
1 Copyright © 1999 by ASME

Proceedings of Inverse Problems in Engineering: Theory and Practice
3rd International Conference on Inverse Problems in Engineering

June 13-18, 1999, Port Ludlow, WA, USA   

MULTIDISCIPLINARY INVERSE PROBLEMS

George S. Dulikravich + , Thomas J. Martin and Brian H. Dennis
Department of Aerospace Engineering

The Pennsylvania State University
University Park, Pennsylvania 16802

Key Words: inverse problems, boundary conditions, thermoelasticity, fluid mechanics, non-destructive evaluation

ABSTRACT
This paper presents a limited survey of methods and

multidisciplinary applications of various techniques for the
solution of several classes of inverse problems as developed
and practiced by our research team.  Sketches of solution
methods for inverse problems of shape determination, boundary
conditions determination, sources determination, and physical
properties determination are presented from the fields of
aerodynamics, heat transfer, elasticity, and electrostatics.

GENERAL INTRODUCTION
Engineering field problems are defined (Kubo, 1993) by

the governing partial differential or integral equation(s),
shape(s) and size(s) of the domain(s), boundary and initial
conditions, material properties of the media contained in the
field, and by internal sources and external forces or inputs.  If
all of this information is known, the field problem is of an
analysis (or direct) type and generally considered as well posed
and solvable.  If any of this information is unknown or
unavailable, the field problem becomes an indirect (or inverse)
problem and is generally considered to be ill posed and
unsolvable.  Specifically, inverse problems can be classified as:
1. Shape determination inverse problems,
2. Boundary/initial value determination inverse problems,
3. Sources and forces determination inverse problems,
4. Material properties determination inverse problems, and
5. Governing equation(s) determination inverse problems.
The inverse problems are solvable if additional information is
provided and if appropriate numerical algorithms are used.  The
objective of this paper is to offer a very brief survey of research
on the solution methods for multidisciplinary inverse problems
that has been performed in our Multidisciplinary Analysis,
Inverse Design and Optimization (MAIDO) Laboratory.
                                                                                                         
+  Associate Professor.  Fellow ASME.

1. SHAPE DETERMINATION INVERSE PROBLEMS
The problem of determining sizes, shapes, and locations of

objects or cavities inside a given object sounds like a
formidable task.  In reality, this type of inverse problem is
probably the most common.  The problem can be solved only if
certain field quantity (pressure, heat flux, stress, magnetic field,
etc.) can be specified on these unknown boundaries in addition
to their complementary field quantities (velocity, temperature,
deformation, electric field, etc.) on the same boundaries.

1.1 Aerodynamic Shape Inverse Design
A typical inverse aerodynamic shape design is defined as

follows: if a desirable fluid pressure distribution is specified on
the yet unknown surface of an aerodynamic body, find the shape
of the body that will produce this pressure distribution subject
to the specified global flow-field conditions.  Two classes of
tools for inverse aerodynamic shape design are: a) methods with
coupled shape modification and flow-field analysis, and b)
methods with uncoupled shape modification and flow-field
analysis (Dulikravich, 1984; 1987; 1991; 1992; 1995; 1997;
Fujii and Dulikravich, 1999; Tanaka and Dulikravich, 1998).

The coupled inverse shape design methods require special
consideration in the writing of the flow-field analysis computer
code.  These software modifications represent a major
undertaking, even if the source version of the flow-field analysis
code is available.  For example, an indirect surface transpiration
technique might need to exchange no-slip wall boundary
conditions on the body surface with specified pressure boundary
conditions in order to obtain a shape update.  Other examples of
this class of design techniques are: stream-function-as-
coordinate formulation, characteristic boundary condition
concept, integro-differential equation concept, fictitious gas
concept, direct surface transpiration concept, and adjoint
operator/control theory approaches.  Furthermore, most of the
existing inverse shape design methods are not applicable to
viscous flows or to three-dimensional configurations.
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The uncoupled inverse shape design methods require no
modification to an existing flow-field analysis computer code.
This means that any flow-field analysis code (a panel code, an
Euler code, a Navier-Stokes code, or even surface pressures
obtained experimentally from a wind tunnel testing) can be used
in the uncoupled aerodynamic shape inverse design without a
need for alterations of such an analysis tool.  For example,
elastic membrane technique and DISC method (Dulikravich,
1995; 1997) require knowledge of only the surface pressure
distribution on the current aerodynamic shape as an output from
the flow-field analysis code in order to predict a shape update.

It should be pointed out that inverse methods for
aerodynamic shape design are capable of creating only point-
designs, that is, the resulting shapes will have the desired
aerodynamic characteristics only at the design conditions.  If the
angle of attack, free stream Mach number, etc. in actual flight
situations is different from the values used in the design, the
aerodynamic performance will deteriorate sometimes quite
dramatically especially at transonic speeds.

1.2 Elastic Surface Motion Concept
This technique (Dulikravich, 1995; 1997) treats the surface

of an aerodynamic body as an elastic membrane that deforms
under aerodynamic loads until it achieves a desired (target)
distribution of surface pressure coefficient, pC .  The original

non-physical model for the evolution of a two-dimensional
shape was given by
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Here, ∆n’s are defined as shape corrections along outward
normal vectors to the airfoil contour.  Coefficients β0, β1, and β2

are user supplied constants that control the rate of convergence
of the airfoil shape.  This technique was modified by Malone et
al. (1987), giving
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With this formulation (dubbed MGM for modified-Garabedian-
McFadden or Malone-Garabedian-McFadden) all shape
modifications are in the y-direction, thus preventing the chord
length from changing in the x-direction.  The MGM shape
evolution equation (2) is traditionally solved for shape
corrections, ∆y, by evaluating the derivatives in Eq. (2) using a
finite differencing.  Two major problems with the classical
MGM approach are its slow convergence at the leading and
trailing edges of the airfoil, and its significantly slower
convergence in conjunction with the flow-field analysis codes
of increasing non-linearity (Dulikravich and Baker, 1999a).

It has been observed in practice, and can be shown
analytically that the radius of convergence of the iterative
matrix in the present formulation of this method depends on the
non-linearity of the flow-field analysis module.  This means that
when using a progressively more non-linear flow-field analysis,
this inverse shape design method will unavoidably need
between two and three orders of magnitude more flow-field
analysis runs than when using a simple linear panel code.  For
example, a two-dimensional airfoil shape inverse design with
this method utilizing a Navier-Stokes flow analysis code may
require over ten thousand calls to the Navier-Stokes code.  This
is obviously unacceptable for three-dimensional applications.

1.3 Fourier Series Elastic Membrane Formulation
The slow convergence problem of the classical MGM technique
can be eliminated with a new formulation of the elastic
membrane design concept that allows a Fourier series analytical
solution to the shape evolution equation (Dulikravich and
Baker, 1999a; 1999b).  Notice that Eq. (2) can be expressed on
the upper airfoil contour as
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where s is the airfoil contour-following coordinate, and as
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on the lower airfoil contour.
These two ordinary differential equations with constant

coefficients are of a simple linear forced mass-damper-spring
system type where the monotonically increasing time coordinate
in the forced mass-damper-spring system and the monotonically
increasing contour following coordinate, s, in Eqs. (3) and (4)
are equivalents.  There is also an analogy between the forcing
function in the mass-damper-spring system, which varies
arbitrarily with time and the surface pressure coefficient
difference, pC∆ , which varies arbitrarily with the contour

following coordinate, s, in Eqs. (3) and (4).  Notice also a
global periodicity of the mass-damper-spring forcing function
and the surface pressure coefficient difference, pC∆ ,

distribution that repeats its value at the starting and the ending
contour-following s-coordinate location (typically the trailing
edge point).  The arbitrary surface distribution of pC∆  in Eqs.

(3) and (4) can be represented by utilizing the Fourier series
expansion as
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and L is the total length of the airfoil contour.  The particular
solution of either Eq. (3) or Eq. (4) can be represented in the
general Fourier series form as

∑
=

++=∆
maxn

1n
nnnn0p )]sNsin(B)sNcos(A[Ay (7)

Substitution of Eqs. (5)-(7) and analytical derivatives of Eq. (7)
into the airfoil top contour evolution equation (3) and bottom
contour evolution equation (4) yields
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Since the Fourier coefficients of the particular solutions on the
upper and lower airfoil contours are different, it can be
expected that gaps will form at the leading and trailing edges of
the airfoil.  These gaps can be closed with appropriate
homogeneous solutions to Eqs. (3) and (4).  An analytical form
of the homogenous solution for the airfoil upper contour is
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with a similar expression for the airfoil lower contour.  Here,
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Thus, the overall displacement (correction) of the airfoil
contour is given by the following equations:
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The four unknown constants F and G can now be determined
for the upper and lower airfoil contours such that the following
four boundary conditions: zero trailing edge displacement,
trailing edge closure, leading edge closure, and smooth leading
edge deformation. Simultaneous solution of these four
conditions for the unknown coefficients F and G results in
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where
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Formulation of this method for inverse design of three-
dimensional aerodynamic shapes is a straightforward extension
(Dulikravich and Baker, 1999a; 1999b).

1.4 Determination of Number, Sizes, Locations, and Shapes
of Internal Coolant Flow Passages

During the past 15 years, our research team has been
developing a unique inverse shape design methodology and
accompanying software which allows a thermal system designer
to determine the minimum number and correct sizes, shapes,
and locations of coolant passages in arbitrarily-shaped
internally-cooled configurations (Dulikravich, 1988;
Dulikravich and Martin, 1996).  The designer needs to specify
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both the desired temperatures and heat fluxes on the hot surface,
and either temperatures or convective heat coefficients on the
guessed internal coolant passage walls.  The designer must also
provide an initial guess of the total number, sizes, shapes, and
locations of the coolant flow passages.  Afterwards, the design
process uses a constrained optimization algorithm to minimize
the difference between the specified and computed hot surface
heat fluxes by automatically relocating, resizing, reshaping and
reorienting the initially-guessed coolant passages.  All
unnecessary coolant flow passages are reduced to a very small
size and eliminated while honoring the specified minimum
distances between the neighboring passages and between any
passage and the thermal barrier coating if such exists.  This type
of computer code is highly economical, reliable, and
geometrically flexible, if it utilizes the boundary element
method (BEM) instead of finite element or finite difference
method for the thermal field analysis.  The BEM does not
require generation of the interior grid and it is non-iterative.
Thus, the method is computationally efficient and robust.  The
resulting shapes of coolant passages are smooth, and easily
manufacturable.  The methodology has been successfully
demonstrated on coated and non-coated turbine blade airfoils,
scramjet combustor struts, and three-dimensional coolant
passages in the walls of rocket engine combustion chambers and
axial gas turbine blades (Dulikravich and Martin, 1997).

1.5 Interior Void and Crack Shape Determination
The inverse determination of locations, sizes, and shapes of

unknown interior voids subject to over-specified stress-strain
outer surface field is a common inverse design problem in
elasticity (Bezera and Saigal, 1993).  Utilizing surface thermal
boundary conditions (Dulikravich and Martin, 1993)) can also
solve the void detection problem.  The typical approach is to
formulate a sum of least squares differences in the surface
values of given and computed stresses or deformations (or
temperatures or fluxes) for a guessed configuration of voids.
This cost function is then minimized using any of the standard
optimization algorithms by perturbing the number, sizes,
shapes, and locations of the guessed voids.  The process is
identical to the already described inverse design of coolant flow
passages subject to over-specified surface thermal conditions.

It should be pointed out that this approach to inverse
detection of interior cavities and cracks could generate interior
configurations that are non-unique.

2. BOUNDARY CONDITIONS DETERMINATION
A very common practical problem in any field theory is

determination of the unknown boundary and initial conditions.
Here, we will focus only on boundary conditions determination.

2.1 Determination of Steady Boundary Temperatures and
Heat Fluxes

Determination of unknown steady thermal boundary
conditions when neither temperature nor heat flux data are

available on certain boundaries, is another common class of
inverse problem.  These unknown boundary conditions can be
found if both temperature and heat flux are available on some
other, more accessible boundaries or at a finite number of points
within the domain.  When using a BEM algorithm, if at all four
vertices designated with subscripts 1, 2, 3, and 4 of a
quadrilateral computational grid cell the heat sources pi are
known, at two vertices both temperature and heat flux are
known, while at the remaining two vertices neither temperature
or heat flux is known, the boundary integral equation becomes
(Martin and Dulikravich, 1997)
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Notice that [h] and [g] matrices depend on geometric relations
and the configuration is known.  If all of the unknowns are
moved to the right-hand side, while all of the known thermal
quantities are moved to the left, the result is
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Since the entire right-hand side is known, it may be

reformulated as a vector of known quantities, {F}.  The left-
hand side remains in the form [A]{X}.  Additional equations
may be added to this equation set if, for example, temperature
measurements are known at certain locations within the domain.

In general, the geometric coefficient matrix [A] will be
non-square and highly ill conditioned.  Most matrix solvers will
not work well enough to produce a correct solution.  Singular
Value Decomposition (SVD) methods (Press et al., 1992), are
widely used in solving most linear least squares problems of
this type.  Thus, by using an SVD type algorithm it is possible
to solve for the unknown surface temperatures and heat fluxes
very accurately and non-iteratively.

2.2 Determination of Steady Convective Heat Transfer
Coefficient Distribution without CFD Computations

Accurate values of the convective heat transfer coefficients
are difficult to obtain experimentally, because their values
depend strongly on at least twelve variables or eight non-
dimensional groups.  Rather than trying to evaluate the surface
variation of the convective heat transfer coefficient it is possible
to treat the heat convection coefficient determination problem
as an ill-posed boundary value problem of pure heat conduction
in the solid in contact with the moving fluid.  Here, no thermal
data is assumed available on parts of the boundary exposed to a
moving fluid.  This approach is capable of utilizing over-
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determined thermal measurements involving temperatures and
heat fluxes on other boundaries or inside the solid where they
are accessible.

The equation for the heat flux from the Robin boundary
condition should be added to the linear BEM system governing
the heat conduction problem in the solid that is in contact with
the moving fluid.  The unknown temperatures are then factored
together with the other nodal temperatures appearing on the
left-hand side of the BEM matrix equation set.  After the ill-
conditioned coefficient matrix [A] has been inverted using the
SVD algorithm, the unknown boundary values of T and Q can

be obtained from { } [ ] { } F  A  X 1−= .  Once these thermal

boundary values are determined on the boundary, the
convective heat transfer coefficients can be determined from
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Here, ambT  is considered as known.  The computed

temperature field and the computed convective heat transfer
coefficients on the boundary indicate increase in accuracy with
the increased amount of over-specified data and the decrease in
distance, b, between the over-specified and unspecified
boundaries (Martin and Dulikravich, 1998).  When repeated for
a variety of practical Biot numbers (Bi = hconv b/k), this method
was found to be reliable, and very fast, allowing realistic values
of hconv to be predicted in a few seconds on a standard PC.

2.3 Determination of Unsteady Thermal Boundary
Conditions

In many problems involving unsteady cooling or heating of
arbitrarily shaped objects it is often desirable to maintain a
specified local cooling or heating rate in some parts of the solid
object.  The freezing of organs for transplant surgery is one
example of such an inverse problem.  This can be achieved by
determining the appropriate time-variation of temperature and
heat flux at every point of the walls of a cooling or heating
container that will maintain the desired cooling or heating rate
at the desired interior points.  The local surface temperature of
the cooling container should be continuously adjusted in time in
order to maintain the specified local prescribed cooling rates
throughout the object.  To implement this at every instant of
time, the container wall circumferential temperature variation
was approximated (Dulikravich, 1988) using a Chebyshev
polynomial in terms of the scaled circumferential angle.  The
coefficients of the polynomial were adjusted iteratively in order
to maintain the desired cooling rates inside the object.

The process starts by specifying an initial wall temperature
distribution and deducing the corresponding polynomial
coefficients. These will be the initial values for the coefficients.
Next, the transient temperature values are computed in the
entire domain subject to the initial wall temperature
distribution.  From this, the local cooling rates are computed at

a number of specified points inside the domain.  A normalized
cost function can then be formed as a sum of least squares of
deviations of the computed and the specified local cooling rates.
The new temperature distribution on the walls of the container
is determined by minimizing the cost function at the next time
step during the cooling process.  Thus, the desired cooling rates
are achieved throughout the object by determining the
polynomial coefficients representing the proper variation of
container wall temperatures at each instant of time.

2.4 Determination of Boundary Stresses and Deformations
An elastostatic problem is well-posed when the geometry

of the general multiply-connected object is known and either
displacement vectors, u, or surface traction vectors, p, are
specified everywhere on the surface of the object.  The
elastostatic problem becomes ill posed when either: a) a part of
the object's geometry is not known or b) when both u and p are
unknown on certain parts of the surface.  Both types of inverse
problems can be solved only if additional information is
provided.  This information should be in the form of over-
specified boundary conditions where both u and p are
simultaneously provided at least on certain surfaces of the body.
Using the BEM formulation, a system of algebraic equation can
be formed that is similar to Eq. 18 in the case of heat
conduction inverse boundary condition determination problems.
Notice that each of the entries in the [h] and [g] matrices is a
2x2 sub-matrix in the case of a two-dimensional elasticity.
Additional equations may be added to the equation set if u
measurements are known at locations within the solid in order
to enhance the accuracy of the inverse steady boundary
condition determination algorithm.  The equation system can be
rearranged similar to Eq. 19 and solved non-iteratively using an
SVD type algorithm (Martin et al., 1994).

3. SOURCES DETERMINATION
Many field quantities can be generated by either

continuously spatially varying or discretely distributed sources
of those field quantities.  Determination of these continuously
distributed or discretely distributed quantities is often of
significant practical interest.

3.1 Determination of Continuous Heat Source Distribution
A standard test case for any such inverse algorithm is

finding the internal heat generation function distribution when
provided with over-specified thermal boundary conditions.  We
used (Martin and Dulikravich, 1996) an annular disk geometry
with axisymmetric boundary conditions, Touter = Tinner = 0 and
a constant value of the heat source function.  This well-posed
problem has an analytic solution.  These analytical values of
heat fluxes were then used as the over-specified boundary
conditions on the outer and inner circular boundaries in order to
predict the value of the heat generation field.  When the annular
domain was discretized with quadrilateral cells
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circumferentially, having only one cell between the outer and
inner circular boundaries, the heat generation field was
predicted with an average error less than 0.01%.  Similar results
were found when the heat generation field was linearly varying
with radius.

But, when the domain was discretized with two or more
radial rows of quadrilateral cells, the results produced errors
that were, at worst, in error by about 30%.  This is because the
assembled BEM matrix had at least twice as many unknowns as
it had equations.  The results were significantly improved
whenever internal temperature measurements were included in
the analysis.  For example, when the domain was discretized
with two rows of quadrilateral cells, an addition of a single row
of nine known internal temperatures produced results which
averaged an error of less than 0.1%.

Further results have shown that whenever the temperature
field is entirely known everywhere in the domain, the resulting
solution matrix is both square and well conditioned.  After
inversion of this matrix, the unknown heat source vector can be
found with an accuracy comparable to the well-posed (forward)
problem, where this vector is known and temperature field is the
objective of the computation (Martin and Dulikravich, 1996).

3.2 Determination of Electric Dipoles in Electro-
Cardiography

It is important to recognize that inverse BEM formulation
is especially suitable for the detection of point-wise, isolated
sources like in the ill-conditioned inverse problem of electro-
cardiography (Bates, 1997).  The accuracy of a variety of the
existing techniques for inverse electro-cardiography is still very
low since these problems result in highly ill conditioned
systems of equations.  Concentric spheres with centrally located
multiple electric dipoles were used to simulate a heart and a
torso and to evaluate the accuracy of the inverse BEM
algorithm.  The objective was to determine the strength of each
of the dipoles that generates the measured electric potential on
the surface of the torso.  Results indicate that the inverse BEM
technique provides solutions of comparable or higher accuracy
with less computational time than other techniques (Bates,
1997).  But, they also show that equivalent cardiac source
models with large numbers of dipoles are still unreliable for
computation of the inverse problems of this type due to
uniqueness considerations.  That is, practically the same
distribution of the electric potential on the torso can be
generated by more than one possible combination of numbers,
strengths, and orientations of the electric dipoles in the heart.

4. PHYSICAL PROPERTY DETERMINATION
An increasingly important application of inverse

methodology is determination of physical properties (thermal
conductivity, electric conductivity, specific heat, thermal
diffusivity, viscosity, magnetic permitivity, etc.) of the media.
These properties could depend on certain field variables
(temperature, pressure, density, frequency, etc.).  Moreover,

standards and regulations require that certain physical
properties can be evaluated experimentally only by testing a
specifically shaped, sized, and otherwise prepared material
sample.  Obviously, many applications do not allow the
destruction of an object in order to extract such a sample.  Thus,
inverse determination of the physical properties is very popular
in the non-destructive evaluation (NDE) community.

4.1 Determination of Temperature-Dependent Thermal
Conductivity

This represents an inverse numerical procedure that differs
substantially from the typical iterative approaches.  It will be
assumed that measured values of heat fluxes (or convection heat
transfer coefficients) are available everywhere on the surface of
an arbitrarily shaped solid.  Kirchhoff’s transformation is then
used to convert the governing steady heat conduction equation
into a linear boundary value problem that can be solved for the
unknown Kirchhoff’s heat functions on the boundary using the
BEM.  Given several boundary temperature measurements,
these heat functions are then inverted to obtain thermal
conductivity at the points where the over-specified temperature
measurements were taken (Martin and Dulikravich, 1997).

The experimental part of this inverse method requires
thermocouples and heat flux probes placed only on the surface
of an arbitrarily shaped and sized specimen.  Thus, this method
is non-intrusive and directly applicable to field testing since
special test specimens do not need to be manufactured.  For
steady-state problems, only one of each measurement device is
needed for this methodology to work.  This method could still
use temperature measurements at isolated interior points if
additional accuracy is desired.  The method is inherently multi-
dimensional and allows for temperature gradients in the test
specimen.

The present method does not require that experimentally
measured surface temperatures must be in equal temperature
intervals.  The present method also allows that convective heat
transfer coefficients can be used instead of heat flux boundary
conditions.  This algorithm also accepts experimentally
measured temperatures having same value, but measured at
different boundary points.

Several different inversion procedures were attempted,
including regularization, finite differencing, and least squares
fitting with basis functions.  The program was very accurate
when the data was without error, and it did not excessively
amplify input temperature measurement errors when those
errors were less than 1-5% standard deviation.  The program
was found to be less sensitive to measurement errors in heat
fluxes than to errors in temperatures.  The accuracy of the
algorithm was greatly increased with the use of a priori
knowledge about the thermal conductivity basis functions.

It should be pointed out that in all applications and
formulations that are briefly outlined in this paper, the inverse
application of the BEM results in errors that are of the same
order of magnitude as the errors in the over-specified boundary
conditions (Martin and Dulikravich, 1996; 1997; 1999).
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5. SIMULTANEOUS SOLUTION OF THERMO-
ELASTICITY INVERSE PROBLEMS

The equations governing steady heat conduction and linear
elasticity can be discretized by using a Galerkin's finite element
method.  For inverse problems, it is possible after a series of
algebraic manipulations, to transform the original system of
equations into a system that enforces the over-specified
boundary conditions and includes the unknown boundary
conditions as a part of the unknown solution vector (Dennis and
Dulikravich, 1998).  The resulting systems of equations will
remain sparse, but will become unsymmetrical and possibly
rectangular depending on the ratio of the number of known to
unknown boundary conditions.

Three regularization methods were applied separately to
the solution of the systems of equations in attempts to increase
the method's tolerance for measurement errors in the over-
specified boundary conditions.

The first method of regularization uses a constant damping
parameter over the entire domain.  This method can be
considered the traditional Tikhonov method.  The penalty term
being minimized in this case is the square of the L_2 norm of
the solution vector. Minimizing this penalty term will ultimately
drive each component of the solution vector to zero, thus
completely destroying the real solution.

The second method of regularization uses a constant
damping parameter only for equations corresponding to the
unknown boundary values since the largest errors occur at the
boundaries where the temperatures, fluxes, stresses, and
deformations are unknown.

The third method uses Laplacian smoothing of only on the
boundaries where the boundary conditions are unknown.  A
penalty term could be constructed such that curvature of the
solution on the unspecified boundary is minimized along with
the residual.

In general, the resulting FEM systems for the inverse
thermo-elastic problems are sparse, non-symmetric, and often
rectangular rather than square.  These properties make the
process of finding a solution to the system very challenging.
Three approaches will be discussed here.

The first is to normalize the equations by multiplying both
sides by the matrix transpose and solve the resulting square
system with common sparse solvers.  The resulting normalized
system is less sparse than the original system, but it is square,
symmetric, and positive definite.  It is typically solved with a
direct method (Cholesky or LU factorization) or with an
iterative method (preconditioned Krylov subspace).
Disadvantages are computation expense of matrix
multiplication, the large in-core memory requirements, and the
round-off error incurred during the matrix multiplication.

A second approach is to use iterative methods suitable for
unsymmetrical and least square problems.  One such method is
the LSQR method, which is an extension of the well-known
conjugate gradient (CG) method.  The LSQR method and other
similar methods such as the conjugate gradient for least squares
(CGLS) solve the normalized system, but without explicit

matrix multiplication.  However, convergence rates of these
methods depend strongly on the condition number of the
normalized system.

The third approach is to use a non-iterative method for
non-symmetrical and least square problems such as QR
factorization or SVD.  However, sparse implementations of QR
or SVD solvers are needed to reduce the in-core memory
requirements for the inverse finite element problems.

All three sparse matrix solvers performed well for test
cases with relatively small number of variables.  The QR
factorization was found to provide the highest accuracy in the
shortest amount of computing time. However, it failed for larger
problems where the number of grid points was greater than
about 2000.  This is most likely due to the instability of the QR
algorithm when dealing with systems with high condition
numbers.  Applying small amounts of regularization to the
sparse matrix eliminated the instability.  The CG method
applied to the normalized equations worked well for problems
with less than 100 nodes.  When regularization was applied to
the sparse matrix, the CG convergence improved significantly,
but the QR factorization was still much faster.  The CGLS and
LSQR methods were found to be slow for problems with more
than 500 nodes, but were able to provide better solutions than
those obtained with the CG (Dennis and Dulikravich, 1998).

6. SUMMARY AND RECOMMENDATIONS
We have sketched a number of concepts for achieving a

solution of seemingly unsolvable (ill-posed) problems.  We
have often referred to the use of BEM because of its unique
abilities to propagate the information from the boundaries
throughout the domain without the need for iterations.
However, FEM is expected to become a method of choice for
realistic multidisciplinary three-dimensional problems.  The
pressing issue is further improvements in computational
efficiency, accuracy, and especially reliability, are warranted for
the matrix solution algorithms (especially for sparse matrices
resulting from FEM) dealing with highly singular matrices.  The
future research on methods for the solution of inverse problems
should focus on those methods that are applicable to arbitrary
multiply connected three-dimensional domains, unsteady
problems, and especially multidisciplinary problems.
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