that the sensitivity
coefficient with respect t&, exhibits small magnitudes for the case under analysis. Furthermore, this figure shows a
strong linear dependence oftlensitivity coefficientsvith respect to all parameters, which are proportional to each
other.
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Fig. 3: Reducedensitivity Coefficiend

In the classical approaches for parameter estimation based, for example, on the minimization of the maximum
likelihood objective function, the judged "known" parameters would be considered as deterministic quantities in the
invere analysis, although their degrees of nuisance might be limited to their mean values and to some measure of their
uncertainties. On the other hand, with a technique within the Bayesian framework, the uncertainties in the judged
"known" parameters can bemppriately taken into account through their prior probability functions. Therefasedb
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on the foregoing analysis of the sensitivity coefficie@aypssian priors, centered at the values used for the sensitivity
analysis and for the generation of thmuslated measurements (séab. 1 andEqgs.12-17), will be used for all the

parameters appearing in Hodghituxley's model The standard deviations for the Gaussian priors for the
parameter€_, G2, G, G, , V.. » V. andV,, are shown irTab. 2, in terms of percentiles of tmemean valuesThis
table shows that the focus of this work was on the estimati@y,ofvhich was assumed with a standard deviation of
20% ofthe mean value of the prior. The other parametppearing inrab. 2 were assumed with standard deviatiohs

5% of their mean values, except fG{>". Numerical experiments revealed that the success of the estimation procedure
was highly dependent on the use of a quite informative foiothis parameterSuch was the case because of the strong
linear dependence d@&-*and C, (seeFig. 3.b). The priors for the parameters appearing in equafib?)sto (17) were
assumed with a standard deviation of 1% of their mean valMesnote that these parameters were considered as
deterministic in (Estumano et al, 2013.b).

Tab.2: Standard deviations of the priors

Standard DeviationRelative to théeMlean Value of the Gaussian Pri| %
sCm 20

GNa 1

Se, 5

Sa 5

VNa 5

Vi S

Sy, 5

The simulatedmeasurements were obtained from the solution of the direct problem with the nominal values
presented iab. 1 and with the coefficients given by equations (12) to (17). The measurement errors were simulated
by an additive Gaussian noise, with zero mead a constant standard deviation given by 5% of the maximum
potential. The numerical solution of the HodkiHgxley's model and the simulated measurements are presetiigd in
4.

120 T T T T T
Exact
100 - Measurement {

Vm (mV)

_40 r r r r r
0 10 20 30 40 50 60

Time (ms)

Fig. 4: Exact action potential and simulated measurements

For theresults presented below, the Markov chains@y, G2, G/, G, , V,, . V., andV, were started at values
with magnitudes 40% larger than the mean values of the pridg thle Markov chains for the parameters appearing in
equations (12) to (17) were started at their mean values. The Gaussian propdSal&fiif, G, G, , V,, . V,ad

V_ were considered with a standard deviation of 3% of the value of the current state, whatd€3, while for the
other parametersy was taken as 10 The Markov chains were simulated with 10000 states, with aibyseriod of
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2000 states. Suchugntities were defined through numerical experimenkse Markov chains for the parameters
C..Gw.G™, G, Vy, ,» V,andV, are presented ifigs. 5.ag, respectivelyThese figures show the convergence of

the Markov chains in about 20Gtates for all parameters, despite the fact that they are started at states quite far from
ther exact values. The histograrfes the marginal posterior distributions for such paransesee presented iRigs.

6.ag. As expected, such histograayproximate Gaussian distributions, since the prior distributions and the likelihood
are GaussiariThe means and the 99% confidence bound<faiG, G, G, , V,, , V, andV_ are shown inrab.3,
together with the exact values used to generate the simulated measurements. The agreement between the estimatec
means and the exact values is excellent, desmtéati that the measurement errors and the associated uncertainties in

the prior distributions of the unknown parameters are quite large.

Tab.3: Compargson between the results estimated with exact values

Parameter| Exact Value| Estimated
C.(nF) 1 0.97 £ 0.06
G*(nB) 120 120.15 + 3.13
G™(mB) 36 36.54 +3.81
G"™( ) 0.3 0.29+0.02
Via (MV) 115 112.71 +5.79
V, (mV) -12 -12.06+ 0.98
Vv, (mV) 10.6 10.59 £ 0.25

5 CONCLUSIONS

The MetropolisHastings algorithm was applied for the estimation of patars in HodgkirHuxley's model, by
using simulated measurements of the action potential. An analysis of the sensitiffitjecds reveals parameters with
strong correlations, so that Gaussian priors were used for the inverse analysis within the Bayesian frammework.
agreement between the estimated means of the marginal posterior distributions and the exact valuesaofetteesp
was excellent, despite the fact that the measurement errors and the associated uncertainties in the prior distributions of
the unknown parameters are quite large.
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