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Abstract. One of the greatest challenges for the production of petroleum in deepwater is flow assurance. In fact,
knowledge about the transient cool down behavior of the produced fluid is necessary to prevent the formation of
hydrates and solid deposits during shutdown periods, which could result in a pipeline blockage and could result in
large financial losses. In a typical subsea petroleum production system, the information provided by its monitoring
system, regarding the temperature field is limited. One approach to predict the produced fluid temperature field in a
pipeline systemis to use Bayesian filters. In this paper, we compare the Kalman filter and the particlefilter as applied
to a problem of practical interest for the petroleum industry. Uncertainties in the state evolution and measurement
models are taken into account by assuming that the errorsinvolved are additive, normally distributed and with known
means and covariance matrices.
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1. INTRODUCTION

Flow assurance in petroleum fields has become éribeogreatest challenges on the hydrocarbon ptmstum
deepwater environments (Lorimer and Ellison, 200&rdoscet al., 2003, Tebboth, 2003, Su, 2003, Carmeegal .,
2004, Denniekt al., 2004). This kind of environment presents highrbgthtic pressures and low sea bed temperatures,
which can affect the flow of the produced multighdsiids (oil, gas, condensate, and water) thrquigklines up to the
processing facilities.

The thermal management of offshore petroleum fiddsemong other operational requirements, onéh@frbain
issues for petroleum exploitation operations. Sadhe case because, when hydrocarbons are prodndetdansported
over long distances, it is crucial for flow assu@mo avoid and control solid deposits and hydi@t@ation (see figure
1) with thermal monitoring. There are different dénof deposits that can be formed in pipelinessaridea equipment.
The physical and chemical characteristics of thelpced fluids may facilitate the accumulation dimal gas hydrates,
wax, and other substances within the equipmentsrler and Ellison, 2000, Cardosbal., 2003, Su, 2003, Carmargo
et al., 2004, Dennielet al., 2004). These accumulations may cause reductiofioaf area and increase the wall
roughness, thus increasing the head loss and regtice flow capacity, which can eventually blocle tpipeline,
resulting in large financial losses.

There are different physical and chemical techréghat can be applied to manage the potential degasrimer
and Ellison, 2000, Cardosg al., 2003, Carmargat al., 2004, Dennielet al., 2004). These techniques include
“pigging”, which represents a device to scrapepipe walls, and the continuous injection of chemigchibitors into
the pipeline system to minimize the formation ofgh accumulations. One of the main strategies tigate these
undesirable effects is to minimize heat losses fthensystem by using thermal insulation and/orvectieating (Su,
2003). In fact, the accurate knowledge of the wnampire field along the pipeline is one of the keguirements to
maintain the produced fluid temperature above amum critical temperature (Alved al., 1992, Su and Cerqueira,
2001, Guodt al., 2006, Escobedet al., 2006). Thermal analyses include both steady stadetransient studies for the
different stages of the field’s lifetime and must\v@ as a design tool for the selection of therimsiilation and/or
heating systems, in order to avoid the formatiodegfosits.
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(a) Hydrate
Figure 1. Typical deposits that cause pipeline kige

Recently, new technologies have emerged for detgcthonitoring and control of critical parametessatiated
with the flow assurance, followed by the impleméotaof combined corrective actions, when anomaloargditions
are identified (Brower and Prescott, 2004, Browesal., 2005, Zanet al., 2005, Benson and Robins, 2007). For
example, measurements of pressure, temperatunerdte,fluid composition and strain, among other paranseteray
be used to predict the onset of operational prokle¢hus allowing for timely corrective actions.

As one of the most important aspects for the mamage of deposits is based on the accurate knowledltfee
temperature field inside the pipeline and/or sutegapment, the main objective of this work is fiply Bayesian
filters (Maybeck, 1979, Andrieet al., 2004, Kaipio and Somersalo, 2004, Scott and MaC2005, Orlandet al.,
2008) to predict the unsteady temperature field ipipeline cross section during shutdown periode femperature
field is predicted from limited temperature dataaitable at the surface of the pipeline. Uncertemtin the state
evolution and measurement models are taken intauatcby assuming that the errors involved aretaddginormally
distributed and with known means and covarianceicest The accurate estimation of the temperaiate &llows for
the prediction of cold regions in the oil-gas-wateikture inside the pipeline. As a result, prevesitactions can be
taken beforehand in order to avoid the formatiodeyosits.

2. STATE ESTIMATION

In state estimation problems (Maybeck, 1979, Kagnd Somersalo, 2004, Scott and McCann, 2005) wditsens
obtained during the evolution of the system, aedusgether with prior knowledge about the physite@nomena and
the measuring devices, in order to sequentiallglyce estimates of the desired dynamic variableste Sistimation
problems can be solved with the so-called Bayefigns (Maybeck, 1979, Kaipio and Somersalo, 2084ott and
McCann, 2005).

In order to define the state estimation problemnmsiter a model for the evolution of the state \@esx in the
form:

Xy :fk (Xk—lavk) (1)

wheref is, in the general case, a non-linear functioxahd of the state noise or uncertainty vector giwerv, OR™ .

The vector x, OR™ is called the state vector and contains the vimsato be dynamically estimated. This vector

advances in time in accordance with stete evolution modd (1). The subscrigt =1, 2, 3, ..., denotes a time instapt

in a dynamic problem.
The observation model describes the dependencebetihe state variabketo be estimated and the measurements
z through the general, possibly non-linear, functioifhis can be represented by

z,=h,(x.n,) 2)
wherez, OR™ are available at timeg , k=1, 2, 3,.... Eq. (2) is referred to as titeservation/measurement model. The

vector n, OR™ represents the measurement noise or uncertainty.
The evolution and observation models, given by Egs. (1) and (2), respectively, are Basa the following

assumptions (Kaipio and Somersalo, 2004, Scotigtiann, 2005):
(a) The sequence, for k=1, 2, 3, ..., is a Markovian process, that is,

71(X, [ %o Xy e Xy = 77(X, [ X, (3.2)
(b) The sequence, fork=1, 2, 3, ..., is a Markovian process with respec¢h&history ofx, , that is,

71(z, %o Xy %, ) =712, [X, ) (3.b)

(c) The sequence, depends on the past observations only througtwitstistory, that is,
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(X [ %1202 20 = 70(X X, ) (3.c)

where n(a|b) denotes the conditional probability@fvhenb is given.

For the state and observation noises, the followaisgumptions are made (Kaipio and Somersalo, 28€gtt and
McCann, 2005):

(a) Fori# j , the noise vectors, and v, as well as andn, , are mutually independent and also mutually indelpat
of the initial state,.
(b) The noise vectors; andn; are mutually independent for atkndj.

Different problems can be considered for the evmhibbservation model described above, such asp{&and
Somersalo, 2004, Scott and McCann, 2005):

(i) The prediction problem, when the objectivedsbtain IT(Xk |lek,1);
(ii) The filtering problem, when the objective 'u;mbtainir(xk |Zl:k) ;
(iii) The fixed-lag smoothing problem, when theatijve is to obtairvr(xk |21:k+p), where p 21 is the fixed lag.

(iv) The whole-domain smoothing problem, when théjective is to obtain ”(Xk|zl:K)’ where

z,,. ={z,,i=1:-- K} is the complete set of measurements.

3. BAYESIANFILTERS

The most widely known Bayesian filter is the Kalmfiter, with its application limited to linear mets with
additive Gaussian noises. In such cases where tuelmare non-linear or the errors non-Gaussiamt&icarlo
methods can be applied to solve state estimatioblgms (Maybeck, 1979, Carpengtral., 1999, Doucett al., 2000,
Arulampalamet al., 2001, Kaipio and Somersalo, 2004, Andretwal., 2004, Scott and McCann, 2005, Del Magal
al., 2006, Del Morakt al., 2007, Johansen and Doucet, 2008, Orladé 2008). In this work we apply the Kalman
filter and the particle filter to predict the tematere field in a pipeline system, as describedwel

3.1. Kalman filter

This method, published in 1960, is a set of mathiealeequations that recursively estimates theestatiables of a
system (Kalman, 1960, Sorenson, 1970, Maybeck, ,1Ri&%ic, 2004, Kaipio and Somersalo, 2004, Scatt EcCann,
2005, Welch and Bishop, 2005, Orlangteal., 2008). The Kalman filter is one of the most welbkvn and used
Bayesian filters, but its application is limitedltwear models with additive Gaussian noises.

Considering the classical discrete-time state edgtom problem in thease of linear models, the evolution equation
that describes the time dependence of the stablex can be writtenn the form:

Xk :Fk kal +Sk +Vk (4)
where Fk is the linear evolution matrix of the state varéshl and the vectos, is assumed to be known sources for the
problem. The state uncertainty or noisg is assumed to ke Gaussian random variable with zero mean and icowar

Q

The linear observation model can be representéukeiform:

z,=H,x, +n, ®)

where Z, is the measurement vector aht] is the linear observation matrix. The observatioise N, is assumed to

be a Gaussian random variable with zero-mean aadrkitovariancéR. The state and observation noises are assumed
to be mutually independent.

The algorithm of the Kalman filter is presenteddveiin tables 1 and 2, as applied to the state aitim problem
given by equations (4,5) (Maybeck, 1979, Kaipio &amersalo, 2004, Scott and McCann, 2005, WelchBasitiop,
2005, Orlandet al., 2008).
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Table 1 — Discrete time evolutiordage equations

X =FX 6 a)(
P =F Pk—lFiI +Q, 6.b)(

Table 2 — Measurement update egusiti

K =F HI(HkPkiHI"'Rk)il (7:3)
X, =% +K, (2, -H,x) (7.b)
P =(1-K H,)P: (7.)

Here,K is known as Kalman's gain matrix aRds the covariance matrix of the estimated statmbkes.
3.2. The Particle Filter

The Particle Filter Method is a Monte Carlo teclugdor solution of the state estimation problemevehthe main
idea is to represent the required posterior deffisitgtion by a set of random samples with assatiateights and to
compute the estimates based on these samples agtisv@aybeck, 1979, Carpentaral., 1999, Doucett al., 2000,
Arulampalamet al., 2001, Kaipio and Somersalo, 2004, Andratwal., 2004, Scott and McCann, 2005, Del Mazal
al., 2006, Del Morakt al., 2007, Johansen and Doucet, 2008, Orlahdt. 2008). In this study, we use the so-called
Sequential Importance Resampling (SIR) algorithm for the particle filter, which ihwles a resampling step at each time
instant, as described in (Arulampalatral., 2001, Orlandet al. 2008). The SIR algorithm makes use of an impoganc
density, which is a density proposed to represeoth@r one that cannot be exactly computed. Trenpkes are drawn
from the importance density instead of the actealsity.

Let {Xio:k ,i=0,-- ,N} be the particles with associated Weig{‘nl\‘itiK ,i=0,-- ,N} and X, :{xj, j=0,-- ,k} be the

N

set of all states up tf, , whereN is the number of particles. The weights are noized| so thatZW‘k =1. Then, the
i=1

posterior density at, can be discretely approximated by:

”(Xo:k |21:k—1)=gwli< J(Xok _Xiok) (8)

where 5() is the Dirac delta function. By taking hypotheégs-c) into account, the posterior density in 8).can be
written as (Arulampalara al., 2001):

n(xk|zlzk,l)=gw;( O'(xk —x‘k) )

A common problem with the SIS particle filter i'tdegeneracy phenomenon, where after a few statast ane
particle may have negligible weight. The degeneragylies that a large computational effort is dedbto updating
particles whose contribution to the approximatiéhe posterior density function is almost zeroisTproblem can be
overcome by increasing the number of particlesnare efficiently by appropriately selecting the omjance density as

the prior densityT(xk |x‘k,1) . In addition, the use of the resampling techniguecommended to avoid the degeneracy
of the particles.
Resampling involves a mapping of the random mea{sm‘,[ewL} into a random measw{e{ ,N’l} with uniform

weights. It can be performed if the number of dffecparticles with large weights falls below ateén threshold
number. Alternatively, resampling can also be abindistinctively at every instant, as in the Sampling Importance
Resampling (SIR) algorithm described in (Arulampakt al., 2001). This algorithm can be summarized in tlepst
presented in Table 3, as applied to the systenugenlfromt,_, tot, (Arulampalanmet al., 2001).

Although the resampling step reduces the effecth@fdegeneracy problem, it may lead to a lossivafrsity and
the resultant sample can contain many repeatedtlpart This problem, known as sample impoverishmeah be
severe in the case of small process noise. Inctiss, all particles collapse to a single partidldiw few instantst,
(Arulampalamet al., 2001, Kaipio and Somersalo, 2004). Ancther draktuH the particle filter is related to the large
computational cost due to the Monte Carlo methddclvmay limit its application only to fast compugiproblems.
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Step 1
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For i=1--,N draw new particless, from the prior densityﬂ(xk|x‘k,1) and then use th

likelihood density to calculate the correspondeaigits w, = lr(zk |x'k) .

4%

Step 2

N .
Calculate the total WeighTW:ZW'k and then normalize the particle weights, thafas,
i=1

i=1--,N letw, =T *w .

Step 3

Resample the particles as follows :
Construct the cumulative sum of weights (CSW) bypating ¢ =c_, +w, for i=1--,N,

with ¢, =0.
Let i =1 and draw a starting point, from the uniform distributionJ [ 0,N™ |
For j=1,--,N

Move along the CSW by making =u, + N~ (j 1)

Whileu; >c¢, makei=i+1.

Assign sampley =x;

Assign sampley) =N

4. PHYSICA

L PROBLEM AND MATHEMATICAL FORMULATION

The physical problem in this work considers a caitioperational condition involving a pipeline sthown situation.
The problem consists of a pipeline cross-sectigmesented by a circular domain filled with a stagnfuid and
bounded by a constant thickness pipe wall (Jamatugdal., 1991, Su and Cerqueira, 2001, Escobetd., 2006).
The fluid is considered as homogeneous, isotrapicveith constant thermal properties. The idealigigebline will be
treated here with an unsteady heat conduction @noh a single medium, thus not taking into accdabatpipe wall.
By considering axial symmetry, the dimensionlesemfdation of this heat conduction problem in cyflicel

coordinates is given by
OH(R,T):026(R,r)+£08(R,r) 0<R<1.7>0
ar R’ R OR
M+BiH(R,r):O R=1,7>0
6(R,0)=1 0sR<1,7=0

where the dimensionless groups were defined as

(10.a)

(10.b)

(10.¢)

(11.a)

(11.b)

(11.0)
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Bi=" (11.d)

Here, T, is the surrounding environment temperatirés the convective heat transfer coefficidnts the thermal

conductivity coefficient,R" is the external radius arBi is the Biot number.
The solution for such a mathematical model canlifeimed with finite-differences, thus resultingtire following
linear system of algebraic equations (Ozisik, 1993)

O =F@O"+S (12)
where,
[(1-4B) 4B 1
o, B-2 (1-2B) B+>
2 2
@ = F = .. .. . .
0, B-— > (1-2B) |B+ B
2(N -1) 2N -1)
| 2B C |
0 ARBBi
s=|: =2 C:@rZB—MR&B— ')
0 AR? N

Here,N is the number of internal nodes in the finite-gliffnce solutionk is anN x N coefficient matrix,® is a
temperature vector of ordBrx 1 andSis a known vector of ordéy x 1.

5. RESULTSAND DISCUSSIONS

We now present the results obtained for the statéemation problem under analysis, by using simdate
experiments. The simulated measurements contaiitivegduncorrelated, Gaussian errors, with conststandard
deviation. Two test cases are examined below, umgl different standard deviations for the measwenerrors,
namely: (i) Test case 1 with standard deviation’df; and (ii) Test case 2 with standard deviatioB°@f. It is assumed
that the simulated measurements are taken withsoséocated at the outer boundary surface, thatB= 1.0.Initial
temperature of the oil was uniform at°60and the surrounding temperature vilgs= 4°C. The state variables to be

estimated are the transient temperatures insidgipledine cross section at the equidistant finifieecence nodes.

For test case 1, we simulate transient measurepetattures containing Gaussian errors with standevihtion of
1°C and compare the exact temperature (obtained aritlanalytic solution with separation of variablegich is
omitted here for the sake of brevity), measuredpmedicted temperatures at positiéhs 0 andR = 1.0. The predicted
temperatures were obtained with the Kalman filtedt with the particle filter (implemented in accanda with the SIR
algorithm described above). Twenty particles wesedufor each state variable in the particle filter.

Figures 2.a,b, and 3.a,b present the results autaiith the Kalman filter and the particle filteespectively, for a
situation involving a standard deviation of the letion model errors of 0°&. These figures show an excellent
agreement between predicted and exact temperaages,result of the small errors in the evolutiod abservation
models.
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Figure 2. - Standard deviation for the evolutiordeicerrors of 0.5C — Kalman filter — Test Case 1
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Figure 3. - Standard deviation for the evolutiordeicerrors of 0.5C — Particle filter— Test Case 1

We now address the solution for a case involvistpadard deviation of evolution model errors ¥ 5The results
obtained with this case are presented in figurash4and 5.a,b for the Kalman and particle filteespectively. Note in
these figures that the predictions tend to follbe measurements instead of the evolution model=atl.0, because of

the large evolution model errors. On the other hahe predictions are in excellent agreement with éxact
temperatures at positions where no measurementalane, such as &= 0.
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Figure 4. - Standard deviation for the evolutiordeicerrors of 8C — Kalman filter - Test Case 1
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Figure 5. - Standard deviation for the evolutiordeicerrors of 8C — Particle filter with re-sampling - Test Case 1

A similar analysis is now made for test case 2, rehitbe simulated measured temperatures contaimsewioh
standard deviation of’8. Figures 6.a,b and 7.a,b present the resultsneotavith a standard deviation of the evolution
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model errors of °C, for the Kalman and particle filters, respectiveThese figures show that, despite the larger
measurement errors, the two Bayesian solution tguba examined in this work are capable of acclyaesdicting

the temperatures inside the domain of interestn eae points quite distant from the measurementtiocs. A
comparison of figures 6.a,b and 7.a,b revealstti@particle filter provided more accurate estirndtean the Kalman
filter for this case, aR = 0 andR = 1.0. Similar results were obtained with largemoes in the evolution model, as

illustrated by figures 8.a,b and 9.a,b. These égwshow the predicted and exact temperatures star@ard deviation
of the evolution model of &.
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Figures 10.a-c were prepared in order to illusttgecapabilities of the Bayesian filters as a jtézh tool for the
temperature field in a pipeline cross-section flomited temperature data available at this surfd¢ese figures show
the exact temperature field, as well as those prediwith the Kalman and particle filters, respeadyy, at a specific
dimensionless time. In the case presented in figliea-c, the standard deviation for the measurepreors and the
standard deviation for the evolution model erroesk@oth of 5C.

DIMENSIONLESS EXACT TEMPERATURE FIELD PREDICTED TEMPERATURE FIELD BY KALMAN FILTER PREDICTED TEMPERATURE FIELD BY PARTICLE FILTER with Re-Sampling
1 1

1

-1 E 0 5 1 - E [i] 5 1
STATE EVOLUTION MODEL WITH GAUSSIAN ERRORS of 5aC STATE EVOLUTION MODEL WITH GAUSSIAM ERRORS of 5C

(a) Exact temperature field (b) Predicted tempeesdtfield by (c) Predicted temperature field by
Kalman filter particle filter
Figure 10. Temperature field inside the pipelinedpcted with Bayesian filters

6. CONCLUSIONS

The objective of this work was to apply Bayesidtefs to the estimation of the transient tempegafigld inside a
pipeline, by using limited temperature data avadadt its outer surface. The state estimation groblnder analysis
was solved with the Kalman filter and with the pidet filter, for linear evolution and observatiorodels, with additive
and uncorrelated Gaussian noises. The Kalman &hdrthe particle filter provided results of simideccuracy for a test
case involving measurement errors of small mageit@h the other hand, the predictions obtained wiéhparticle
filter are in much better agreement with the exeatperatures than those obtained with the Kalmear,fiwhen the
measurement errors are large.
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