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ABSTRACT

The paper presents a method for the moisture diffusivity estimation from experimentally
measured temperature response of a drying body by using inverse approach. The mathematical
model of drying and the numerical procedure for solution of direct drying problem are given.
The Levenberg-Marquardt method is used for estimation of the moisture content and
temperature dependent moisture diffusivity. Experiments using numerically simulated
temperature data are presented to verify the applicability of the method. Good agreement
between the exact and estimated parameter values were obtained.
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INTRODUCTION

Drying is a complex process of simultaneous heat and moisture transport within material and
from its surface to the surroundings caused by a number of mechanisms. There are several
different methods of describing the drying process, but there is no single theory for wet
material drying prediction, which encompasses all transfer mechanisms. In the approach
proposed by Luikov [5] based on the concepts of irreversible thermodynamics the moisture and
temperature fields in the dried body are described by a system of two coupled partial
differential equations. The system of equations incorporates coefficients which are functions of
temperature and moisture content. These coefficients must be determined experimentally. For
practical calculations, the influence of the temperature and moisture content on all the transport
coefficients except for the moisture diffusivity is small and can be neglected. The moisture
diffusivity dependence on moisture and temperature exerts a strong influence on the drying
process calculation. This effect can not be ignored for the most of practical cases. All the
coefficients except for the moisture diffusivity, can be relatively easily determined by
experiments. The main problem in the moisture diffusivity determination by classical or
inverse methods is the difficulty of moisture content measurements.



The main idea of the present work is to take advantage of the interrelation between the heat and
mass (moisture) transport processes within the drying body and from its surface to the
surroundings. The objective is the development of a method of the moisture diffusivity
estimation on the basis of a temperature response by using inverse approach. Local moisture
content measurements are practically unfeasible especially for small drying objects. Standard
drying curves (body mean moisture content during the drying) are complex and of low
accuracy. In this paper, a substitute method is proposed that is based on easy and accurate
temperature measurements. The temperature response during convective drying is obtained by
numerical experiments. As a representative drying body, a mixture of bentonite and quartz
sand with known thermophysical properties has been chosen.

MATHEMATICAL MODEL OF DRYING

In the case of an infinite flat plate of thickness 2L, if the shrinkage of the material during drying

can be neglected (ps = const), the resulting system of equations for the temperature, T(x, t), and
moisture content, X(X, t), can be expressed as
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Here, t, x, ¢, k, AH, €, §, D, p, are time, distance from the mid-plane of the plate, heat capacity,
thermal conductivity, latent heat of vaporization, ratio of water evaporation rate to the
reduction rate of the moisture content, thermo-gradient coefficient, moisture diffusivity, and
density of the dry plate material, respectively.

As initial conditions, uniform temperature and moisture content profiles are assumed

t=0 T(x0)=T,, X(x0)=X, (3)

The boundary conditions on the free plate surface (x = L) are:
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In the case of convective drying of the sample, the convective heat flux, ji(t), and mass flux,
jm(t), on the surface of evaporation are:
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where h is the heat convection and hp the mass transfer coefficient, T, is the drying air bulk
temperature, and C, is the concentration of water vapor in the drying air. The water vapor
concentration of the air in equilibrium with the free surface of the body is calculated by

Cuet = O(Txats Xat ) - Ps(Tyct )/ 461.9/(T, +273) (6)

where p; is the saturation pressure and @ is the relative humidity. The relative humidity of the
air in equilibrium with the sample at the surface temperature and moisture content is calculated
from the experimental water sorption isotherms.

The problem is symmetrical, and boundary conditions on the axis of the plate are:
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THE DRYING BODY PROPERTIES

The presented idea of the moisture diffusivity estimation by temperature response of a drying
body has been tested for a model material, a mixture of bentonite and quartz [4]. From the
experimental and numerical examinations of the transient moisture and temperature profiles [3]
it was concluded that for practical calculations, the influence of the thermal diffusion is small
and can be ignored. It was also concluded that the Luikov’s system of simultaneous partial
differential equations could be used by treating of the transport coefficients as constants except
for the moisture diffusivity. The appropriate mean values for the model material are: the
density of dry solid, ps= 1738 kg/m’, heat capacity, ¢ = 1550 J/(kgK), thermal conductivity, k =
2.06 W/(mK), latent heat of vaporization, AH = 2.31.10° J/kg, ratio of water evaporation rate to
the reduction rate of the moisture content, € = 0.5, thermo-gradient coefficient, & = 0.0. The
following expression can describe the experimentally obtained relationship for the moisture
diffusivity [4].
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The dependence of desorption isotherms of the model material on temperature and moisture
content is [2]:

Qo= 1.— exp(_1 5. 106 . (T + 273)—0.91 . X(—0.00S.(T+273)+3.91) ( 9)

where @ is the relative humidity of the air in equilibrium with the sample at temperature T and
moisture content X.

NUMERICAL DRYING EXPERIMENTS

The drying experiments have been carried out numerically. The system of equations (1) and (2)
with the initial (3) and the boundary conditions (4) and (7) has been solved with the



experimentally determined thermophysical properties. In order to approximate the solution of

the equations (1) to (7), an explicit numerical integration procedure was used. The nonlinear
term has been expanded to
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The derivatives with respect to time have been represented by forward difference form at the
grid-point (i,j). All first and second derivatives in space have been approximated at time level
(j) by central difference forms. The moisture diffusivity, D, in the first term of (10) has been
assigned its value at the grid point (i,j). The applied procedure leads to the difference equations

Xijr1 = (Rp —Rap) Xi_q; +(1- 2Rp) Xi; + (Rp +Rap) Xiyy; (11)
eAH
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Thermal diffusivity has been calculated as o = k/(cps).

In order to approximate the boundary conditions, central difference form has been applied to
the grid points (1,j) and (M,)) that lie on the boundaries x = 0 and x = L, respectively.

A sufficient condition for the numerical stability of this simple explicit method is that the
values of the ratios Rp and Ry, are less or equal to 0.5. The computations were performed with
the time increment, At, corresponding to the value of 0.4 for Rp and R,. While Ry is a

constant, Rp varies with the moisture diffusivity. At most of the grid-points (i,j), R, was below
0.01.

The numerical drying experiments have been carried out for the plate of thickness 2L = 3.0
mm, with initial moisture content of X(x, 0) = 0.2 kg/kg and initial temperature T(x,0) = 20.0
OC. The drying air bulk temperature was T, = 80.0 °C and the relative humidity was € = 0.12.
The convection heat transfer coefficient was h = 45.1 W/(m’K) and the mass transfer
coefficient was hp = 4.87.10% m/s. Satisfactory accuracy was achieved with M = 41 grid
points.



Figure 3 shows the volume-averaged moisture X and temperature T changes during drying as
well as the drying rate | d X /dt | or mass flux, jm(t) = —ps L d X /dt.
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Fig. 3. Predicted moisture, temperature, and drying rate curves

MOISTURE DIFFUSIVITY ESTIMATION

The estimation methodology used is based on minimization of the ordinary least square norm:
E(P) =Y -T(P)I'[Y - T(P)] (15)

Here, YT = [Y1,Y2, ... ,Y1] is vector of measured temperatures and T = [T(P), To(P), ..., T(P)]
vector of estimated temperatures at time t; (i =1, 2, ..., imax), while pT= [Py,Py, ..., Pn] is the
vector of unknown parameters, imax is total number of measurements, and N is the total
number of unknown parameters (imax > N).

A version of Levenberg-Marquardt method was applied for the solution of the presented
parameter estimation problem [6]. This method is quite stable, powerful, and straightforward
and has been applied to a variety of inverse problems [7]. It belongs to a general class of
damped least square methods [1]. The solution for P is achieved using the following iterative
procedure

Pr+1 =P + [(Jr )TJr + HrI]—1(Jr )T[Y _T(Pf)] (16)

where 1 is identity matrix, [ is damping parameter, and J represents the sensitivity matrix
defined as:
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The term pI damps instabilities due to the ill-conditioned character of the problem. Near the
initial guess, the problem is generally ill-conditioned and damping parameter is chosen large
making term pI large as compared to term J'J. Therefore, the matrix J'J is not required to be
non-singular at the beginning of iterations when the procedure tends towards a steepest descent
method. As the iteration process approaches the converged solution, the damping parameter
decreases, and the Levenberg-Marquardt method tends towards Gauss method [1,7]. In fact,
this method compromises between the steepest descent and Gauss method choosing W so as to
follow the Gauss method to as large an extend as possible, while retaining a bias towards the
steepest descent direction to prevent instabilities.

The presented iterative procedure stops if the norm of gradient of E(P) is sufficiently small, or
if the ratio of the norm of gradient of E(P) to the E(P) is small enough, or if the changes in the
vector of parameters are very small [8].

RESULTS AND DISCUSSION

For the various drying materials, including the model material considered here, the moisture
diffusivity could be represented by the following function of temperature and moisture content
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where D; and D, are constants. For the inverse problem investigated here, values of D; and D,
are regarded as unknown and all other quantities involved in direct problem formulation were
assumed to be known. Thus, PT = [Dy1,D-].

Numerical experiments have been conducted to verify the proposed method. Since the sample
is very thin (3.0 mm), a single thermocouple has been located in the middle of the infinite flat
plate. Two analyses of the simulated data have been considered. In the first analysis,
parameters have been estimated using "exact” temperature data at the sensor location obtained
by the solution of direct problem for the exact values of the parameters. Adding an error term
to exact temperature response then simulated the data for the second analysis. The errors were
additive and normally distributed with zero mean and a standard deviation 6 = 0.5 °C generated
by RANDN routine of the MATLAB program for normally distributed random numbers. The
results obtained by applying the present method to the estimation of the unknown parameters
for the case with exact data and the data with noise are shown in the Table 1.



Table 1. Performance of the method without and with the simulated measurement noise

c Dy D, RMS error Iterations
Exact values - 9.0x 102 0. - -
Values obtained
with "exact" T data 0 9.0019 x-10"  3.7796:107  4.3955.10"* 21
Values obtained
with added noise 0.5 9.0602 x 10'*  13277-10° 4.6684-10" 14

It can be seen that a good agreement is achieved in both cases. The root mean squared
difference between experimental and obtained values tends to zero in the first case and tends to
standard deviation of measured temperature data in the second case. Figure 4 shows the
residual. Normally distributed errors can be seen.
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Fig. 4. The residual

The initial guess (Djjnit = 5.0-10" and Dainit = 0.1) for both cases was the same and it was very
far from the exact values of parameters in order to test the stability of the proposed method.
Consequently, the number of iterations is high. Figure 5 shows the RMS changes and Figure 6
illustrates the approaching of parameters to the final values during iterative process for the case
with the added noise.

1.0E-09 + D T 1.0E-01
2
D1 b2
<+ 1.0E-02
1.0E-10 -
<
- 1.0E-03
1.0E-11 ~
- 1.0E-04
1.0E-12 T T - 1.0E-05
0 5 40 lterations 0 5 10 Iterations

Fig. 5. RMS — Error Fig. 6. Moisture diffusivity coefficient



Since the exact value of D, for model material equals zero and the performed analysis shows
that the second parameter value is zero compared to the X* values in this case, the analysis with
one parameter has been conducted also. The relation for moisture diffusivity (13) was used

with D, = 0.0, and the parameter D; was evaluated by the same method. The similar results
were obtained.

In order to investigate the influence of drying time, determinant of the sensitivity matrix JJ
(Eq.17) with normalized elements
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has been calculated. Figure 7 shows | J'J | for one parameter analysis for the entire drying time
until the equilibrium temperature and moisture content of the body were reached. Figure 8
illustrates changes of the relative sensitivity coefficient during drying process.
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Fig. 9. Comparison of moisture, determinant, sensitivity coefficient, and temperature



Two plateaus can be seen on the presented curve. The first plateau corresponds to the moment
(Fig. 9) when the body moisture content is nearly equal to the equilibrium. After this instant in
time, rapid body temperature increase occurs associated with a rapid evaporation rate decrease.
The second plateau corresponds to the moment when nearly equilibrium temperature has been
reached. In all analyses presented here, drying time corresponding to the end of the first
plateau (720 s) has been taken. For the drying times shorter than that, the problem is ill-posed
and local minimum can bee obtained depending on the initial guesses.

CONCLUSIONS

A method is presented for estimation of moisture diffusivity on the basis of temperature
transient response of a drying body by using an inverse approach. The numerical procedure for
solution of direct drying problem with appropriate convergence conditions was outlined.
Numerical results for transient moisture content and temperature profiles as well as predicted
moisture, temperature and drying rate curves are shown. The iterative Levenberg-Marquardt
method is applied for evaluation of unknown constants in moisture diffusivity model of its
dependence on moisture and temperature. The estimation method is demonstrated using data
obtained from a simulation of the experimental design. The results of the numerical
experiments, in the case with errorless measurements as well as with measurements containing
random errors, show good agreement between evaluated and exact parameter values and
confirm the validity of the proposed method. Conducted sensitivity analysis confirms that
proper duration of drying experiment has been chosen.
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