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Abstract. Exact one-dimensional steady flow equations for viscous, heat conducting
calorically perfect gases were derived in terms of a velocity potential. These non-
linear differential equations were integrated numerically thus predicting detailed
variation of thermodynamic and flow properties through the normal steady
compression shock waves for an entire range of ratios of secondary and primary
viscosity coefficients, Reynolds numbers, and upstream Mach numbers. The results
conform that entropy reaches its sharp maximum inside the shock wave and that shock
wave strengths and losses correspond to Rankine-Hugoniot jump conditions only
when Stokes hypothesis (zero bulk viscosity) is enforced.

1 Introduction

The difference between the thermodynamic pressure, p, and the mechanical (or
hydraulic pressure or average normal stress) pressure, p~ , can be expressed (to the

first order approximation) as
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Here, p is the thermodynamic pressure (p = ρRT) and p~ is the average normal total

stress (hydraulic pressure) which can be expressed as
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where the factor µλµ
3

2+=B is often termed the coefficient of bulk viscosity.

Thus, the mean total pressure in the deforming viscous fluid is not equal to the
thermodynamic property called pressure. This distinction is rarely important, since
divergence of velocity vector is usually very small in typical flow problems. In 1854,
Stokes himself simply resolved the issue by an assumption known as Stokes
hypothesis. It states that the bulk coefficient of viscosity is zero which gives the
following value for the second coefficient of viscosity
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The Stokes hypothesis has been a controversial subject for more than a century. It has
been recognized that the actual values of the second coefficient of viscosity differ
often significantly from the values obtained from Eq. 3 [1]. It has also been
recognized that the ratio of the second and first coefficients of viscosity, µλ / , can

have a profound effect on the strength of a compression shock waves and its thickness
[2,3]. The objective of this paper is to show these effects by deriving appropriate
differential equations and integrating them numerically. The results will expose the
inner structure of normal steady shocks as they depend on values of µλ / that differ

from those suggested by Stokes hypothesis [4,5,6].

2 Analysis

Entropy generation form of the dimensional energy conservation equation for
homocompositional fluids without heat radiation and no body forces and having
constant thermal conductivity, can be written as
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where Φ is the viscous dissipation function and s is the entropy per unit mass. If the
flow is unidirectional, we can utilize a velocity potential function, φ , such that

φ∇=V
v

. Coefficients of second viscosity, molecular viscosity, and thermal

conductivity, ,, µλ and k, respectively, will be treated as constants. Let the

characteristic dimensional flow quantities be designated with the subscript * and the
local dimensional quantities have an overbar. Non-dimensionalization can then be
performed as follows.
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In isoenergetic flows, the local temperature normalized with the critical temperature is
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The non-dimensionalized local speed then becomes the local characteristic Mach
number

( ) **/ Maxx == ∂φ∂φ (7)

Laplacian of the normalized local temperature in terms of the velocity potential
derivatives is then
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In one-dimensional case, this reduces to
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which, when substituted into the energy conservation equation, gives the entropy
generation equation
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For non-isentropic flows, local non-dimensional pressure can be expressed in terms of
the velocity potential and normalized entropy change.

s-1

1

2
* e

2

1

2

1 ∆−







 −−+= γγγρ M (11)

Notice that
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so that the entropy gradient across a shock in terms of the velocity potential can be
obtained by integrating
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Since this equation has two unknowns (s and φ ) it has to be solved together with the

one-dimensional steady state version of the novel three-dimensional unsteady
compressible viscous heat conducting flow Physically Dissipative full Potential (PDP)
equation [4,5,6].
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Equations (13) and (14) need to be integrated simultaneously to obtain variation of
entropy and other thermodynamic and flow quantities through the shock and their
jump conditions across the shock. For comparison, the exact values of the total
entropy jump across a normal steady compression shock satisfying Rankine-Hugoniot
conditions can be found from
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where M1 is the Mach number at upstream infinity and 12−∆s is the jump in

entropy between downstream infinity and upstream infinity.

3 Numerical Results

Equation (14) was integrated numerically to predict variation of entropy, speed,
density, pressure, and temperature inside normal steady compression shock waves.
Nondimensional density was computed from Eq. (121) and local change of
nondimensional entropy was computed from Eq. (13). Numerical integration of Eq.
(14), which is a truly nonlinear ordinary differential equation of third order, was
performed using a fourth-order Runge-Kutta scheme and several values of

( ) eRand, ,x µλφ ∞− .

Figure 1 depicts computed variation of Mach number through the normal steady
shock wave for the ratio of secondary to shear viscosity λ/µ = -0.6666, three values of
upstream Mach number (M1 = 1.2, 1.6 and 2.0), and three values of Reynolds number
(thick line Re = 500,000, dashed line Re = 1,000,000, and thin line Re = 5,000,000).
It is evident that the total change of the Mach number through the shock does not
depend on Reynolds number. However, thickness of the shock significantly reduces
with increase of the Reynolds number and especially with the increase of the shock
strength.

Figure 2 depicts computed variation of nondimensionalized entropy through the
normal steady shock wave for the ratio of secondary to shear viscosity that
corresponds to Stokes hypothesis (λ/µ = -0.6666), three values of upstream Mach
number (M1 = 1.2, 1.6 and 2.0), and three values of Reynolds number (thick line Re =
500,000, dashed line Re = 1,000,000, and thin line Re = 5,000,000). It is evident that
the total change of entropy through the shock does not depend on Reynolds number.
However, variation of entropy inside the shock exhibits a very sharp spike as analyzed
analytically by Morduchow and Libby [3] and numerically by the author [4,5,6]. This
phenomenon can be explained as follows. From Eq. (4) it is evident that entropy
increases in the upstream portion of the shock wave because viscous dissipation and
second derivative of temperature (head conduction term) are both positive there.
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In the downstream portion of the shock the viscous dissipation remains positive,
but sign of the second derivative of temperature becomes negative thus making strong
negative contributions of heat conduction to the entropy change. Eventually, the
entropy far downstream of the shock must be greater than the entropy far upstream of
the shock of second law of thermodynamics would be violated. However, entropy
inside the shock can locally decrease significantly as evidenced in Fig. 2.

Figure 3 demonstrates a potentially important effect of departing from Stokes
hypothesis. Namely, Mach number far downstream of a normal steady compression
shock can become much lower (that is, the shock could become much stronger than
the Rankine-Hugoniot shock) if the ratio of viscosities µλ / could be made smaller

than –2/3. If this ratio could be made larger than –2/3, the shock would become
slightly weaker. These trends become more pronounced with the increase of the
upstream Mach number.

Figure 4 however shows that creating stronger shocks by somehow reducing the
ratio of viscosities µλ / would incur a significant increase of entropy until the value

of approximately µλ / = - 1.8 is reached. By lowering the value of µλ / further

towards µλ / = - 2.0 the entropy jump across such shocks would rapidly decrease

and eventually tend toward values similar to the Rankine-Hugoniot entropy jump
conditions. It appears that shock waves much stronger than Rankine-Hugoniot jump
conditions are possible while having practically the same losses (entropy jumps) if
ratio of the viscosities µλ / could be made as close to µλ / = - 2.0 as possible. This

corresponds to zero normal viscous stresses situation.
On the other hand, shocks that are only slightly weaker than Rankine-Hugoniot

shocks should be possible o generate with significantly lower losses (entropy jumps)
than Rankine-Hugoniot shocks the viscosity ratio µλ / could be made large and

positive.
Figure 5 demonstrates variation of nondimensionalized entropy jumps across a

normal steady shock as a function of the upstream Mach numbers for ratios of
secondary to shear viscosity λ/µ = -2.0 (dash-double-dot line), λ/µ = - 1.3333 (dash-
dot line), λ/µ = - 0.6666 (solid line), λ/µ = 0.0 (long-dashed line), λ/µ = 0.6666
(dotted line), and λ/µ = 1.3333 (dashed line). Notice that Rankine-Hugoniot
conditions correspond to the results with λ/µ = - 0.6666 (solid line) only.

Conclusions

It has been demonstrated that only if Stokes hypothesis is used (postulating that bulk
viscosity is zero) the jump conditions across normal steady compression shocks will
have the magnitudes given by the Rankine-Hugoniot jump conditions. For negative
values of the bulk viscosity the shock strength will increase. If the bulk viscosity is
positive the shocks will become weaker. It was also demonstrated that entropy
reaches its maximum approximately at the middle of the shock and then rapidly
decreases towards its considerably lower jump value after the shock.



6

References
1. Truesdell, C., (1955) Hydrodynamical Theory of Ultrasonic Waves, J. of Rational

Mech. Analysis, Vol. 2, pp. 617-642.
2. Emanuel, G. and Argrow, B.M., (1994) Linear Dependence of the Bulk Viscosity

on Shock Wave Thickness, Physics of Fluids, Vol. 6, no. 9, pp. 3203-3205.
3. Morduchow, M. and Libby, P.A., (1949) On a Complete Solution of the One-

Dimensional Flow Equations of a Viscous, Heat-Conducting, Compressible Gas,
Journal of the Aeronautical Sciences, November 1949, pp. 674-685.

4. Dulikravich, G.S. and Kennon, S.R., (1988) Theory of Compressible Irrotational
Flows Including Heat Conductivity and Longitudinal Viscosity, International
Journal of Mathematical and Computer Modelling, Vol. 10, No. 8, pp. 583-592.

5. Dulikravich, G.S., (1988) Analysis of Artificial Dissipation Models for Transonic
Full Potential Equation, AIAA Journal, Vol. 26, No. 10, pp. 1238-1245.

6. Dulikravich. G.S, Mortara, K.W. and Marraffa, L., (1990) Physically Consistent
Models for Artificial Dissipation in Transonic Potential Flow Computations,
Computer Methods in Applied Mechanics and Engineering, Vol. 79, pp. 309-320.

0

0

0.0001

0.0001

0.0002

0.0002

0.0003

0.0003

x-coordinate (meters)

0.6 0.6

0.8 0.8

1 1

1.2 1.2

1.4 1.4

1.6 1.6

1.8 1.8

2 2

M
ac

h
nu

m
be

r

Re=5.0E6 Re=1.0E6 Re=0.5E6

Fig. 1. Variation of Mach number through the normal steady shock for ratio of
secondary to shear viscosity λ/µ = -0.6666, three values of upstream Mach number
(M1 = 1.2, 1.6 and 2.0), and three values of Reynolds number (thick line Re =
500,000, dashed line Re = 1,000,000, and thin line Re = 5,000,000).
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Fig. 2. Variation of nondimensionalized
entropy through the normal steady shock
for ratio of secondary to shear viscosity λ/µ
= -0.6666, three values of upstream Mach
number (M1 = 1.2, 1.6 and 2.0), and three
values of Reynolds number (thick line Re =
500,000, dashed line Re = 1,000,000, and
thin line Re = 5,000,000).
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Fig. 3. Variation of Mach number
downstream of a normal shock as a
function of the ratios of secondary to
shear viscosity λ/µ for five values of
upstream Mach number M1. Notice
that Rankine-Hugoniot conditions
correspond to the results with λ/µ = -
0.6666.
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Fig. 5. Variation of nondimensionalized
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conditions correspond to the results
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