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ABSTRACT

An inverse computational method has been developed for
the non-intrusive and non-destructive evaluation of the
temperature-dependence of thermal conductivity. The
methodology is based on an inverse computational procedure
that can be used in conjunction with an experiment. Given
steady state heat flux measurements or convection heat transfer
coefficients on the surface of the specimen, in addition to a
finite number of steady state surface temperature
measurements, the algorithm can predict the variation of
thermal conductivity over the entire range of measured
temperatures. Thus, this method requires only one
temperature probe and one heat flux probe. The thermal
conductivity dependence on temperature (k-T curve) can be
completely arbitrary, although a priori knowledge of the
general form of the k-T curve substantially improves the
accuracy of the algorithm. The influence of errors of
measured surface temperatures and heat fluxes on the
predicted thermal conductivity has been evaluated. It was
found that measurement errors of temperature up to 5 percent
standard deviation were not magnified by this inverse
procedure, while the effect of errors in measured heat fluxes
were even lower. The method is applicable to two-
dimensional and three-dimensional solids of arbitrary shape
and size.
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NOMENCLATURE

F = objective function

[G] = geometric coefficient matrix

[H] = geometric coefficient matrix

h = thermal convection coefficient

k = thermal conductivity

Q = heat flux

q = Kirchhoff’s heat flux

{Q} = vector of Kirchhoff’s heat fluxes
R = random number

T = temperature

u = Kirchhoff’s heat function

{U} = vector of Kirchhoff’s heat functions
z = coordinate

Greek letters

o = coefficient of steepness of k-T curve

B = coefficient of non-linearity of k-T curve
r = boundary or surface of an object

Y = Twomey regularization parameter

o = standard deviation

Superscripts

meas = measured or specified value

comp = computed or predicted value

Subscripts

analyt = analytic
cold = cold boundary
hot = hot boundary
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max = maximum value
min = minimum value
0 = reference value
1,2 = end points of an interval

1. INTRODUCTION

The ASTM standard for the measurement of heat flux and
thermal properties (Annual Book of Standards ASTM C 177-
97) mandates the use of a guarded-hot-plate apparatus. This
apparatus limits the size and shape of the test specimen to a
flat rectangular slab or a rod having circular cross section.
Therefore, it cannot be considered to be a non-destructive
experimental procedure. The test method may be operated
only with one-dimensional heat flow and the specimen
conductance is limited to less than 16 W m™? K. Errors in the
measurements may be caused by deviations from the idealized
assembly configuration, heat radiation, temperature gradients
in the test specimen, specimen thickness, material
inhomogeneity, and material phase change. Compliance with
this experimental testing method requires the establishment of
a steady-state condition.

These limitations exclude the measurement of thermal
conductivity, k, under a variety of circumstances. For
example, it may be impractical or even impossible to extract a
properly sized and shaped laboratory test specimen out of the
given object. In cryogenic materials, it is quite difficult to
measure the variation of thermal conductivity particularly
because the thermal conductivity versus temperature, k(T),
curve is very steep or has inflections in the range of low
temperatures. Similarly, thermal conductivity and specific heat
are extremely difficult to measure directly within the thin
mushy region of a solidifying or melting medium.

It is therefore very desirable to develop a non-destructive
evaluation (NDE) technique that can provide information
about the temperature-dependence of thermal conductivity.
Thermal tomography and inverse thermal design techniques
using the Boundary Element Method (BEM) offer attractive
possibilities for these types of problems. Iterative solution
procedures with finite differencing or finite element methods
are the most often used when solving inverse parameter
identification problems (Beck et al., 1985; Alifanov, 1992;
Artyukhin, 1993; Beck and Arnold, 1997). They are often
classified as inverse heat conduction problems. Orlande and
Ozisik (1993) have noted that most work on parameter
identification problems has involved the use of finite
dimensional minimization techniques. That is, a finite number
of interior temperature measurements are taken and the k(T)
curve is iteratively modified until the difference between the
measured and computed temperatures is minimized in a least-
squares fashion. This means that such numerical procedures
require intrusive instrumentation.

Algorithms involving an adjoint form of the heat conduction
equation have also been used to obtain fairly accurate
predictions of thermal conductivities using temperature
histories at a single measurement point (Dantas and Orlande,

1996). The approach of using unsteady temperature
measurements means that there is no need for fairly expensive
heat flux probes. On the other hand, the typical inverse
methods for determination of k(T) via utilization of the
unsteady temperature measurements have not been
demonstrated to work on arbitrarily shaped multidimensional
objects (Lam and Yeung, 1995; Yang, 1997; Huang et al.
1995) and for arbitrary k(T) distributions (Sawaf et al. 1995).

In this work, we are presenting an inverse numerical
procedure that differs substantially from the iterative
approaches and from the formulations based on the unsteady
temperature measurements.  We start by assuming that
measured values of steady heat fluxes (or convection heat
transfer coefficients) are available everywhere on the surface
of an arbitrarily shaped solid. Kirchhoff’s transformation
(Arpaci, 1966) is then used to convert the governing heat
conduction equation into a linear boundary value problem that
can be solved for the unknown Kirchhoff’s heat functions on
the boundary using the BEM. Given several boundary
temperature measurements, these heat functions are then
inverted using numerical differentiation (Hansen, 1997) to
obtain thermal conductivity at the points where the over-
specified temperature measurements were taken.

The experimental part of this inverse method requires one
thermocouple and one heat flux probe placed sequentially only
on the surface of an arbitrarily shaped and sized specimen.
Thus, this method is non-intrusive and directly applicable to
field testing since special test specimens do not need to be
manufactured. This method could still use steady temperature
measurements at isolated interior points if additional accuracy
is desired (Dulikravich and Martin, 1996).

Our inverse method addresses many of the limitations of
the guarded-hot-plate experimental test method and offers the
ability to overcome most of them. The method is inherently
multi-dimensional and allows for multi-directional temperature
gradients in the test specimen. The computer algorithm for the
steady-state inverse determination of the temperature variation
of thermal conductivity is non-iterative (when steady state
boundary heat fluxes and temperatures are provided) and
robust, requiring only several seconds on a personal computer.

It should be pointed out that this paper offers a method
which is significantly more versatile than our original method
(Martin and Dulikravich, 1997). The present method does not
require that experimentally measured surface temperatures
must be in equal temperature intervals. The present method
also allows that heat transfer coefficients can be used instead
of heat flux boundary conditions. The new algorithm also
accepts experimentally measured temperatures having same
value, but measured at different boundary points.

2. NUMERICAL FORMULATION

The governing equation for steady-state heat conduction
in an isotropic medium with temperature-dependent thermal
conductivity is an elliptic quasi-linear partial differential
equation.
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V- [k(T)VT]=0 (1)

This equation can be linearized by the application of
Kirchhoff's transformation where the temperature variable, T,
can be transformed uniquely to the heat function, u(T),

T
u= J'ﬁ vu=XDyr )
o Ko ko

Kirchhoff’s transform converts the governing steady-state heat

conduction equation into Laplace's equation,V2u=O.
Dirichlet boundary conditions can also be transformed by
applying Kirchhoff's transformation directly to the boundary
temperatures. Neumann boundary conditions can easily be
related to the heat flux, Q, in the direction, n, normal to the
boundary.

Q=-k=s—=kp— 3)

The specification of convective heat transfer coefficients on
the boundaries falls into the category of a Robin-type
boundary condition. It is a special case of the more general
non-linear heat flux boundary condition, where the heat flux is
a function of temperature.

Qr) =k =h(T-T..)
n @)

Here, the boundary temperature is a function of the Kirchhoff
function, T = T(u). This condition does not pose any
difficulties whenever the temperature is over-specified over the
entire convective boundary. But, in general, an iterative
solution procedure, such as the Newton-Raphson method, will
be required. The Robin condition can be made linear by the
use of the Jacobian, dQ/du , of the Kirchhoff transformation.

ou )" _(ou ol 0Q n—1
(g] —(9—“J ko (BUJ (u - 5)

Since the thermal conductivity variation is unknown, the
iteration must also include the inverse procedure, which will
be explained in greater detail in the next section.

To summarize, in the case of Robin boundary conditions,
an initial guess to the boundary values of temperature, T, leads
to an initial thermal conductivity function, k(T). Given this
information, the Jacobian of the transformed non-linear heat
flux boundary condition, 0Q/du, allows for the solution of

the field of Kirchhoff functions, u(T).

The inverse procedure uses knowledge of the discrete
boundary heat function values, u;, at the same physical
locations where the boundary temperature, T;, were measured,
in order to yield the unknown thermal conductivity curve,
k(T). In the case of Robin boundary conditions, this new k(T)
curve will produce a heat flux Jacobian that is, in general,
different from the initial guess. Therefore, in the case of
Robin boundary conditions the aforementioned procedure
must be solved iteratively until the heat flux, Q(T), converges
to a user-specified tolerance. In most instances, the system of
equations is only weakly non-linear, and the initial thermal
conductivity can be a guessed constant. The use of such an
iterative procedure allows for the temperature-dependence of
the convective heat transfer coefficient, h(T), as well as for any
arbitrary temperature-dependent heat flux boundary condition,
such as heat radiation. The numerical implementation of this
non-linear methodology for well-posed problems does not
produce any serious difficulties (Banerjee and Raveendra,
1981). The implementation of this procedure for the inverse
determination of thermal conductivity has yet to be fully
investigated.

2.1 Solution to the Direct Problem Using the BEM

The Boundary Element Method (BEM) (Brebbia, 1978) is a
powerful computational tool for solving linear and quasi-linear
boundary value problems. Its effectiveness in solving inverse
problems, such as ill-posed boundary conditions, unknown
heat sources, or when temperature measurements are enforced
at isolated interior points, has been demonstrated (Martin and
Dulikravich, 1996; Dulikravich and Martin, 1996).

In this work, the BEM system for steady-state, non-linear
heat conduction was written as a system of boundary integral
equations (BIE) (Brebbia and Dominguez, 1989) valid for
arbitrary two and three-dimensional geometries. A well-posed
(direct or analysis) problem was created when Neumann (or
Robin) conditions were provided on all boundaries except for
a single boundary point where Dirichlet condition was
specified. Integral of all heat fluxes over the entire boundary
had to amount to zero. The boundary of the test specimen was
discretized with Npg elements connected at their end points
with Ngy boundary nodes. The variation of u and du/dn over

each boundary element (line segment) was assumed to be
linear. The integration over each boundary element was
accomplished using Gaussian quadrature. In the case where a
singularity existed at one of the end points of a boundary
element, analytic integration was performed. This
discretization procedure allowed the nodal quantities of u and
du/on to be factored into matrix form, [H}{U} = [GI{Q}.

Thus, the [H] and [G] matrices are known because they are
strictly dependent upon the Green's function and the geometry.

3. INVERSE METHOD FOR DETERMINING k(T)
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When heat fluxes are known over the entire boundary via
steady state measurements taken on the entire surface of the
object, the BEM can be used to solve for the transform of the
Kirchhoff heat functions on the boundary.

(H{U}=[G]{Q}={F} (6)

The matrix [G] can be multiplied by the vector {Q} to form
a vector of known quantities {F} so that the matrix [H] can be
inverted to obtain the values of {U} at each boundary node.
The matrix [H] appears to be well conditioned so that
regularization methods are not required. A caution should be
exercised since the level of ill-conditioning exhibited by the
matrix [H] could be reduced artificially due to coarse
discretization. Since the inversion is non-unique when only
Neumann-type (heat flux) boundary conditions are provided
everywhere on the boundary, the arbitrary constant can be
determined by specifying at least one Dirichlet boundary
condition. Therefore, a modified Kirchhoff transform is
required.

u=uj + J—I(—dT )

Here, ko is a reference conductivity value and T, is the
minimum value of the measured boundary temperature. The
minimum value of Kirchhoff function, ug,, occurs at the
minimum temperature, Ty, Thus, v = Ty = Ty, makes one
Dirichlet boundary condition. Then, the BEM can be used to
obtain the values of the heat function {U} on the entire
boundary except at the location of the minimum temperature
reading. At this point, the normal derivative q =(8u/an)1

will be computed since Ty, is specified there.

Now that the nodal boundary values of {U} are known, the
entire field of heat functions is known. At any interior point,
the values of the Kirchhoff heat function can be obtained in a
post-processing fashion. Since the boundary-value problem is
over-specified, a number of steady temperature measurements,
taken either non-intrusively on the boundary, or intrusively, at
isolated interior points, can be used to convert the heat
functions, u(T), into the corresponding values of thermal
conductivity, k(T), at the same physical locations where the
measuring instruments were placed. Thus, knowing both
vectors {U} and {T}, the vector {K} can be determined by
performing numerical differentiation of {U}. A book by
Hansen (1997) represents an authoritative text on the general
aspects of ill-conditioning and numerical differentiation. For
the benefit of general engineering audience we will provide a
detailed set of various numerical differentiation procedures
that were tested with the objective of finding the most
appropriate algorithm for the determination of k(T).

In order to evaluate the sensitivity of the algorithm to errors
in the measurement data, random errors based on the Gaussian

probability density distribution were added intentionally to the
temperature and heat flux measurements. A random number 0
< R <1 with a uniform distribution was generated using a
standard utility subroutine. The desired variance o° was
specified and error was added to the analytic temperature data
points, Tynaigr.

Ty =Tanalyt + V-20 InR (&)

3.1 Trapezoid Rule for Inverting u(T) Function

Given the value of the computed heat function and the
measured temperature at the same point on the boundary, the
thermal conductivity can be determined at that point via the
inverse Kirchhoff’s transform. The integral can be evaluated
numerically using the trapezoid rule.

T ok &)
+
T. -T _ n n—1

The values of temperature, T,, are known at a finite number
of boundary locations. At these points, the values of the
computed heat function, u,, are also known. Therefore, the
values of thermal conductivity, k,, at these points can be
determined using the Kirchhoff’s transformation. The inverse
of the Kirchhoff’s transformation can be expressed as a system
of algebraic equations represented in the following matrix
form

[Cl{K/ko} = {U-Tmin} (10)

where the elements of the lower-triangular matrix, [C], have
been determined as follows.

T, -T
Ci1 =L2—-—l whenj=1 (11a)
Tj —Tj—l
Cii == when i =j (11b)
Tiy1 ~Tiz .
ij=—1+—2——1—1— when j < 1.y (11c)

By inverting the [C] matrix, the values of the thermal
conductivity can be obtained at the same locations where the
temperature measurements were taken. The values of the
temperature must be sorted in ascending order (T;,T,,...,Tn}
and identical temperature readings must be discarded. This
system represents N-1 equations for N unknowns. The
additional equation arises from the knowledge of the
conductivity at the minimum temperature point. At this point
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both the heat flux, QIT . and the normal derivative of the
min

heat function, ko(au/an)iu _ =k(8T/an)iT ~are known
min

min
from the BEM solution.

The trapezoid rule provided good results, but the predicted
values of the thermal conductivity were often oscillatory.
Simpson’s rule was attempted to remove this oscillatory
behavior and it was successful at doing this, but the k(T) curve
that it predicted was often incorrect at the endpoints of the
measured temperature range. Instead, very good results were
obtained by simply averaging the results predicted by the
trapezoid rule.

Regularization was required to properly invert the [C]
matrix whenever random error was introduced into the
temperature  measurements. Tikhonov’s regularization
(Tikhonov and Arsenin, 1977) is a single-parameter
minimization where the solution vector {K/ky} minimizes the
weighted sum of the norm of the error vector. A minimum
error norm was found by differentiating equation (10) with
respect to each component of the unknown vector {K/ky} and
setting the result equal to zero. Substituting the singular value
decomposition where [C] = [E] [W] [D] (Golub and Van
Loan, 1996; Press et al., 1987) and solving for the unknown
vector {K} resulted in

%{x}: [EIB][W]T [D](1- Tyin){U}

where (12)
hs]=({w]T[w]+xm]‘1

where [I] is the identity matrix. Tikhonov’s regularization is
a generalization of least-squares truncation, but instead of
simply eliminating terms associated with small singular
values, they are weighted by a factor (1 + Mw?), where w are
the eigenvalues of matrix [C]. Larger regularization
parameters, A, had the effect of increased smoothing of the
k(T) curve without adding error into the solution of the heat
conduction equation (Martin and Dulikravich, 1996).

A similar regularization procedure (Twomey, 1963;
Hansen, 1997) provided even greater smoothing of the
predicted k(T) function with the addition of a smoothing
matrix [S].

é{K}=[[C]T[C]w[S]F[C]T(l—Tmin>{U} (13)

The smoothing parameter, Y, was increased with the increased
amount of error in the temperature and/or heat flux boundary
conditions. The optimal magnitude of Y was proportional to
the square of the error in temperature.

3.2 Finite Differentiation for Inverting u(T) Function

As an alternative method, the nodal quantities of {U} and
{T} were easily converted into values of thermal conductivity
{K} using finite difference formulas. Second and third order
accurate finite difference formulas for thermal conductivity,
ki and k3, respectively, were used with irregular temperature
intervals. Thus,

)
kip =3 (14)
T1
2 2
8u16'1‘2 “6u28T1
ki3 = S (15)
T20T3
where
Syt =ui+1 (T T )? (16a)

‘“i[(Ti -T_ 1P - (T ‘Ti)z]—“i—l(TiH -T2

8u2 =uj+2(Ti - Ty 2 ) (16b)

-“i[(Ti “Ti_ o) - (Tie o “Ti)z]‘ui—l(THZ -T2
81 = (Tigt —Ti (Ti = Tjoy (Tiss —Tiz1) (16¢)
812 =871 (Tiva —Ti (Ti ~Tip NTivz ~Ti—z) (16d)
813 =[(Tiyz =Ty Ti ~ Ti—z )= (Tj1 ~ T XTi — Tizy )] (16e)

8211 =(Tiy1 ~T;)? (T - T )* (Tigy ~Tiy) (16f)

821‘2 =(Ti42 ~T; )2 (T} T3 )* (Tiyo - Ti2) (16g)

Here, kj > and k; 3 are the thermal conductivities obtained

at the ith boundary node with the second and third order
differencing formulas, respectively. These finite difference
formulas gave satisfactory results for k(T) whenever the
errors in the temperature measurements were small. The use
of finite differencing method required the discarding of
temperature readings that were within the error bounds of the
temperature readings.

3.3 Linear Least Squares for Inverting u(T) Function

In an effort to improve the inverse procedure, as well as to
utilize an a priori knowledge about the general shape of
thermal conductivity function, k(T), a general linear least
squares algorithm (Golub and Van Loan, 1996; Press et al,,
1986) was employed. The objective of this approach was to
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fit the set of N data points [T, u,] to a selected mathematical
model. The general linear least squares model used a linear
combination of M basis functions.

M
u(T)= Y cmPn(T) (17)

m=1

where P((T), Py(T),..., Py(T) are arbitrary fixed non-linear
functions of temperature, called the basis functions. The
merit function, called chi-squared, xz, is a measure of how

well the model fit the data. It assumes that the measurement
errors are supplied as standard deviations, ©;, of the
temperature. Then,

M
5 N [ Uj— Z(lzmpm(Tn)
- m= 18
X E o. (18)

n=1

The minimum of this function occurs where the derivative of

x2 with respect to all M basis function coefficients, cp,

vanishes. The resulting system of equations was cast into the
following covariance matrix formulation.

N Pi(Tn)Pj(Tn) { Al u P'(T )
SALIAALLY Py S Yy atitn) (19)
n§=:1 c7n2 n=1 0-n2

Here, {c} is the vector of unknown basis function
coefficients. The inversion of the covariance matrix with
Gaussian elimination or the SVD algorithm (Golub and Van
Loan, 1996; Press et al., 1986) yielded the basis function
coefficients. Knowing these coefficients, the basis functions
were differentiated with respect to temperature in order to
obtain the values of thermal conductivity, k;, at the N data
points.

The challenge here was to select an appropriate set of the
basis functions that best modeled the integral of the thermal
conductivity function. In this paper, several basis functions
were  attempted; standard  polynomials, Chebyshev
polynomials, and third order beta-splines (Barsky, 1988), in
addition to non-arbitrary basis functions in which a priori
knowledge of the k(T) curve was assumed. In the latter case,
for example, arctangent integral basis functions were used to
estimate a step-like k(T) variation. These basis functions
were integrated either analytically or numerically. We also
tried using Fourier sine and cosine series basis functions, but
the results were less than satisfactory, with large oscillations
increasing with increasing input error.

3.3.1 Polynomial Basis Functions
The thermal conductivity was represented by a standard
series of polynomial basis functions.

K(T)=cy+coT+c3T2 +..+cpy TM! 20)

The Kirchhoff function, u(T), was obtained by analytical
indefinite integration of these polynomials with respect to
temperature, thereby yielding an additional basis function
coefficient, ¢co. The general linear least squares algorithm
then determined the unknown coefficients, ¢y, cy,..., Cy.

3.3.2 Chebyshev Basis Functions
The thermal conductivity variation was represented by the
series of orthogonal Chebyshev functions,

M
k(T)= ZCm cos(m arccos()) 21

m=0
where the temperature was affected by a change of variable.

T- (Tmin + Tnax )/2

0=
(Tmax — Tmin )/ 2

(22)

In order to use these functions to approximate the u(T)
data, the Chebyshev basis functions were integrated
numerically. When the explicit polynomial expressions were
used instead of the trigonometric functions, the basis
functions were integrated analytically. The general linear
least squares algorithm then determined the coefficients of the
integrated Chebyshev basis functions.

3.3.3 Beta-Spline Basis Functions
The Kirchhoff function was represented by a piecewise
beta-spline of cubic polynomial segments, by(s).
Nvert 3
u(T)= D | D bx(B1.B2.5) Visk (23)

i=1 Lk=-1

Each segment was regarded as a weighted average of its four
local vertices, so that each segment was a function of the
parameter s(T) in a non-dimensional curve-following
coordinate system that varied from O at the beginning of the
segment to 1 at the end of that segment.

T -Thin

Tmax - Tmin

s(T)=1+ (Nyert —1)

(24)
T- Tmin

—int l+-——(N -1 }
{ Tmax — Tmin vert )
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Here, the int{} function also defines the truncated integer
value of its argument. V;, are the control vertex coordinates
and by (B1,B,.s) are the basis functions. Given a temperature T,
the local beta-spline was controlled by the i-1 to i+2 vertices,
where the index i was determined from the above integer
truncation. Each basis function was itself described as a cubic
polynomial.

3

by (B1.B2.5)= Y cjx (B1.82)s! (25)
j=0

The unknown constants c;x(B1,8,) were fixed quantities,
provided B; and P, were fixed. They were found by imposing
the three connectivity boundary conditions on any two
neighboring segments (Barsky, 1988). The shape parameter 3,
is referred to as the bias parameter. It could produce clustering
towards the end vertices. The second parameter, B,, is called
the tension parameter, and it was always positive. For high
values of B,, the curve is strongly pulled toward the control
vertices and, in the limit as B, — oo, the beta-spline is

identical to the control polygon. The least squares fitting
algorithm (Press et al., 1986) determined the beta-spline
control vertices as basis function coefficients. The thermal
conductivity function was then determined by numerically
differentiating the piecewise spline with respect to the
temperature.

In an alternative approach, the k(T) curve was modeled
with the beta-spline, while the Kirchhoff function, u(T), was
evaluated as the integral of it.

1 T Nyerr[ 3
U(T)=EJ‘ 21, kZ:)k(ﬁl’BZ’S)VHk dT +cqp (26)
0 1= =

In both cases, the beta-spline curve was either numerically
differentiated or numerically integrated. When using the
differentiated beta-spline, the basis function coefficients
influenced only a local portion of the k(T) curve between the
i-1 to i+2 control vertices. When the integrated beta-spline
was used, each basis function coefficient affected the u(T)
curve from the beginning of the curve (T = Ty,) up to the
local temperature, T.

4. NUMERICAL RESULTS

All of the above mentioned methods have been programmed
and tested on a simple two-dimensional specimen, and an
unconventionally shaped two-dimensional specimen. The

general formulation of this inverse methodology is also
applicable to arbitrary three-dimensional objects.

4.1 Results for a Rectangular Plate

Although the inverse BEM approach with the Kirchhoff’s
transform is directly applicable to arbitrary three-dimensional
problems, for the sake of simplicity it will be demonstrated on
a two-dimensional geometry. A rectangular plate test
specimen 10 cm wide by 1 cm long was used. The opposite
ends of the plate were kept at constant temperatures of
100.0°C and 0.0°C, respectively. The long side walls were
considered to be adiabatic.

When the conductivity versus temperature was a linear
function,

k(T)=ko (1+B(T-Tp)) @7)

the temperatures and heat fluxes can be found from an analytic
solution (Chapman, 1960)

B2 B2
ET +T= Th0t+'£Thot

(28)

(.B (z hot ~ Zcold )
[1 +5 (Thot +Teold )Jm (Thot = Teold)

For the computational analysis, each of the long sides of the
specimen was discretized with 40 equal-length linear
isoparametric boundary elements. Only 4 such elements were
used on each of the two short sides. In the case of an actual
experimental evaluation of the surface heat fluxes this means
that a single heat flux probe was applied at a total of 88
locations corresponding to the midpoints of the 88 boundary
elements. The forward BEM solution compared very well
with the analytic solution, averaging an error of less than 0.1%
for a wide range of the parameter  (Dulikravich and Martin,
1996).

4.1.1 Linear Variation of Thermal Conductivity

The actual variation of thermal conductivity versus
temperature was linear between the values of k(T =0 °C) = 1.0
W m™” °C and k(T = 100.0 °C) = 6.0 W m" °C. The top and
bottom walls of the rectangular plate were specified to be
adiabatic. The right and left end walls were specified with the
heat flux taken from the analytic solution (Q = +/- 35.0 Wm'?),
except for the center of the right side at which a single
temperature measurement was specified, Tpn.

The BEM computed the Kirchhoff’s heat functions at each
of the boundary nodes. These heat functions were inverted
into values of thermal conductivity at the nodes where the
over-specified temperature measurements were provided.
These temperatures existed at discrete locations along the
adiabatic long sides of the specimen.
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Figure 1 shows the predicted values of thermal
conductivity versus temperature using various procedures for
inverting the u(T) function. Errors in the temperature
measurements were simulated by adding standard deviations of
0.1°C up to 5.0°C (0.1% to 5.0%). All of the inverse methods
had very good accuracy whenever the errors were less than
1.0%. For errors above 1.0%, only the Twomey regularization
procedure and the linear least squares with polynomial basis
functions were accurate enough. The beta-spline basis
functions were not used on this example. The magnitude of
the optimum Twomey regularization parameter, <y, was
proportional to the square of the average temperature. The
Chebyshev polynomial and beta-spline methods had problems
at the endpoints due to their oscillatory nature. The linear
least squares with polynomial basis functions were the most
accurate because the actual conductivity and Kirchhoff
functions were represented by polynomials.

4.1.2 Errors in the Heat Flux Boundary Conditions

The inverse procedure was also evaluated given errors in the
measured heat fluxes. The behavior of the inverse algorithm
on the same rectangular test specimen with linear temperature-
dependence of thermal conductivity was observed with
intentionally introduced errors in the measured heat fluxes of
1.0%, 5.0%, and 10.0%. It is remarkable that the inverse
algorithm is less sensitive to errors in the measured heat fluxes
(Figure 2) than in the measured temperatures. This was
because heat fluxes were applied as boundary conditions to the
BEM, and the Laplacian operator smoothed errors in these
heat fluxes. On the other hand, errors in the measured
temperatures directly affect the results of the inverse
procedure.

It is noticeable that the predicted thermal conductivity
values are somewhat biased towards the hot end of the test
specimen (Figure 2). This was most likely due to the fact that
the only Dirichlet (temperature) boundary condition was
specified on the cold end. This confirms our earlier
observations (Martin and Dulikravich, 1996) that the farthest
point from the over-specified temperature boundary condition
has the greatest amount of bias in the predicted temperature
and, subsequently, thermal conductivity.

4.1.3 Steep Jump Variation of Thermal Conductivity
Next, the actual variation of thermal conductivity versus
temperature was described by the arctangent function.

1

k(T)=§(l—§)kmin +5(1+§)kmax (29)
_ Kmax ~Kmin (Tmax +Trin )
E= —E arctan(o&-—————-2 (30)

Here, o is a parameter that sets the slope of the jump in the k-
T curve. The top and bottom walls of the rectangular plate

were specified to be adiabatic and the right and left walls were
specified with the heat flux taken from the well-posed BEM
solution (Q = +/-15.0 W m'z). The boundary temperatures
were taken from the well-posed BEM solution and prescribed
to the inverse program with varying degrees of error (¢ = 0.0,
0.1°C, 1.0 °C, and 5.0 °C). Figure 3 shows the computed k-T
curves when the Tikhonov, Twomey, and finite differencing
inverse methods were used. Again with these methods, the
results were good when the input temperature measurements
have errors with a standard deviation of less than 0.5 °C.

Figure 4 shows the results of the linear least squares
algorithm whenever polynomial, arctangent and Chebyshev
basis functions were used. Notice that the use of arctangent
basis functions produced very accurate results, indicative of
the advantage of having at least some a priori knowledge of
the k(T) function shape. The oscillatory behavior of the
polynomial and Chebyshev basis functions is evident in these
figures, but the general nature of the k(T) curve was captured.

Beta splines were also used with the least squares in an
attempt to reduce the severity of these oscillations. Figure S
presents the results when using the beta-spline basis functions.
Here, the beta-spline was used to approximate the u(T) curve
so that the thermal conductivity was numerically differentiated.
The oscillations were somewhat suppressed at low input
errors, but they became worse with input errors above 1.0 %.
Although more beta-spline vertices produced more accurate
representations of the k(T) curve at low input error, the
reduction in the number of beta-spline vertices was needed at
higher input errors because the oscillatory behavior of the
beta-splines needed to be reduced. Consequently, the number
of beta-spline vertices had to be reduced from 48 with no input
error, down to 6 vertices for the cases with 5.0% input error.

As an alternative, the option of fitting the integrated beta-
spline slightly improved the results. This improvement was
probably due to the fact that the coefficients of the integrated
beta-spline had a more global impact on the least squares
objective. Figure 6 demonstrates the ability of the inverse
formulation to capture a steep jump in thermal conductivity
with the integrated beta splines.

4.2 Inverse Determination of Thermal Conductivity of
Copper at Low Temperatures

Thermal conductivity reaches very high values at very low
temperatures because the lattice waves are harmonic and can
be superimposed without mutual interference. There, the
lattice thermal conductivity of crystals depends upon the grain
size. As the temperature increases, the lattice vibrations
become non-harmonic, scattering is increased, and the thermal
conductivity decreases sharply. In metals, heat is
predominantly transported by valence electrons rather than by
the lattice vibrations, but the effect is the same. The electronic
component of thermal conductivity is dependent upon the scale
of the impurities rather than upon the crystal grain size and, in
pure metals, is one to two orders of magnitude larger than the
lattice conductivity. The thermal conductivity decreases
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sharply beyond 10.0 K primarily because electrons are
scattered by thermal vibrations in the lattice.

Our inverse BEM algorithm was attempted on a real
material, copper, in the range of very low temperatures to see
if the temperature-dependency of thermal conductivity can be
determined where there are steep gradients in the k(T)
function. The actual temperature-dependency was taken from
the Journal of Physical and Chemical Reference Data (Ho,
Powell, & Liley, 1974). The test specimen had the same
geometry and grid specifications as in the previous examples.

When there was no error intentionally added to the
temperature measurements, the results of the inverse procedure
were very accurate for the methodologies used (Figure 7a).
The finite differencing and the least squares algorithm with
beta-spline basis functions had greater difficulty in capturing
the curve once the errors were increased much beyond 0.1 K.
The Twomey regularization procedure stayed effective beyond
errors of 1.0 K. Figure 7c demonstrates that the accuracy of
the solution is affected by the magnitude of the regularization
parameter. The best result existed at very high values of vy, and
also where the k-T curve was the smoothest, that is, where the
integrated function, dk/dT, was at the first local minimum.

4.3 Applicability to Arbitrary Shapes
To demonstrate the applicability of the general inverse
methodology to specimens of arbitrary shapes, we developed
the geometry shown in Figure 8. This object was assumed to
be made of a homogenous material with an internally heated
cylindrical core and an attachment (bottom surface) kept at a
very cold temperature. The forward (direct) BEM heat
conduction algorithm solved for the temperature field in the
object such that the internal circular boundary was held at a
constant temperature of 100.0 K and the bottom of the cold
attachment was held at a constant temperature of 0.0 K. All
other boundaries were assumed to be adiabatic. Figure 8
shows the predicted isotherms in the object made of copper.
Next, the material of the object was assumed to be
unknown. The temperatures predicted on the outer (adiabatic)
circular boundary by the forward BEM were applied as the
over-specified boundary conditions for the inverse thermal
conductivity problem. Only temperatures were assumed
known on the inner circular boundary and the bottom of the
attachment. Twomey smoothing was used to invert the
coefficient matrix arising from the trapezoid rule. The B-
spline was used as the alternative method with 16 vertices
computed as the unknown coefficients of the least squares
method.  The inversely predicted thermal conductivity
variations with temperature are shown in Figure 9. This figure
shows results with and without intentionally introduced errors
in the boundary temperature data. Notice that the inverse
prediction of the k(T) is very good over the entire range of
measured temperatures for this doubly-connected two-
dimensional object.

5. CONCLUSIONS

An inverse computational procedure has been developed to
predict the unknown temperature variation of thermal
conductivity for arbitrarily shaped test specimens. The
procedure is entirely non-intrusive and non-destructive, relying
only upon boundary measurements. It is fast and accurate,
requiring the knowledge of over-specified steady-state
temperature and heat flux or heat transfer coefficients over at
least a portion of the boundary. The boundary element method
was used to determine the field of the Kirchhoff transform
function and its inversion yielded values of thermal
conductivity at the locations and temperatures of the
instrument readings. Several different inversion procedures
were attempted, including regularization, finite differencing,
and least squares fitting with basis functions. The program
was very accurate when the data was without error. For most
of the inversion procedures it did not excessively amplify input
temperature measurement errors when those errors were less
than 1%-5% standard deviation. The program was found to be
less sensitive to measurement errors in heat fluxes than to
errors in temperatures. The accuracy of the algorithm was
greatly increased with the use of a priori knowledge about the
thermal conductivity basis functions. One computational
solution required only several seconds on a personal computer.
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Figure 1. Variation of the thermal conductivity versus

temperature for various amounts of input error in boundary
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(d) 6 = 5.0 °C. The inverse BEM results are compared to the
actual linear conductivity versus temperature function, where
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Figure 7. Inverse determination of the thermal conductivity of
copper in the cryogenic range. The best inverse results are
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Figure 8. Temperature contours predicted by non-linear BEM
within an arbitrarily shape specimen that was internally heated
and made of copper (b).
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