Engineering Optimization IV

Editors

H.C. Rodrigues
LAETA, IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal

J. Herskovits
COPPE, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil

C.M. Mota Soares, J.M. Guedes, A.L. Araújo & J.O. Folgado
LAETA, IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal

F. Moleiro & J.F.A. Madeira
LAETA, IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal and ISEL – Instituto Superior de Engenharia de Lisboa, Lisbon, Portugal
Table of contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>XV</td>
</tr>
<tr>
<td>Organizers</td>
<td>XVII</td>
</tr>
<tr>
<td>Numerical optimization techniques</td>
<td></td>
</tr>
<tr>
<td>A comparative study between wavelet-adaptive multiple shooting and single shooting implemented in a MATLAB-EMSO environment</td>
<td>3</td>
</tr>
<tr>
<td>Results comparison between SIMP and SERA for compliant mechanisms design</td>
<td>9</td>
</tr>
<tr>
<td>C. Alonso, R. Ansola, E. Vegueria & O.M. Querin</td>
<td></td>
</tr>
<tr>
<td>Application of derivative-free multi-objective algorithms to reliability-based robust design optimization of a high-speed catamaran in real ocean environment</td>
<td>15</td>
</tr>
<tr>
<td>Multi-Objective Optimization (MDO) and differential geometry controlled Pareto front solution spacing</td>
<td>21</td>
</tr>
<tr>
<td>C. Bakker & G.T. Parks</td>
<td></td>
</tr>
<tr>
<td>Solving dual hesitant fuzzy assignment problem with restrictions using similarity measure</td>
<td>27</td>
</tr>
<tr>
<td>P. Singh</td>
<td></td>
</tr>
<tr>
<td>Structural optimization of frame structures by integer programming with design code failure constrains</td>
<td>33</td>
</tr>
<tr>
<td>A. Kuckoski & J.S.O. Fonseca</td>
<td></td>
</tr>
<tr>
<td>A study on multidisciplinary design optimization method for UUV</td>
<td>39</td>
</tr>
<tr>
<td>M.Y. Wang, Z.F. Wei, Q. Yu & S.L. Yang</td>
<td></td>
</tr>
<tr>
<td>The comprehensive optimization analysis of mechanical properties of the monohull ship</td>
<td>45</td>
</tr>
<tr>
<td>S.L. Yang, Q. Yu & Y. Chen</td>
<td></td>
</tr>
<tr>
<td>Comprehensive optimization of the performance for USV and its methods</td>
<td>51</td>
</tr>
<tr>
<td>S. Zhang, S.L. Yang, G.Y. Zhang & Y.Y. Wen</td>
<td></td>
</tr>
<tr>
<td>Real-time optimization by indirect NMPC methods</td>
<td>57</td>
</tr>
<tr>
<td>C. Schwarz, R. Callies & A. Szabo</td>
<td></td>
</tr>
<tr>
<td>Interval partitioning methods for mixed integer nonlinear problems</td>
<td>63</td>
</tr>
<tr>
<td>B. Ergüneş, L. Özdamar, N. Gülcan & O. Demir</td>
<td></td>
</tr>
<tr>
<td>Multi-stage stochastic distribution model</td>
<td>69</td>
</tr>
<tr>
<td>L.T. Guardia & T.G. de Torres</td>
<td></td>
</tr>
<tr>
<td>A novel hybrid method for optimal control problems and its application to trajectory optimization in micro manufacturing</td>
<td>75</td>
</tr>
<tr>
<td>E. Bauma & T. Schuster</td>
<td></td>
</tr>
<tr>
<td>A one-step discrete adjoint-based approach for combined design optimization and a posteriori error estimation</td>
<td>81</td>
</tr>
<tr>
<td>J. Miranda, S. Abraham, K. Elsayed & C. Lacor</td>
<td></td>
</tr>
<tr>
<td>Application of cellular automaton to combinatorial optimization problems</td>
<td>87</td>
</tr>
<tr>
<td>K. Ishihashi, H. Furuta, Y. Nomura, K. Nakatsu & K. Takahashi</td>
<td></td>
</tr>
</tbody>
</table>
A surrogate-assisted evolutionary algorithm for dynamic structural identification
P. Gambarelli & L. Vincenzi

MOGASI: A multi-objective genetic algorithm for efficiently handling constraints and diversified decision variables
S. Costanzo, L. Castelli & A. Turco

A metric to assist the selection of the particle swarm optimization parameters
C.A. da Silva Jr., W.B. Saba, N.M. Abe & A. Passaro

Structural design optimization of lightweight structures considering material selection and sizing
M. Schatz, E.J. Wehrle & H. Baier

Application of the flower pollination algorithm in nonlinear algebraic systems with multiple solutions
G.M. Platt

Schemes in setting position and radius of RBF in convolute RBF for surrogate optimization
M. Arakawa & S. Kitayama

Investigation of energy dissipation over stepped spillways using a hybrid FV-ANN technique
A. Dolatshah, H. Imani Khoshkho & M. Mashal

Robust optimization of shunt circuits for the passive control of composite structures
B.G.G.L. Zambolini-Vicente, V.A.C. Silva & A.M.G. de Lima

Recent advances in the solution of large nonlinear optimisation problems with WORHP
T. Linke, D.L. Wassel & C. Büskens

An improved methodology for airfoil shape optimization using surrogate based design optimization
D. Rajaram & R.S. Pant

A new draft of resolution to the p-median problem
J. Fernandes dos Santos & C. dos Santos Machado

Optimization of the ready-mixed concrete delivery system using transportation algorithm
G. Albayrak & U. Albayrak

Design optimization and inverse problems

PARETO and NASH fronts as the limit case of the isoperimetric inequality in multiobjective optimization theory
V.V. Kobelev

Design of material anisotropy constitutive matrices for structural stiffness and strength optimization
P. Pedersen & N.L. Pedersen

A genetic algorithm for optimization of spatial trusses considering self-weight loads
A.C.C. Lemonge, P.H. Hallak, L.G. Fonseca & H.J.C. Barbosa

Existence and uniqueness of the regularized solution in the problem of recovery of the non-steady emission rate of a point source: Application of the adjoint method
D. Parra-Guevara, Y.N. Skiba & A. Reyes-Romero

Shape optimization of interior permanent magnet motor for torque ripple reduction
E. Kuci, P. Duysinx, C. Geuzaine & P. Dular

Structural identification of two dimensional shear buildings using a modified adaptive harmony search algorithm
M.M. Jahjouh & U. Nackenhorst

Practical interest of “anti-optimal” solutions in optimal structural design
T. Messager & M. Pyrz

Optimization of an unitary split system air conditioner with variable refrigerant flow
F.O.B. Brochier, M.L.S. Indrusiak & P.R. Wander

On the use of min-max algorithms in receding horizon control laws for harbor defense
S. Lee, E. Polak & J. Walrand
On optimization of internal/external spur gears tooth bending strength

N.L. Pedersen

Application of Generalized Extremal Optimization (GEO) technique to design the orbit transfer solar sail control system

I. Mainenti-Lopes, L.C.G. Souza & F.L. De Sousa

Comparison between unrestricted dynamic shakedown design and a new probabilistic approach for structures under seismic loadings

L. Pulizzolo, S. Benfratello & P. Tabbuso

Optimization and investigation of the dynamical-optical behavior of mirror systems

J. Störkle, N. Wengert & P. Eberhard

Numerical direct evolutionary identification of constitutive semi-crystalline polymer model parameters

H. Abdul-Hameed, T. Messager, F. Zaïri & M. Naït-Abdelaziz

Design of after-market wind turbine blade add-ons for noise reduction

S.S. Rodrigues & A.C. Marta

Optimal design of curved folded plates by optimality criteria method

B. Balogh & J. Lógó

Recovering the functional form of nonlinear heat transfer by means of thermal imaging

G. Inglese

Multidisciplinary performance based optimization of aircraft

F. Afonso, J. Vale, F. Lau & A. Suleman

Stochastic optimization in aircraft design

L. Amândio, A. Marta, F. Afonso, J. Vale & A. Suleman

Performance optimization of complex continuous mining system using stochastic simulation

M.S. Shishvan & J. Benndorf

Parameterization formulations for aerofoil shape optimization

D.A. Vicente, P.V. Gamboa & M.A.R. Silvestre

2-D shape optimization of aerostat envelopes using Kriging

S.N. Paul, D. Patil & R.S. Pant

Design optimization of the centrifugal clutch of the M3165 four-stroke internal combustion engine

P. de F.V. Carvalheira

Optimization of a car radiator fin thickness

P. Wais

Simulation of polymeric membrane in Aspen Plus for CO₂ post-combustion capture

A. Pascu, A. Badea, C. Dinca & L. Stoica

Hybrid optimization algorithm applied on multistage axial compressor performance calculations with variable geometry

O.F.R. Silva, J.T. Tomita, C. Bringhenti & D.F. Cavalca

On the optimization of a piezoelectric speaker for hearing aid application through multi-physical FE models

G.C. Martins, P.R. Nunes & J.A. Cordioli

Topology optimization for improving the performance of solar cells

D.K. Gupta, M. Langelaar, F. van Keulen & M. Barink

Information-maximizing adaptive design of experiments for wind tunnel testing

A graphic Java interface for the calculation of double azeotropes by the inversion of functions from the plane to the plane

G.B. Libotte, G.M. Platt & A. de L. Guedes

VII
Optimisation of hierarchical structures for compression bearing applications
D. Rayneau-Kirkhope, Y. Mao & R.S. Farr
341

Shape optimization for homogenized phononic materials and band gap structures
E. Rohan, J. Vondřejc & J. Heczko
347

Robust reliability-based aerodynamic shape optimization
D.I. Papadimitriou & C. Papadimitriou
353

Weight minimization of truss structures subjected to dynamic loading
M.M. Hedaya, A. Elsabbagh & A.M. Hussein
359

Inversion of functions from the plane to the plane to solve nonlinear algebraic systems: Calculating of double azeotrope using the modified Raoult’s Law in the mixture benzene + hexafluorobenzene
A.L. Guedes, G.M. Platt & F.D.M. Neto
365

Experimental studies of a variable water volume chiller system for energy conservation
Y.F. Wang & Q. Chen
371

The topology optimization of electronic parts mounted on micro satellite
H. Nakamura & T. Miyashita
379

Determination of peel strength based on composition of adhesives for the footwear industry using genetic algorithm
R.M. Paiva, C.C. António & L.M. Silva
385

Performance based MDO of a regional transport aircraft with a joined wing configuration
J. Vale, F. Afonso, F. Lau & A. Suleman
391

A polynomial algorithm for a special case of the one-machine scheduling problem with time-lags
H. Ramalhinho
397

Optimization of multimodal shunt circuits for the passive control of composite structures
V.A.C. Silva, B.G.G.L. Zambolini-Vicente & A.M.G. de Lima
403

Optimal pitching axis of flapping-wings for hovering flight
Q. Wang, J.F.L. Goosen & F. van Keulen
409

Modeling and parameter estimation of a biogas plant using maize silage in a two step model
J.A. Arzate, M.N. Cruz Bournazou, M. Kirstein, P. Neubauer, S. Junne & B. Habermann
415

Heat exchanger design optimization taking into account uncertainties of different correlations
J. Lambert & L. Gosselin
421

Tuning parameters using bio-inspired multiobjective optimization algorithm for topology optimization based on bacterial chemotaxis
J.X. Leon & M.A. Guzman
427

Optimization of microstructures using statistical and physical descriptors within a cellular automaton framework
A. Emami, T. Wu & A. Tovar
433

Optimization of a material with a negative stiffness provided by an inherent bistable element
J. Heczko, Z. Dimitrovolová & H.C. Rodrigues
439

Application of relaxation matrix logic-structural in the allocation optimization of devices in power systems distribution
M.M. Santos, A.R. Abaide, M. Sperandio & T.F. Milke
445

Efficient analysis and reanalysis techniques
Using model order reduction to accelerate optimization of multi-stage linear dynamical systems
Y. Yue, S. Li, L. Feng, A. Seidel-Morgenstern & P. Benner
453

Improving inversion algorithms for geosounding inversion
H. Hidalgo-Silva & E. Gómez-Treviño
459
On solution of 3D contact shape optimization problems with Coulomb friction based on domain decomposition
P. Beremlijski & A. Markopoulos
465

Efficient reliability-based optimization using a combined metamodel and FE-based strategy
S. Shetty
471

Sensitivity analysis

A revised vertex enumeration algorithm via dual Fourier-Motzkin elimination method
S.D. Abdullahi
479

Topological derivatives for fundamental frequencies of elastic bodies
V.V. Kobelev
485

Sensitivity analysis of the model response in mechanized tunneling simulation – A case study assessment
C. Zhao, A.A. Lavasan & T. Schanz
491

Reaeration coefficient sensitivity analysis for water quality river modelling
V.T.R. Costa, J. Lugon Jr. & P.P.W. Rodrigues
497

Industrial applications

Flow optimization of hydraulic accumulators
H. Ortwig, U. Zimmermann & D. Hübner
503

Topology optimization of a wing structure
F.C. Sousa, F.P. Lau & A. Suleman
507

The potential of support vector machines and Kriging in modelling the gas cyclone performance
K. Elsayed, D. Vucinic & C. Lacor
513

Method and system for control of flotation process based on preliminary estimates of ore grade
V. Morozov, Z. Ganbaatar, L. Delgerbat & V. Stoliarov
519

A firefly based optimization algorithm for optimal planning of voltage controlled distributed generators
M.M. Othman, W. El-Khattam, A.Y. Abdelaziz & Y.G. Hegazy
523

Optimization of the overload-protection degree
A.V. Perelmutter & T.Y. Veriuzhska
529

A model for scheduling of employees using supplier selection
S. Holopainen
533

Optimization of a silver catalyzed formaldehyde plant using artificial neural networks
R.L. Reis, R.M. Fontes, J.K.O. Fernandes, R.A. Kalid & K.V. Pontes
539

Hypersonic cryogenic tank design using mixed-variable surrogate-based optimization
Ch. Beauthier, A. Mahajan, C. Sainvitu, P. Hendrick, S. Sharifzadeh & D. Verstraete
543

Polymer electrolyte fuel cell performances enhanced by under-rib convection
J. Ahn, J. Lee, N.D. Vihn, S. Park, H.-M. Kim & K.-S. Choi
551

Robust assignment of fleet size and travel routes for transportation to a single-destiny using optimization via simulation
E.G. Baquela & A.C. Olivera
557

An optimization model for truck tyres selection
Z. Šabartová, A.-B. Strömberg, M. Patriksson & P. Lindroth
561

Optimization of storage space in port grain cereal storage silos – a case study
M.G. Cardoso, E.P. Ferreira, M.P. Lopes & C. Lopes
567

A Hybrid Harmony Search (HHS) algorithm for a Green Vehicle Routing Problem (GVRP)
R. Kawtummachai & T. Shohdohji
573
Automotive shift quality optimization based on piecewise monotone interpolation of parameter characteristics
A. Wurm, D. Bestle & S. Kahlbau

Temperature prediction in high speed incremental forming process by data mining techniques
C. Ciancia, G. Ambrogio, L. Filice, F. Gagliardi & R. Musmanno

Optimal race course design for air races
R. Callies

Automotive Powertrain optimization by genetic algorithm analysing transmission ratios
G.B. Colherinhas, P.H.C. Dias, A.C.G.C. Diniz & A.P.S.P. Rodrigues

Multi-objective optimization to simultaneously address energy hub layout, sizing and scheduling using a linear formulation
G. Mavromatidis, R. Evins, K. Orehounig, V. Dorer & J. Carmeliet

Optimal control in moving domains: An application to eutrophication
L.J. Alvarez-Vázquez, A. Martínez & F.J. Fernández

Optimum design of a dissipative link in wall-frame systems
R. Greco & G.C. Marano

Inverse procedure for determining transient fluid temperature based on temperature responses of the thermometer and pipeline wall
J. Taler & M. Jaremkiewicz

Model-linearization strategies for MPC of the air-path of a diesel engine

Optimization of the fuel consumption of M3165 four-stroke internal combustion engine
P. de F.V. Carvalheira & J.M. E. Nunes

Use of genetic algorithms for spare parts distribution system
A. Rybičková, A. Karásková & D. Mocková

Mixture optimization and analysis of the chemical behavior of different types of ethanol for export
M.C.O. Pedulla, J.J. Soletti & S.H.V. Carvalho

Towards a monolithic design of large aircraft wing spoilers using numerical topology and laminate optimization
M. Meindlhumer, M. Schagerl & M. Fleischmann

Design optimization of equivalent mooring system on truncated depth
F.M.G. Ferreira, E.N. Lages, S.M.B. Afonso & P.R.M. Lyra

Achievement of metamodels for optimization of methylamines production process through computer aided design

Optimization in biogas processes production. The importance of global sensitivity analysis, optimization procedure and uncertainty analysis
A. Donoso-Bravo, G. Ruiz-Filippi & F. Carrera-Chapela

Shape optimization of aircraft cabin ventilation components using adjoint CFD
T. Köthe, S. Herzog & C. Wagner

Optimization methods applied to nonlinear signal interference models
M. da Silva, E.L.F. Senne & N.L. Vijaykumar

The Combinatorial-Cyclic method of Optimization (CCOpt) in a scaled or full sized prototyping and virtual prototyping
S. Zietarski, S. Kachel, A. Kozakiewicz & S. Wrzesien

Shape optimization of inductors for preheating before laser welding and hardening
D. Pánek, P. Kus, V. Kotlan, R. Hamar & I. Doležel

Adjoint-based shape optimization of high-speed trains
D. Jakubek, S. Herzog & C. Wagner
Examination of material properties and carbonation of concrete in a 50-year-old structure
M. Canbaz, U. Albayrak & E. Unluoglu

Seven-stage axial compressor optimization
V.N. Matveev, O.V. Baturin, G.M. Popov & I.N. Egorov

Dynamic job shop scheduling with alternative routes based on genetic algorithm
A. Ali, P. Hackney, D. Bell & M. Birkett

MS01 – Topology optimization for structural static and dynamic failures

Major advances in exact structural topology optimization: Stress and displacement based multi-load design
G.I.N. Rozvany, V. Pomezanski, T. Sokol & E. Pintér

Optimum structures of micropolar materials depending on elastic constants
Y. Arimitsu, Z.Q. Wu, Y. Sogabe & T. Kimura

Towards multi-objective topology optimization of structures subject to crash and static load cases
N. Aulig, S. Menzel, E. Nutwell & D. Detwiler

A robust approach to the optimization of structures made of unilateral material
M. Bruggi & P. Duysinx

Optimal packages: Binding regular polyhedra
F. Kovács

MS02 – Optimization in oil and gas industries

A multifidelity approach to waterflooding optimization
M. Fragoso, B. Horowitz & J. Rodrigues

Multicriteria solutions for optimum reservoir management
S.M.B. Afonso, L.C. Oliveira, J.W.O. Pinto, B. Horowitz & R.B. Willmersdorf

A MILP formulation for scheduling oil tankers for offloading operations with variable travel time
L.S. de Assis, E. Camponogara & A. Plucenio

A modified shuffled frog-leaping algorithm to model products transport in pipeline networks
F. Lamboia, L.V.R. de Arruda & F. Neves Jr.

A mathematical programming formulation for robust production optimization of gas-lifted oil fields
E. Hülse & E. Camponogara

Optimized ballast control in load-out operations
M.C.T. Reyes, P. Kaleff, S.G. Ramon & J.R. Sarmiento

Helicopter routing problem applied to offshore platforms

MS03 – New advances in derivative-free optimization methods for engineering optimization

Hybrid multi-criterion optimization strategies for complex technical problems
S. Kax

Global optimization design for expensive computational simulations in aerodynamics using a novel surrogate model approach
L. Carro-Calvo, S. Salcedo-Sanz, E. Andrés-Pérez & M.J. Martin-Burgos

Structural optimization of a joined wing aircraft using DMS algorithm
T. Pires, J.F.A. Madeira & A. Suleman
MS04 – Optimization methods in biomechanics and biomedical engineering

A pre-operational study magnification measurement and error estimation of residual tibia kinematics within below knee prosthetics
A. Breen, M. Dupac, S. Noroozi & N. Osborne
927

Optimal approach to the human motion reconstruction within the limitation of the kinematic data acquisition procedures
C. Quental, J. Fiolgada, J. Ambrósio & J. Monteiro
931

The callus formation in bone healing as a shape optimization problem
937

A framework for custom design and fabrication of cranio-maxillofacial prostheses using investment casting
V. Csáky, R.J. Neto, T.P. Duarte, J. Lino Alves, M. Couto & M. Machado
941

Parametric optimization of coronary stents based on finite element models
N.S. Ribeiro, J.O. Fiolgada & H.C. Rodrigues
947

MS05 – Optimization of laminated composite structures

Hierarchical optimization of fiber reinforced composites for natural frequencies
R.T.L. Ferreira, H.C. Rodrigues & J.M. Guedes
955

Optimal design of composite structures subjected to fatigue loading in a fuzzy environment
P. Kędziora & A. Muc
961

Reducing of the stress concentration near mounting zones of the wind turbine composite blade
P.A. Oganesyan, I.V. Zhilyaev, V.S. Shevtsova & J.-K. Wu
967

Combined topology and stacking sequence optimization of composite laminated structures for structural performance measures
G.P. Rodrigues, J.M. Guedes & J.O. Fiolgada
971

Viscoelastic material parameter estimation in sandwich structures
V.I.S. Carvalho, A.L. Araújo & N.M.M. Maia
977

A design optimization study of a partially damped sandwich structure
S. Naimi, S. Assaf & M.A. Hamdi
983

MS06 – Inverse problems in engineering

Direct and optimization methods for the localization of obstacles in a porous media
N.F.M. Martins
991

Bayesian estimate of mass fraction of burned fuel in internal combustion engines using pressure measurements
997

Comparison of two inverse strategies to characterise soil profiles
D.N. Wilke, S. Kok & G. Heymann
1005

Estimating the stress-strain curve of steel wire
S. Kok & D.N. Wilke
1011

Meshless methods for the inverse problem related to the determination of non-Newtonian fluid properties from the volume flow experiment
J.A. Kołodziej, M. Mierzwiczak & J.K. Grabski
1017

Determination of non-uniformity of unidirectional fibrous porous media as inverse problem
J.A. Kołodziej, M. Mierzwiczak & P. Fritzkowski
1023

Simultaneous boundary value and material parameter estimation using imperfect compression data
G.J. Jansen van Rensburg, S. Kok & D.N. Wilke
1029

On introducing restrictions for mechanism design
I. Fernández de Bustos, V. García Marina, R. Ansola & M. Abásolo
1035

XIII
Using inverse mapping to directly solve inverse problems
E. Asaadi, S. Kok & P.S. Heyns

A new aerodynamic inverse method for the design of ducts
J.E. Borges

Fall detection modeling based on inverse problems
I. Figueiredo, S. Kumar, C. Leal & L. Pinto

Author index
Preface

EngOpt2014 is the fourth edition of the biennial scientific meeting “International Conference on Engineering Optimization”. The first conference took place in 2008 in Rio de Janeiro, the second in Lisbon in 2010 and the third in Rio de Janeiro in 2012.

Modern engineering processes and tasks are highly complex, multi and interdisciplinary, requiring the cooperative effort of different specialists from engineering, mathematics, computer science and even social sciences. Optimization methodologies are fundamental instruments to tackle this complexity, giving us the possibility to unite synergistically team members’ inputs and thus decisively contribute to solve the new engineering technological challenges. With this context in mind, the main goal of this EngOpt conference is to join engineers, applied mathematicians, computer and other applied scientists working on research, development and practical application of optimization methods applied to all engineering disciplines, in a common scientific forum to present, analyze and discuss their latest developments.

The contributing papers are organized around the following major themes:

- Numerical Optimization Techniques
- Design Optimization and Inverse Problems
- Efficient Analysis and Reanalysis Techniques
- Sensitivity Analysis
- Industrial Applications

And the mini-symposiums:

- MS01 – Topology Optimization For Structural Static and Dynamic Failures (Organized by Gil Ho Yoon, Matteo Bruggi and Emílio Carlos Nelli Silva)
- MS02 – Optimization in Oil and Gas Industries (Organized by Silvana Bastos and Bernardo Horowitz)
- MS03 – New Advances in Derivative-Free Optimization Methods for Engineering Optimization (Organized by J.F.A. Madeira and A.L. Custódio)
- MS04 – Optimization Methods in Biomechanics and Biomedical Engineering (Organized by P.R. Fernandes and J. Folgado)
- MS05 – Optimization of Laminated Composite Materials (Organized by H.C. Rodrigues and A.L. Araújo)
- MS06 – Inverse Problems in Engineering (Organized by Schalk Kok and Daniel N. Wilke)

We want to take this opportunity to extend our recognition to the mini-symposium organizers, scientific committee members, session chairs, lecturers and conference participants for the scientific success of this event, the many interesting presentations and active participation in the discussions that were the main objectives of this scientific meeting.

Our indebtedness is also due to Ms. Andrea de Freitas and Ms. Anabela Arenga for all their efforts and commitment to the successful running of the conference.

The Editors,
Lisbon, Instituto Superior Técnico, September 2014
Organizers

Bayesian estimate of mass fraction of burned fuel in internal combustion engines using pressure measurements

Federal University of Rio de Janeiro, Rio de Janeiro, Brazil

R.N. Carvalho
Petrobras Research Center, Rio de Janeiro, Brazil

G.S. Dulikravich
Florida International University, Miami, USA

ABSTRACT: The numerical simulation of combustion processes in internal combustion engines is a very difficult task. It involves the reacting turbulent flow of a gaseous mixture that compresses and burns in a short amount of time. Different models, with various levels of complexity, exist in the open literature and usually need calibration to work properly. Although being quite simple, a First Law analysis of this problem is widely used by the industry. Such formulation requires a model for the mass fraction of burned fuel, which is often based on the Wiebe equation, and requires calibration using experimental data. The objective of this paper is to estimate the mass fraction of burned fuel using Bayesian particle filters. Particle filters, also called Sequential Monte Carlo (SMC) methods, fit into the domain of inverse modelling procedures, where measurements are incorporated into a computational model so as to formulate some feedback information on the uncertain model state variables and/or parameters, through accurate representations of their probability density functions. Based on a simple sampling importance distribution and resampling techniques, particle filters combine Monte Carlo samplings with sequential Bayesian filtering problems. In this particular application, measurements obtained from a pressure transducer located inside a combustion chamber are used to feed an observation model, while a First Law analysis is used as an evolution model to this Bayesian estimate. Very good results are obtained for the mass fraction of burned fuel, showing the great potential for this technique to be used as practical tool in the industry.

1 INTRODUCTION

Internal combustion engines play a vital role in modern society. Although the use of alternative energy sources (wind, solar, etc.) has increased in recent years, fossil fuels are still being massively used, mainly due to their high energy content per unit volume. Thus, the optimization of actual engines is of utmost importance to maximize their performance and also decrease the gaseous and particulate matter emissions to the environment.

The complete numerical simulation of combustion in internal combustion engines is a very complex task, involving a turbulent and unsteady flow of a reacting non-homogeneous mixture with temperature dependent physical properties. Thus, there are some classes of models described on the literature, depending on the level of simplifications adopted (Fergunson 1986, Heywood 1988).

Although being very simple, one of the combustion models widely used by the industry and academia consider the burned and non-burned gases as being a homogeneous ideal gas, with uniform temperature and pressure. This model, derived from the First Law of Thermodynamics, is known as zero-dimensional model (Fergunson 1986, Heywood, 1988). In order to predict the rate of energy released by the fuel, such model usually employs some empirical or semi-empirical equation to model the mass fraction of burned fuel, being the Wiebe’s equation the most commonly used (Murayama et al. 1982, Miyamoto et al. 1985, Fergunson 1986, Heywood 1988). Also, to take into account the energy lost by the combustion chamber walls, usually an empirical time dependent heat transfer coefficient is used (Fergunson 1986, Borman & Nishiwaki 1987, Heywood 1988).

The main problem with this formulation is the need to adjust some parameters in the Wiebe’s equation, in order to make the numerical pressure curve match the experimental one. Also, as reported by Borman and Nishiwaki (1987), correlations for the heat transfer coefficient that were obtained for a specific engine running under specific conditions, in general do not apply for other engines and present discrepancies over 100% among them.
Finally, it is worth mentioning that, recently, other works also proposed some procedures to estimate the mass fraction of burned fuel (Mendera et al. 2002, Mittal et al. 2008, Yeliana et al. 2008b, Yeliana et al. 2008a, Mittal et al. 2009, Yeliana et al. 2011, Catania et al. 2011, Dogah 2012, Chung et al. 2013, Finesso & Spessa 2014), but none of them used Bayesian techniques.

2 PHYSICAL PROBLEM

The physical problem considered here involves the combustion process in a spark ignition internal combustion engine. Initially the combustion chamber is filled with a pre-mixed mixture of fuel and air at a stoichiometric ratio with both the inlet and exhaust valves closed. The piston then moves upwards, from the bottom dead center (BDC) to the top dead center (TDC). The linear position of the piston is converted into an angular movement as shown in Figure 1, such that the crankshaft angle \(\theta \) is equal to 0° when the piston is located at the TDC and ±180° when it is at the BDC.

The mixture of fuel and air is ignited by a spark at a pre-defined angle \(\theta_i \), and the combustion continues for a period \(\Delta \theta \). The angle \(\theta \), in radians, is related to time \(t \), in seconds, through the following relationship:

\[
\theta = \frac{t}{2\pi N}
\]

where \(N \) is the angular velocity of the crankshaft, in Hertz. Once the combustion is started, there is a heat release from the fuel to the combustion chamber volume, which makes the pressure and temperature rises. Such heat is transformed into work through the movement of the piston downwards, which is transferred to the crankshaft. Since the combustion chamber walls and the piston head must be cooled, heat is also transferred, mainly by convection, to these regions.

The objective of this work is to estimate the temporal heat release rate of fuel, using pressure measurements taken inside the combustion chamber.

In order to numerically simulate the combustion process of this engine, a zero-dimensional model, based on the First Law of Thermodynamics, was used for the processes occurring inside the combustion chamber. The gas inside the cylinder was considered an ideal gas with uniform properties. From the equation of state for an ideal gas, together with the First Law of Thermodynamics, the following equation can be obtained, when both the inlet and outlet valves are closed:

\[
\frac{dP}{d\theta} = \frac{\gamma}{V} \frac{dV}{d\theta} + \frac{(\gamma - 1)}{V} \frac{dQ}{d\theta}
\]

where \(P(\theta) \) is the time-varying pressure, \(\theta \) is the crankshaft angle (which is related to time), \(V(\theta) \) is the instantaneous volume of the cylinder (which can be obtained from the engine speed and geometrical data), \(Q(\theta) \) is the heat released and \(\gamma \) is the polytropic coefficient, which was assumed constant and equals to 1.33 in this work.

For the calculation of the pressure inside the cylinder as a function of the crankshaft angle, it is necessary to obtain the value of the heat release rate, appearing in Eq. (2). One of the most used expressions encountered in the literature uses the Wiebe’s function model (Fergunson 1986, Heywood 1988), given by

\[
\frac{dQ}{d\theta} = Q_{\text{total}} \frac{dx}{d\theta} - \frac{dQ_w}{d\theta}
\]

\[
x(\theta) = 1 - e^{-\left(\frac{\theta - \theta_i}{\Delta \theta}\right)^n}
\]

where \(x \) is the mass fraction of burned fuel. The parameter \(a \) controls the combustion duration, \(m \) controls the combustion evolution, \(\theta_i \) is the crankshaft angle where the combustion starts, \(\Delta \theta \) is the combustion duration, and \(Q_{\text{total}} \) is the total amount of heat released, given by the mass of injected fuel times its lower heating value (considering a combustion with 100% of efficiency). Parameters \(a \) and \(m \) usually have to be obtained by trial and error, by some optimization method (Colaço et al. 2010a, Colaço et al. 2010b), or even be estimated together with the heat transfer coefficient through the combustion chamber walls.

The wall heat loss can be modeled through an overall time dependent heat transfer coefficient \(h(\theta) \)

\[
Q_w = hA(T - T_{\text{gas}})
\]

where \(T(\theta) \) is the wall temperature, \(T_{\text{gas}} \) is averaged gas temperature, and \(A(\theta) \) is the combustion chamber surface area. Several correlations for such heat transfer coefficient at the gas-walls surfaces are available in the literature (Fergunson 1986, Borman and Nishiwaki 1987, Heywood 1988). It is worth mentioning that the estimate of the heat transfer coefficient is a complex problem itself and was already discussed by authors in (Hamilton et al. 2014).

In this paper, we used synthetic data for the measured pressure, obtained through the solution of Eq. (2) with a known transient variation of the heat transfer coefficient profile and also with “known” values of...
\(a = 1.2 \) and \(m = 0.8 \) in the Wiebe’s equation. In order to generate such data, the Woschni’s model (Ferguson 1986, Borman & Nishiwaki 1987, Heywood 1988), given as

\[
h(W/m^2K) = 3.26B(m^{-0.2})P(kPa)^{0.5}T(K)^{-0.55}w(m/s)^{0.8} \tag{5}
\]

was used, where \(B \) is the bore of the cylinder and \(w \) is the average cylinder gas velocity, which, for a four-stroke, water-cooled engine, can be expressed as (Heywood 1988, Ferguson 1986, Borman and Nishiwaki 1987)

\[
w = \left[C_1S_p + C_2 \frac{V_d T_r}{P V_r} (P - P_m) \right] \tag{6}
\]

where \(V_d \) is the displaced volume, \(P_r \), \(V_r \) and \(T_r \) are taken at some reference state, \(P_m \) is the motored cylinder pressure at the same crank angle as \(P \), and the constants \(C_1 \) and \(C_2 \) are given as:

- Gas exchange: \(C_1 = 6.18; C_2 = 0 \)
- Compression: \(C_1 = 2.28; C_2 = 0 \)
- Combustion and expansion: \(C_1 = 2.28; C_2 = 3.24 \times 10^{-3} \)

After the models of the heat release rate given by Eq. (3) and the wall heat losses given by Eqs. (4)–(7) have been defined, the pressure versus crankshaft angle curve for a closed cycle can be obtained through the solution of Eq. (2), by using some integration technique, such as a fourth order Runge-Kutta scheme, which was implemented in this work, for an engine whose parameters are given in Table 1. The numerically generated pressure curve was validated against experimental data (Hamilton et al. 2014) with very good agreement between the results.

In our previous work (Hamilton et al. 2014), we estimated the heat transfer coefficient through the walls of the combustion chamber, with excellent results. We also demonstrated that the sensitivity of pressure related to the heat transfer coefficient is very low.

Table 1. Engine parameters (Melo et al. 2007).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engine manufacturer</td>
<td>Volkswagen</td>
</tr>
<tr>
<td>Engine model</td>
<td>1.8 AP, Flex</td>
</tr>
<tr>
<td>Fuel</td>
<td>Gasoline</td>
</tr>
<tr>
<td>Number of cylinders</td>
<td>4</td>
</tr>
<tr>
<td>Valves per cylinder</td>
<td>2</td>
</tr>
<tr>
<td>Bore</td>
<td>81.01 mm</td>
</tr>
<tr>
<td>Stroke</td>
<td>86.4 mm</td>
</tr>
<tr>
<td>Connecting rod length</td>
<td>144 mm</td>
</tr>
<tr>
<td>Compression ratio</td>
<td>11</td>
</tr>
<tr>
<td>Speed</td>
<td>2500 rpm</td>
</tr>
<tr>
<td>Torque</td>
<td>75 N.m (gasoline)</td>
</tr>
<tr>
<td>Imep</td>
<td>5.22 bar</td>
</tr>
<tr>
<td>Rated power</td>
<td>76 kW (gasoline)</td>
</tr>
<tr>
<td>Inlet closing valve</td>
<td>164° BTDC</td>
</tr>
<tr>
<td>Outlet opening valve</td>
<td>146° ATDC</td>
</tr>
</tbody>
</table>

In other words, large variations of \(h(\theta) \) cause very small variations in the pressure curve. Nevertheless, the results previously presented in were very good even considering such low sensitivity. In this work, on the other hand, we consider a known variation of \(h(\theta) \) and the objective is thus to estimate the time variation of mass fraction of burned fuel \(x(\theta) \).

3 INVERSE PROBLEM

The inverse problem considered in this work is formulated in the Bayesian framework, where the results are obtained in terms of the posterior probability density, which is the conditional probability of the unknown variables \(y \) given the measurements \(z \).

If the measurement errors follow a Gaussian distribution with zero mean, covariance matrix \(W_e \), and are additive and independent of the unknown variables \(y \), the model for the measurements, which gives the probability of the measurements \(z \) given the unknown variables \(y \), is obtained by the likelihood function (Kaipio & Somersalo 2004, Maybeck 1979)

\[
\pi(z|y) = (2\pi)^{-n/2}|W_e|^{-1/2}\exp\left[-\frac{1}{2}(z-f(y))^T W_e^{-1} (z-f(y))\right] \tag{8}
\]

where \(f(y) \) is the solution of the direct (forward) problem. Such solution is obtained from the mathematical formulation of the problem under analysis with known \(y \).

The posterior probability density is related to the prior model, which is the model for the unknowns without the information obtained by the measurements, and the likelihood function by means of the Bayes’ theorem (Maybeck 1979, Kaipio & Somersalo 2004)

\[
\pi_{\text{posterior}}(y) = \pi(y|z) = \frac{\pi(y)f(z|y)}{\pi(z)} \tag{9}
\]

where \(\pi_{\text{posterior}}(y) \) is the posterior probability density, \(\pi(y) \) is the prior density, \(\pi(z|y) \) is the likelihood function and \(\pi(z) \) is the marginal probability density of the measurements, which plays the role of a normalizing constant.

The Bayes’ theorem is the base for the state estimation problem, also referred as non-stationary inverse problems (Maybeck 1979). These problems use the available measurement data, and the prior information about the physical phenomena and the measurement device, to produce estimates of the dynamic variables, sequentially.

State evolution problems are based on two models: the evolution model and the observation model. The first one is related to the prior information about the data, while the second is associated to the model for the measurements.

The evolution model for the state variables \(y \) can be written as

\[
y_{e} = f_{e}\left(y_{e-1}, y_{k}\right) \tag{10}
\]
The objective of this work is to estimate the transient heat release rate inside the combustion chamber of a spark ignition internal combustion engine using pressure measurements. In the context of the state estimation, the state variables are then the pressure inside the combustion chamber, and the heat release rate of the fuel, given as:

\[
\dot{Q}_{\text{fuel}} = -\frac{dQ_{\text{fuel}}}{dt} = Q_{\text{total}} \frac{dx}{d\theta}
\]

where \(f \) is, in the general case, a non-linear function of \(y \) and of the state noise or uncertainty vector given by \(v_k \in \mathbb{R}^n \). The vector \(y_k \in \mathbb{R}^n \) is called the state vector and contains the variables to be dynamically estimated. This vector advances in time in accordance with the state evolution model (10). The subscript \(k = 1, 2, 3, \ldots \) denotes a time instant \(t_k \) in a dynamic problem.

The second model, named observation model, represents the relation between the state variables \(y \) and the measurements \(z \), by means of a general function \(h \):

\[
z_k = h(y_k, \pi) \tag{11}
\]

where \(z_k \in \mathbb{R}^{nz} \) are available at times \(t_k, k = 1, 2, 3, \ldots \). Eq. (11) is referred to as the observation/measurement model. The vector \(\pi_k \in \mathbb{R}^{nz} \) represents the measurement noise or uncertainty.

The combination of the evolution and observation models, through the Bayes’ theorem, generate a dynamic estimate of the state variables \(x \) in time, by means of a sequence of calculations involving two steps: a prediction, using the prior probability density, and an update, using the likelihood function in conjunction with the Bayes’ theorem. This procedure is known as filtering problem (Maybeck 1979, Kaipio & Somersalo 2004).

The main idea in the particle filter is to represent the required posterior density function by a set of random samples with associated weights and to compute the estimates based on these samples and weights (Ristic et al. 2004). In this paper we used the SIR algorithm, whose steps are briefly shown in Table 2. More details of this algorithm can be found in (Ristic et al. 2004).

Table 2. SIR Algorithm (Ristic et al. 2004).

Step 1

For \(i = 1, \ldots, N \) draw new particles \(y_i^k \) from the prior density \(\pi(y_1^k | y_{k-1}^k) \) and then use the likelihood density to calculate the correspondent weights \(w_i^k = \pi(z_k | y_i^k) \).

Step 2

Calculate the total weight \(i = \sum_i w_i^k \) and then normalize the particle weights, that is, for \(i = 1, \ldots, N \) let \(w_i^k = r^{-1} w_i^k \).

Step 3

Resample the particles as follows:

1. Construct the cumulative sum of weights (CSW) by computing \(c_i = c_{i-1} + w_i^k \) for \(i = 1, \ldots, N \), with \(c_0 = 0 \).
2. Let \(i = 1 \) and draw a starting point \(u_i \) from the uniform distribution \(U[0, N^{-1}] \).
3. For \(j = 1, \ldots, N \) move along the CSW by making \(u_j = u_i + N^{-1}(j-1) \).
4. While \(u_j > c_i \), make \(i = i + 1 \).
5. Assign sample \(x_i = x_i^k \).
6. Assign sample \(w_i^k = N^{-1} \).

Thus, for the state vector \(y \) we have:

\[
y = \{ P, \dot{Q}_{\text{fuel}} \} \tag{13}
\]

The state evolution for the pressure \(P(\theta) \) is given by the solution of Eqs. (2–7), given \(x(\theta) \) and \(h(\theta) \). In this paper we considered a Wegchini’s correlation for \(h \) (Ferguson 1986, Borman & Nishiwaki 1987, Heywood 1988), whereas for the heat release rate we do not have an explicit state evolution model. Also, in order to make the estimate very general, we did not use the Wiebe’s equation for \(x(\theta) \) (Ferguson 1986, Heywood 1988), but considered an artificial state evolution model, given as a random walk model for the heat release rate:

\[
\dot{Q}_{\text{fuel}}(\theta_k) = \dot{Q}_{\text{fuel}}(\theta_{k-1}) + \sigma_g \varepsilon \dot{Q}_{\text{fuel}}(\theta_{k-1}) + \sigma_o \varepsilon \tag{14}
\]

where \(\sigma_g \) is the step size of the random walk (taken as 0.1), \(\varepsilon \) is random variable with zero mean and uniform distribution between −1 and 1, and \(\sigma_o \) is a bias (taken as 1), added to the model to avoid the convergence to zero at initial times (where there is no release of rate). The initial guess is given as a Gaussian distribution with zero mean and zero variance.

For the observation model, we considered synthetic measured pressures, obtained with a known variation of \(x(\theta) \). Also, in order to take into account the presence of noise, we added a Gaussian fluctuation in the pressure given by

\[
P_{\text{meas}}(\theta) = P_{\text{calc}}(\theta) + \sigma_{\text{meas}} \varepsilon \tag{15}
\]

where \(P_{\text{calc}}(\theta) \) is the exact value of the pressure obtained by the solution of Eq. (2) with the exact value.
Table 3. Test-cases analyzed.

<table>
<thead>
<tr>
<th>Test-case</th>
<th>σ_{meas} (bar)</th>
<th>Measurement frequency (Hz)</th>
<th>Number of particles</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.1</td>
<td>1×10^5</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>200</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>400</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>800</td>
</tr>
<tr>
<td>5</td>
<td>5×10^4</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>6</td>
<td>0.2</td>
<td>5×10^4</td>
<td>100</td>
</tr>
</tbody>
</table>

Figure 2. Mean of the RMS error for test cases 1 through 4.

of $x(\theta)$, σ_{meas} is the standard deviation of the simulated measurements, and ξ is a random variable with Gaussian distribution and zero mean.

In this paper we analyzed different number of particles and measurement frequencies. Table 2 summarizes such cases.

Since the particle filter estimate relies on several random numbers, we used the procedure presented in (Hamilton et al., 2014) to check its convergence, where the estimation was performed 100 times for each test case and an averaged RMS error and CPU time were obtained, where the RMS error for each run was defined as

$$RMS = \sqrt{\frac{1}{K} \sum_{k=1}^{K} \left[\dot{Q}(\theta_k) - \dot{Q}_{\text{sim}}(\theta_k) \right]^2}$$ \hspace{1cm} (16)

where K is the final time used for comparison between the estimated and exact value of the heat release rate of the fuel.

Figure 2 presents the average value of the RMS error for the test cases 1 through 4 presented in Table 1. As expected, as the number of particles increase, the error of the solution decrease. It is worth mentioning that the reduction of the error is more intense when the number of particles increases from 100 to 200 and then to 400. The reduction from 400 to 800 particles is less pronounceable.

The mean value of the CPU time for test cases 1 through 4, considering 100 repetitions for each test case, is presented in Figure 3. The code was written in Matlab and ran on a i7 3.4 GHz with 8Gb of RAM memory. The time required for the solution range from a few seconds to a case with 100 particles to almost half hour to 800 particles.

Figure 4 shows the results for test case 1 (100 particles) and Figure 5 for test case 4 (800 particles), where a frequency of measurements equal to 100 kHz was used, considering a standard deviation of 0.1 bar in the measurements. As once can see, there is no visual difference between these results. Such conclusion could also be made from the analysis of Figure 2, where the reduction of RMS from 100 to 800 particles is less than 5%. It is remarkable then that with only 100 particles, which took just a few seconds to run, the estimate of heat release rate is very good, especially at the start of the combustion, where the filter captures very well the very fast release of heat.

One interesting practical aspect to be analyzed is the influence of the measurement frequency on the final results. Figure 6 shows the results for test case 5, where 100 particles where used for a frequency of measurements equal to 50 kHz. Even in this case where
half of the original measurement frequency was used, the heat release rate is very well captured.

Finally, a last test case was analyzed (test case 6) where we increased the level of noise from 0.1 bar to 0.2 bar. For this test case we used 100 particles with a frequency of measurements equal to 50 kHz. Figure 7 shows the results for this test case where the estimate is very good, although the confidence intervals are wider than the ones presented in test case 5. Figure 8 shows the estimated pressure curve, where one can see that it is also very well capture by the present technique.

5 CONCLUSIONS

In this paper we applied a Bayesian particle filter to estimate the heat release rate of fuel in a spark ignition internal combustion engine. Pressure data were used as measurements, which contained different levels of errors and were available at different measurement frequencies. Results show that the method is capable to recover the unknown function with a few particles, even in the regions where the release of heat is very fast. Considering that many industrial applications rely on empirical or semi-empirical expressions for the heat release rate, the methodology presented in this paper might have a great impact on those applications, since it is automatic and do not rely on any interference from the user.

ACKNOWLEDGEMENTS

The authors would like to thank the Brazilian agencies for the fostering of science, Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ) and Brazilian National Agency of Oil, Gas and Biofuels (ANP) for the financial support for this work. The support provided by Petrobras Research and Development Center (CENPES) is also greatly appreciated. Ms. Hamilton is also grateful to the PIBIC/UFRJ/CNPq and PRH37/ANP (http://prh.mecanica.ufrj.br) scholarships.
REFERENCES

