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Abstract.  Hodgkin and Huxley, in their classical paper of 1952 proposed that the action potential in excitable cells, 

such as axons or Purkinje fibers, can be modeled in terms of an electric circuit with capacitance and ionic electrical 

currents. Sodium and Potassium ions are the most influential in the action potential and are distinguished in terms of 

their own proper currents, in comparison to other ions.  In this paper, we apply the Markov Chain Monte Carlo 

(MCMC) method for the estimation of parameters appearing in Hodgkin-Huxley´s model, by using simulated 

measurements of the action potential. The MCMC method is implemented in the form of the Metropolis-Hastings' 

algorithm. An analysis of the sensitivity coefficients is used for the selection of the prior distributions for the 

parameters. The parameters are successfully estimated with Gaussian priors, even with associated large variances and 

large measurement errors. 
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1 INTRODUCTION 

It is widely known that our neurological system propagates signals via ionic changes across the neurons membranes 

(Guyton and Hall, 2006). The resulting electric potential between the intracellular and extracellular media has been 

denoted as the action potential (Guyton and Hall, 2006). Failures or abnormalities in the ionic changes and in their 

resulting action potentials can be associated to several neurological disturbs, like epilepsy, Parkinson's and Alzheimer's 

diseases (Buhry et al., 2012). 

A typical normal action potential in neurons is presented in Fig. 1, where the time periods corresponding to the 

occurrence of different physico-chemical phenomena are designated by numbers (Guyton and Hall, 2006). Such periods 
can be described as follows (Guyton and Hall, 2006): 

Period 1 – Rest: In this period, the action potential is practically stable. 

Period 2 – Un-polarization:  During this period, the cell membrane allows the transfer of positive charges from the 

extracellular to the intracellular medium. The sodium ion is the most likely to cross the membrane at this period, due to 

its larger concentration gradients. As a result, the action potential undergoes a fast increase.  

Period 3 – Re-polarization: As the maximum potential is reached, the sodium channels across the cell membrane 

gradually close and the potassium channels gradually open. Due to the concentration gradients of the potassium ion 

across the cell membrane, it is transferred towards extracellular region and the action potential is reduced. The cell is 

then re-polarized. Depending on how fast this period takes place, the next period might occur or not. 

Period 4 – Hyper-polarization: This period occurs when the re-polarization period is too fast, and the slow potassium 

channels do not close in time sufficient for the potential to reach the stable level of the first period (rest). As a result, the 
potential becomes smaller than that of the first period. 

Period 5 – Action of the ionic pumps: The final period of the potential variation involves the pumping of sodium and 

potassium ions across the cell membrane in order to restore their initial concentrations in the intracellular and 

extracellular media. This period brings the action potential back to the levels of the first period (rest), so that another 

cycle can be started.  
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Fig. 1: Action potential in neurons.  

 

Hodgkin-Huxley’s model, despite being proposed in 1952, is still used nowadays to represent the ionic flux in 

excitable cells. Studies involving this model with different objectives can be found in the literature. For example, in 

mathematics, studies can be found regarding the solution bifurcations, resulting from the non-linear character of the 

problem, and about the problem stiff ness (Wang et al. 2007, Che et al. 2012, Moehlis 2006). The solution of the inverse 

problems of parameter estimation and of state estimation can be found in (Meng et al. 2011, Buhry et al. 2012, 

Estumano et al., 2013.a,b). Extensions of Hodgking-Huxley's model have also been developed, based on the 

morphology, structure and electrophysiology of neurons  (Cepeda et al, 2005, Riera et al. 2006, Riera et al. 2011). 

In this paper we revisit the work by Estumano et al. (2013.b) and extend the inverse analysis for the estimation of 

several parameters appearing in Hodgkin-Huxley's model. Simulated measurements of the action potential are used for 

the solution of the inverse problem, which is solved within the Bayesian framework through the Markov Chain Monte 

Carlo method. The sensitivity coefficients with respect to the unknown parameters are examined in the paper.    
 

2 Hodgkin-Huxley’s Model 

Hodgkin and Huxley, in their classical paper of 1952 (Hodgkin and Huxley, 1952), examined the behavior of an 

axon under the effects of an imposed electric current across the cell membrane. The cell electric potential was assumed 

to be independent of the position within the cell, that is, the intracellular electric resistance was neglected. In their 
experiments, Hodgkin and Huxley observed that the conductance of some ions across the cell membrane, like sodium 

and potassium, varied with changes in the axon potential. The imposed electric current across the cell membrane was 

then modeled in terms of capacitive and ionic currents. Being the sodium and potassium ions recognized as the most 

important in this process, their currents were treated separately from those of the other ions, which were quantified in a 

global manner and referred to as leakage current. Hodgkin and Huxley (1952) proposed their model based on the 

electrical circuit depicted in Fig. 2. For the model, the transfer of ions towards the cell interior was assumed as positive. 

 
Fig. 2: Electric circuit for Hodgkin-Huxley's model (Hodgkin and Huxley, 1952). 

The current across the cell membrane is then given by: 
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( )m

ions m

dV t
I I C

dt
= +  (1) 

 

where 
mC  is the cell capacitance. The ionic current is given by: 

 

ions Na k LI I I I= + + (2) 

 

which is modeled by the conductances of the channels corresponding to each ion. Such conductances for the sodium 

and potassium ions were experimentally determined and written as (Hodgkin and Huxley, 1952): 

 
3max

Na NaG G m h=  (3) 

 
4max

k kG G n=  (4) 

 

where m and n represent the open fractions, or probabilities of the channels being open, for sodium and potassium, 

respectively, while h is the probability of the channels being closed for the sodium ions. The functions m and n are also 

referred to as the activations of the sodium and potassium ions transfer through the cell membrane, respectively, while h 

is referred to as the inactivation for the sodium ion transfer. In equations (3) and (4), max

NaG  and max

kG  refer to the 

maximum sodium and potassium conductances, respectively. The electric currents resulting from the sodium and 

potassium ions flowing across the cell membrane are thus given by:   
 

( )3max

Na Na m NaI G m h V V= -  (5) 

 

( )4max

k k m kI G n V V= -  (6) 

 

where 
NaV  and 

kV  give the equilibrium potential for the sodium and potassium ions, respectively. 

Similarly, the electric current resulting from the flow of the other ions is given by: 

 

( )L L m LI G V V= -  (7) 

 

By substituting equations (5)-(7) into equations (1) and (2) we obtain 

 

( ) ( ) ( )3 4max maxm

m Na m Na k m k L m L

dV
I C G m h V V G n V V G V V

dt
= + - + - + - (8) 

 

Hodgkin and Huxley (1952) proposed the following ordinary differential equations to describe the ion channels 

opening/closing dynamics: 

 

( )1m m

dm
m m

dt
a b= - +  (9) 

( )1h h

dh
h h

dt
a b= - +                                                                                                                                               (10) 

( )1n n

dn
n n

dt
a b= - +                                                                                                                                               (11) 

 

where the coefficients a and b in each equation are given as functions of mV  (Hodgkin and Huxley, 1952).  

     While the coefficients a represent the inflow of ions towards the cell interior, the coefficients b represent the 
opposite effect. For the studied axon, it was proposed (Hodgkin and Huxley, 1952): 

 

( )

( )
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m

m
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V

V
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                                                                                                                                      (12) 
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where 
mV  is given in milivolts. The initial conditions for the cases addressed herein were taken as Vm (0) = -5 mV,  

m = 0, n = 0.33 and h = 0.5 (Estumano et al. 2013.a,b). Other parameters appearing in the model were measured by 

Hodgkin and Huxley (1952); such parameters are presented in Tab. 1. 

 

Tab. 1. Parameters for Hodgkin-Huxley's model for an axon 

Parameter Value Parameter Value 

( )mmC F  1 ( )kV mV  -12 

( )mmax

NaG S  120 ( )mmax

LG S  0.3 

( )NaV mV  115 ( )LV mV  10.6 

( )mmax

kG S  36 I(mA) 6 

 

3 INVERSE PROBLEM 

Inverse problems can be broadly defined as those dealing with the estimation of unknown quantities appearing in the 

mathematical formulation of any kind of process, by using measurements of some dependent variable of the problem 
(observable response of the system) (Beck and Arnold, 1977; Tikhonov and Arsenin, 1977; Sabatier, 1978; Calderón, 

1980; Morozov, 1984; Beck et al., 1985; Tarantola, 1987; Hensel, 1991; Bertero and Boccacci, 1998; Murio, 1993; 

Alifanov, 1994; Kurpisz and Nowak, 1995; Alifanov et al., 1995; Trujillo and Busby, 1997; Denisov, 1999; Yagola et 

al., 1999; Özisik and Orlande, 2000; Woodbury, 2002; Orlande et al., 2011; Kaipio and Somersalo, 2004; Tan et al., 

2006; Calvetti and Somersalo, 2007). 

In the direct problem associated with Hodgkin-Huxley's model given by equations (8) to (17), all the parameters and 

initial conditions are known; the objective of the direct problem is then to determine the time evolutions of the action 

potential, ()mV t , as well as of the sodium and potassium channel dynamics represented by m, h, and n. 

On the other hand, the inverse problem under analysis in this work involves the use of measurements of the action  

potential, ()mV t , to recover parameters appearing in Hodgkin-Huxley's model. Such parameters include 

, ,max max

m Na kC G G , LG , NaV  , kV and VL , as well as the empirical constants appearing in equations (12) to (17) of 

coefficients a and b, yielding a total of twenty six parameters. We denote the vector of parameters appearing in the 
formulation as 

 

P
T ¹[P1,P2,...,PN]        

                                                                                                                                                                                  (18) 

where N  is the number of parameters.   

The vector containing the measured action potential is denoted as:  

 
( )1 2, , ... ,T

IY Y Y=Y                                                                                                                                              (19) 

where, ( )i iY Y t¹ , i = 1, …, I. 

 

By assuming that the measurement errors are Gaussian random variables, with zero means and known covariance 

matrix W and that the measurement errors are additive and independent of the parameters P, the likelihood function can 

be expressed as (Beck and Arnold, 1977; Tarantola, 1987; Orlande et al., 2011; Kaipio and Somersalo, 2004; Tan et al., 

2006; Calvetti and Somersalo, 2007): 
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1/2/2 11

( ) (2 ) exp [ ( )] [ ( )]
2

I T

m mp p
-- -ë û

= -ì ü
í ý

Y P W Y - V P W Y - V P                                                                             20) 

where ( )mV P  is the solution of the direct (forward) problem with known P, that is, 

 

() ( ) ( ) ( )1 2; , ; ,...., ;T

m m m m IV t V t V t=è øê úV P P P P                                                                                                           (21) 

 

The likelihood function gives the relative probability density of different measurement outcomes Y with a fixed P 

(Beck and Arnold, 1977; Gamerman, 1997; Kaipio and Somersalo, 2004; Orlande et al, 2011). A very common 

approach for the solution of inverse problems, dealing with the estimation of the parameters P with the measurements 

Y, is to maximize the likelihood probability density, equation (20). This can be accomplished through the minimization 

of its exponent, resulting in the popular maximum likelihood objective function. One important remark is that such 
classical approach for the solution of parameter estimation problems is not based on the modeling of prior information 

and related uncertainty about the unknown parameters. On the other hand, in approaches based on Bayesian statistics, 

the probability distribution models for the measurements and for the unknowns are constructed separately and 

explicitly. 

The solution of the inverse problem within the Bayesian framework is recast in the form of statistical inference from 

the posterior probability density, which is the model for the conditional probability distribution of the unknown 

parameters given the measurements. The measurement model incorporating the related uncertainties is called the 

likelihood, given in this work by equation (20). The model for the unknowns that reflects all the uncertainty of the 

parameters without the information conveyed by the measurements, is called the prior model (Beck and Arnold, 1977; 

Tarantola, 1987; Orlande et al., 2011; Gamerman, 1997; Winkler, 2003; Lee, 2004; Kaipio and Somersalo, 2004; Tan et 

al., 2006; Calvetti and Somersalo, 2007). 

The formal mechanism to combine the new information (measurements) with the previously available information 
(prior) is known as the Bayes’ theorem model (Beck and Arnold, 1977; Tarantola, 1987; Orlande et al., 2011; 

Gamerman, 1997; Winkler, 2003; Lee, 2004; Kaipio and Somersalo, 2004; Tan et al., 2006; Calvetti and Somersalo, 

2007). Therefore, the term Bayesian is often used to describe the statistical inversion approach, which is based on the 

following principles (Kaipio and Somersalo, 2004): 1. All variables appearing in the model are random; 2. The 

randomness describes the degree of information concerning their realizations, which is coded in probability 

distributions; and 3. The solution of the inverse problem is the posterior probability distribution, from which 

distribution point estimates and other statistics are computed. 

Bayes’ theorem is stated as (Beck and Arnold, 1977; Tarantola, 1987; Orlande et al., 2011; Gamerman, 1997; 

Winkler, 2003; Lee, 2004; Kaipio and Somersalo, 2004; Tan et al., 2006; Calvetti and Somersalo, 2007):  

 

( ) ( )
( ) ( )

( )
posterior

p p
p p

p
= =

P Y P
P P Y

Y
                                                                                                                        (22) 

where ( )posteriorp P  is the posterior probability density, ( )pP  is the prior density, ( )pY P  is the likelihood function and 

( )pY  is the marginal probability density of the measurements, which plays the role of a normalizing constant. 

Sampling of the posterior distribution by using Markov Chain Monte Carlo (MCMC) methods is the most general 

technique for the computation of estimates within the Bayesian framework. The most common MCMC technique is the 

Metropolis-Hastings algorithm (Gamerman, 1997; Kaipio and Somersalo, 2004; Hastings, 1970; Winkler, 2003; Lee, 

2004; Kaipio and Somersalo, 2004; Tan et al, 2006; Calvetti and Somersalo, 2007; Orlande et al, 2011). The 

implementation of the Metropolis-Hastings algorithm starts with the selection of a proposal distribution * ( 1)( , )tp -
P P , 

which is used to draw a new candidate state P
*, given the current state P

(t-1)
 of the Markov chain. Once the proposal 

distribution has been selected, the Metropolis-Hastings sampling algorithm can be implemented by repeating the 
following steps: 

1. Sample a Candidate Point P* from the proposal distribution p(P*,P
(t -1)

). 
2. Calculate the acceptance factor: 

 

         
* ( 1) *

( 1) * ( 1)

( | ) ( , )
min 1,

( | ) ( , )

t

t t

p

p

p
a

p

-

- -

è ø
= é ù

ê ú

P Y P P

P Y P P
          (23) 

 

3. Generate a random value U which is uniformly distributed on (0,1). 

4. If U ¢a, set P
(t)

 = P*. Otherwise, set P
(t)

 = P
( t -1)
. 

5. Return to step 1. 
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In this way, a sequence is generated to represent the posterior distribution and inference on this distribution is 

obtained from inference on the samples {P
(1)

 , P
(2)

 , …, P
(n)

}. However, we note that values of P
(i) must be ignored 

while the chain has not converged to equilibrium (the burn-in period).  
In this paper, the proposal distribution was taken in the form of a Gaussian distribution, so that, 

 
* ( 1)( ) i-= +P I Ů P                                                                                                                                                   (24) 

 

where I is the identity matrix and Ů is a diagonal matrix of Gaussian random variables with zero means and standard 

deviations w = [w1, w2, …, wI]
T.  

 

4 RESULTS 

 

The objective of this work is to estimate parameters appearing in Hodgkin-Huxley’s model. The first step is then to 

perform an analysis of the sensitivity coefficients with respect to the different parameters. The sensitivity coefficient is 

defined as the first derivative of the measured response of the physical system, or of dependent variable of the problem 

(in this case, the action potential), with respect to a parameter appearing in the formulation of the problem. It is 

desirable to have linearly-independent sensitivity coefficients with large magnitudes, so that the inverse problem is not 

very sensitive to measurement errors and accurate estimates of the parameters can be obtained (Beck and Arnold, 1977, 

Ozisik and Orlande, 2000). The reduced sensitivity coefficients can be more conveniently used for this analysis, since 

they can be directly compared to the measured variable. The reduced sensitivity coefficients are obtained by multiplying 

the original sensitivity coefficients by the parameters that they refer to (Beck and Arnold, 1977, Ozisik and Orlande, 

2000). Since the present parameter estimation problem is non-linear, the analysis of the sensitivity coefficients is not 

global; in the present work, it was based on the values of the parameters presented in Tab. 1 and on equations (12-17), 
which were also used to generate the simulated measurements.    

We focus in this work on the analysis of the sensitivity coefficients for the parameters , ,max max

m Na kC G G ,
LG , 

NaV  , 

kV and VL. The sensitivity coefficients were computed in this work by central finite-differences. Fig. 3.a presents the 

reduced sensitivity coefficients with respect to these parameters, as well as the action potential (black line). Since some 
sensitivity coefficients attain very large values in the un-polarization period, Fig. 3.b was prepared with a zoom of Fig. 

3.a in the region where the action potential variations take place. An analysis of Fig. 3.b shows that the sensitivity 

coefficient with respect to GL exhibits small magnitudes for the case under analysis. Furthermore, this figure shows a 

strong linear dependence of the sensitivity coefficients with respect to all parameters, which are proportional to each 

other.  

 

 
 

(a) Whole time range                                   (b) Region of the variation of the action potential 

Fig. 3: Reduced Sensitivity Coefficients 

 

In the classical approaches for parameter estimation based, for example, on the minimization of the maximum 

likelihood objective function, the judged "known" parameters would be considered as deterministic quantities in the 

inverse analysis, although their degrees of nuisance might be limited to their mean values and to some measure of their 

uncertainties. On the other hand, with a technique within the Bayesian framework, the uncertainties in the judged 

"known" parameters can be appropriately taken into account through their prior probability functions. Therefore, based 
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on the foregoing analysis of the sensitivity coefficients, Gaussian priors, centered at the values used for the sensitivity 

analysis and for the generation of the simulated measurements (see Tab. 1 and Eqs. 12-17), will be used for all the 

parameters appearing in Hodgkin-Huxley's model. The standard deviations for the Gaussian priors for the 

parameters , ,max max

m Na kC G G ,
LG , 

NaV  , 
kV and VL, are shown in Tab. 2, in terms of percentiles of their mean values. This 

table shows that the focus of this work was on the estimation of Cm, which was assumed with a standard deviation of 

20% of the mean value of the prior. The other parameters appearing in Tab. 2 were assumed with standard deviations of 

5% of their mean values, except for max

NaG . Numerical experiments revealed that the success of the estimation procedure 

was highly dependent on the use of a quite informative prior for this parameter. Such was the case because of the strong 

linear dependence of max

NaG and 
mC  (see Fig. 3.b). The priors for the parameters appearing in equations (12) to (17) were 

assumed with a standard deviation of 1% of their mean values. We note that these parameters were considered as 

deterministic in (Estumano et al, 2013.b).   

  

Tab. 2: Standard deviations of the priors. 

Standard Deviations Relative to the Mean Value of the Gaussian Prior %  

Cms  20 

NaGs  1 

kGs  5 

LGs  5 

NaVs  5 

kVs  
5 

LVs  
5 

 

 
The simulated measurements were obtained from the solution of the direct problem with the nominal values 

presented in Tab. 1 and with the coefficients given by equations (12) to (17). The measurement errors were simulated 

by an additive Gaussian noise, with zero mean and a constant standard deviation given by 5% of the maximum 

potential. The numerical solution of the Hodking-Huxley's model and the simulated measurements are presented in Fig. 

4. 
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Fig. 4: Exact action potential and simulated measurements. 

 

For the results presented below, the Markov chains for , ,max max

m Na kC G G , LG , NaV  , kV and VL were started at values 

with magnitudes 40% larger than the mean values of the prior, while the Markov chains for the parameters appearing in 

equations (12) to (17) were started at their mean values.  The Gaussian proposals for , ,max max

m Na kC G G , LG , NaV  , kV and 

VL were considered with a standard deviation of 3% of the value of the current state, that is, w = 0.03, while for the 

other parameters, w was taken as 10-8. The Markov chains were simulated with 10000 states, with a burn-in period of 
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2000 states. Such quantities were defined through numerical experiments. The Markov chains for the parameters 

, ,max max

m Na kC G G ,
LG , 

NaV  , 
kV and VL are presented in Figs. 5.a-g, respectively. These figures show the convergence of 

the Markov chains in about 2000 states for all parameters, despite the fact that they are started at states quite far from 

their exact values.  The histograms for the marginal posterior distributions for such parameters are presented in Figs. 

6.a-g. As expected, such histograms approximate Gaussian distributions, since the prior distributions and the likelihood 

are Gaussian. The means and the 99% confidence bounds for , ,max max

m Na kC G G ,
LG , 

NaV  , 
kV and VL are shown in Tab. 3, 

together with the exact values used to generate the simulated measurements. The agreement between the estimated 

means and the exact values is excellent, despite the fact that the measurement errors and the associated uncertainties in 

the prior distributions of the unknown parameters are quite large. 

 

Tab. 3: Comparison between the results estimated with exact values. 

Parameter Exact Value Estimated 

( )mmC F  1 0.97 ± 0.06 

( )mmax

NaG S  120 120.15 ± 3.13 

( )mmax

kG S  36 36.54 ± 3.81 

( )mmax

LG S  0.3 0.29 ± 0.02 

( )NaV mV  115 112.71 ± 5.79 

( )kV mV  -12 -12.06 ± 0.98 

( )LV mV  10.6 10.59 ± 0.25 

 

5 CONCLUSIONS 

 

The Metropolis-Hastings algorithm was applied for the estimation of parameters in Hodgkin-Huxley's model, by 

using simulated measurements of the action potential. An analysis of the sensitivity coefficients reveals parameters with 

strong correlations, so that Gaussian priors were used for the inverse analysis within the Bayesian framework. The 

agreement between the estimated means of the marginal posterior distributions and the exact values of the parameters 

was excellent, despite the fact that the measurement errors and the associated uncertainties in the prior distributions of 

the unknown parameters are quite large. 
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Fig. 5: Markov chains for the parameters , ,max max

m Na kC G G , LG , NaV  , kV and VL  
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