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ABSTRACT

A method has been developed for the non-iterative
determination of arbitrary temperature-dependence of heat
conductivity. The method is non-intrusive and is based on a
boundary element formulation for the solution of an over-
specified boundary value problem. The procedure is valid for
arbitrary two- and three-dimensional solid objects. Given heat
flux measurements taken everywhere on the surface and a range
of temperature measurements specified at a small number of
isolated surface points, this method can predict the variation of
thermal conductivity over the same range of temperatures. The
non-iterative solution procedure was compared with the more
common method of least squares minimization. The present
approach was found to be much more efficient, and it could
obtain a solution where least squares minimization terminated in
a local minimum. The effect of measurement errors has been
evaluated and found to be comparable to those resulting from the
iterative approach.

NOMENCLATURE

F = objective function

[G] = geometric coefficient matrix
[H] = geometric coefficient matrix
k = thermal conductivity

Q = heat flux

q = Kirchhoff’s heat flux

{Q} = vector of Kirchhoff’s heat fluxes
R = random number

T = temperature

u = Kirchhoff’s heat function
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{U} = vector of Kirchhoff’s heat functions
z = coordinate
Greek letters
v = coefficient of steepness of k-T curve
B = coefficient of non-linearity of k-T curve
r = boundary or surface of an object
o = standard deviation
Superscripts
meas = measured or specified value
c = computed or predicted value
Subscripts
an = analytical
cold = cold boundary
- hot = hot boundary
max = maximum value
min = minimum value
0 = reference value
1,2 = end points of an interval
1. INTRODUCTION
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In many practical applications it would be highly desirable to
evaluate the temperature-dependence of thermal properties of a
material so that a heating or cooling pattern can be adjusted
accordingly to provide the desired temperature field throughout
the object Similarly, since thermal conductivity and specific heat
are practically impossible to measure directly within the thin,
mushy region of a solidifying or melting medium, it would
valuable to develop another approach to determine variation of
these physical properties with temperature. Often, it is very



impractical and even impossible to take a part of an existing
object in order to create a properly sized and shaped laboratory
test specimen. Thus, the non-intrusive and non-destructive
character of any method for the determination of temperature-
dependent thermal properties are essential. Thermal tomography
and inverse thermal design techniques offer attractive solution
procedures for these types of problems.

Iterative solution procedures are the most common method of
solving inverse parameter identification problems. They are
often classified as inverse heat conduction problems, because the
nature of these problems has to do with the iterative minimization
of the difference between the computed and measured
temperatures and/or heat fluxes at the boundary, or at a finite
number of interior thermocouple points. Orlande and Ozisik
(1994) have noted that most work on parameter identification
problems involves the use of finite dimensional minimization
techniques. Gradient type minimization algorithms such as the
steepest descent and the conjugate gradient method
(Vanderplaats, 1984) have been employed to minimize the
difference between the computed and measured temperatures at a
finite number of points within the solid or on the boundary of the
solid. Methods involving the adjoint equation have been used to
obtain fairly accurate solutions using a temperature history at a
single measurement point (Dantas and Orlande, 1996).
Nevertheless, this approach, like any minimization formulation,
seems to be computationally intensive (Blackwell and Eldred,
1997) and prone to local minima.

In this work, we are presenting a formulation and a solution
procedure which differs substantially from the iterative
approaches based on those developed by Artyukhin (1993) ant
others. We start by assuming that measured values of heat fluxes
are available everywhere on the surface of an arbitrarily shaped
and sized two-dimensional or three-dimensional singly or
multiply-connected solid. The Boundary Element Method (BEM)
is then used to solve the linearized steady-state heat conduction
equation for the transformation of the Kirchhoff heat function on
the boundary. Given several surface temperature measurements,
these heat functions are converted to heat conductivities at the
points where the temperature measurements are taken. Thus, we
can obtain the thermal conductivity versus temperature function
over a range of temperatures which are measured by isolated
thermocouple readings at the boundary. The approach is non-
iterative and robust. Its solution requires only a couple of
seconds on a personal computer.

2. ANALYSIS

The governing equation for steady-state heat conduction in an
isotropic medium  with  temperature-dependent  thermal
conductivity is an elliptic non-linear partial differential equation
of the type

ve[k(T)vT] =0 M)

This equation can be linearized by the application of
Kirchhoff's transformation which defines the heat function, u, so
that

u=f——=ar )

Hence

&)

Thus, Kirchhoff’s transform converts the governing steady-
state heat conduction equation into Laplace's equation for the
heat function, u.

vii=o 0

Dirichlet boundary conditions can also be transformed by
applying Kirchhoffs transformation.  Neumann boundary
conditions can be directly related to the heat flux; that is,

&)

When Robin-type boundary conditions are applied, the BEM
system becomes non-linear. Consequently, an iterative solution
procedure, such as the Newton-Raphson method, would be
required.

2.1 Solution to the Direct Problem Using the BEM

The Boundary Element Method has a significant advantage
when solving linear and quasi-linear, steady-state boundary value
problems. This has been demonstrated by its effectiveness when
ill-posed boundary conditions are prescribed at the boundary or
when temperature measurements are enforced at isolated interior
points (Martin & Dulikravich, 1996; Dulikravich and Martin,
1996). The BEM system for steady-state heat conduction can be
written as a system of boundary integral equations (BIE)
(Brebbia & Dominguez, 1989).

c(x)u(x) + l{qt(x,i)u(é)dr = l{u‘(x,é)q(é)dr (6)

This BIE is valid for both two- and three-dimensional
configurations. In this equation, u*(x,£) is the fundamental
Green’s function solution of the adjoint partial differential
equation. The functions q and q* are the derivatives in the
direction of the outward unit normal to the boundary I acting
upon the heat function, u, and Green’s function, u*, respectively.
The boundary is then discretized with Ny elements connected
between Ngy boundary nodes.

Although the entire procedure is equally valid in three
dimensions, for the sake of simplicity we will demonstrate it in a
two-dimensional problem only. The variation of u and q over



cach flat boundary element (segment) was assumed to be linear
and isoparametric. The integration over each boundary element
was carried out using a numerical integration scheme, such as
Gaussian quadrature. In the case when a singularity exists at one
of the end points of a boundary element, analytical integration
was performed. The nodal quantities of u and q were factored
into the following matrix form.

[H){U} = [G{Q} M

3. ITERATIVE DETERMINATION OF k-T CURVE

We have first attempted a solution procedure for determining
the conductivity versus temperature (k-T) curves which was
based upon the usual iterative minimization technique where the
difference between the computed and measured values of
temperatures and heat fluxes was formulated into a single scalar
function.

F(k(T)):JZ [(Tmeas -T¢ )2 +(Q“""as -Q° )2 ] (8)

This function was then iteratively minimized using a hybrid
constrained optimization scheme (Foster et al., 1996) involving
the DFP gradient search method (Fletcher and Powell, 1963), a
genetic algorithm (Goldberg, 1989), a Nelder-Mead simplex
method (Nelder-Mead, 1965) and a simulated annealing
algorithm (Press, et al., 1984). For arbitrary variations of thermal
conductivity, a parametric representation of the conductivity
versus temperature curve was modeled using B-splines (Barsky,
1988) which are piecewise, second-order continuous and are
closely related to the more common v-splines, B-splines and
Bernstein polynomials. The design variables of the minimization
process were the coordinates of the control vertices of the f-
spline. These vertices were an ordered sequence of points,
generally not lying on the k-T curve, but instead forming a
control polygon. The use of B-splines allows for more precise
control of the k-T curve since local variations in the temperature
produced only local variations in the conductivity around that
temperature.

An initial guess to the k-T variation was required to start the
optimization process. Subsequent iterations with the hybrid
optimization algorithm perturbed the set of B-spline vertices, thus
changing the temperature-dependency of conductivity. The
resulting temperature field was analyzed for each perturbation
using the BEM until a conductivity function was found that
minimized the objective function, F. Although this iterative
technique was successful in determining the temperature-
dependency of conductivity, it was very slow and less than
robust. When the target k-T variation was irregular, and when
bad initial guesses were used, the k-T curve needed to be
constrained to avoid excessive oscillations. Even with the
smoothing of the conductivity function and the known
capabilities of the genetic and simulated annealing algorithms to
avoid local minimums, the program often terminated in a local
minimum. Similar difficulties with the iterative approach have
been reported by other researchers (Blackwell and Eldred, 1997).

3.1 Example of Iterative Determination of k-T Curve

As an example of the iterative procedure, the boundary of a
rectangular plate test specimen 10.0 cm wide by 1.0 em long was
discretized with 24 linear boundary elements. The ends of the
plate were kept at constant temperatures of 100.0 °C and 0.0 °C
and the side walls were considered to be adiabatic. Temperatures
and heat fluxes were taken from the analytical solution
(Chapman, 1960)

B 2 B o B
;T +T= Thot+‘2‘Thot - 1+;(Thot+Tcold)

(Zhot - Zcold)
X7+
(Zcold - Zhot)

)
(Thot - cold)

where the conductivity versus temperature was a linear function.

k(1) = k0(1+B(T-T0)) (10)

The results of the BEM analysis using Kirchhoff's
transformation compared very well with the analytical solution,
averaging an error of less than 0.1% for a wide range of non-
linearity parameters C = kg B (Dulikravich and Martin, 1996).
The three-dimensional BEM analysis averaged an error of less
than 0.5%.

The inverse (ill-posed) problem was formulated by over-
specifying the entire boundary of the rectangular plate with both
temperature and heat flux, while the conductivity function was
treated as unknown. The iterative procedure provided good
results for cases where the initial guess for the k-T curve was not
far from the correct (target) k-T curve. The k-T curve often
became very noisy when the optimization started with a poor
initial guess or when the target k-T curve was varying
significantly. It was typical for the entire iterative algorithm to
stall in a local minimum, where the converged k-T curve was far
from the target curve. For example, when a constant conductivity
k = ko was used for the initial guess, Figure 1 shows a typical
convergence history of the objective function for the simple two-
dimensional problem using the P-splines. Notice that the
convergence rate is very slow and terminates in a local minimum.
In many cases the B-splines produced a tangled k-T curve which
caused the failure to achieve the global minimum objective
function value of zero.

Actually, the stalling of the program in a local minimum was
not due exclusively to the freedom of the B-splines. To illustrate
this, the B-splines were removed and the k-T curve was allowed
only to vary linearly with different values of B and Tg. Thus, the
optimization program needed only to minimize a scalar function
of two design variables. The program was again extremely slow
in minimizing the objective function and it eventually stalled in a
local minimum.

The iterative solution procedure for determining k-T curves
was found to produce accurate predictions of the temperature-
dependency of thermal conductivity given over-specified
temperature and heat flux boundary conditions on the surface of



solid objects. Unfortunately, many times the program converged
in a local minimum when the initial guess to the k-T curve was a
poor estimate of the actual k-T curve. In conclusion, although
this approach can be entirely non-intrusive, the authors have
concluded that this style of iterative inverse parameter
identification is not advisable.

4. NON-ITERATIVE SOLUTION METHOD

In light of the iterative results, the authors have deemed that a
more effective solution strategy must be sought out. It was found
that a direct, non-iterative and non-intrusive solution strategy is
possible using the Kirchhoff transformation and the BEM. This
method is valid for arbitrary two- and three-dimensional solid
objects. If heat fluxes are known over the entire boundary via
measurements taken on the surface of the object, the BEM can be
used to solve for the transform of the Kirchhoff heat functions on
the boundary. For example, given heat fluxes known on the
entire boundary, the linear BEM system appears as follows.

[HKU}=[GKQ}={F} (1)

In this linear algebraic system, the matrices [H} and [G] are
geometrically-dependent and are known. With the application of
the heat flux boundary conditions, the matrix [G] can be
multiplied by the vector {Q} to form a vector of known
quantities {F}. The matrix [H] can be inverted using either
Gaussian elimination or Singular Value Decomposition (SVD)
(Press et al., 1987) so that the values of {U} can be obtained at
each boundary node. The matrix [H] appears to be well
conditioned so that regularization methods are not required.

Now that the nodal boundary values of {U} are known, the
entire field of heat functions is known. Values of the Kirchhoff
heat function, u, can be obtained in a post-processing fashion at
any interior point. Since the boundary-value problem is over-
specified, a number of temperature measurements, taken either
non-intrusively on the boundary, or intrusively, at isolated
interior points, can be used to convert the heat functions, u, into
the corresponding values of thermal conductivity, k. Thus,
knowing both the value of u and T at the same point, we can
determine the conductivity, k, at that point.

The first difficulty which must be overcome is the fact that the
solution to the analysis problem for the heat functions {U} is
non-unique when only Neumann-type (heat flux) boundary
conditions are specified everywhere over the boundary. This is
due to the existence of an arbitrary constant in the solution. This
constant can be determined by specifying at least one Dirichlet
boundary condition. Since the conductivity function is unknown,
we can specify a single Dirichlet condition by modifying the
Kirchhoff’s transformation so that it reads

T k(1)
u=up+ [ —dT (12)
T ko

Here, kg is a reference conductivity value and Ty is the
minimum temperature reading. We can determine the value of
uy, which occurs at the minimum temperature by taking the limit.

lim u=T (13)
T-T

Thus, uy = T makes one Dirichlet boundary condition. Now,
the BEM can be used to solve for the values of the heat function
{U} over the entire boundary except at the coordinate of the
minimum temperature reading. At this point, the normal

derivative q = (au / an)1 is computed since T| is specified

there.

Given the value of the heat function and temperature at the
same point on the boundary, the heat conductivity can be
determined at that point via the inverse Kirchhoff’s transform
which can be evaluated numerically using a variety of integration
schemes. The trapezoid rule was our first method of choice.

T ()
un=u1+fk—‘dT
T1 ko
N (149)
k., +k -1
O VO (e
1 n=(n nl) 2k

The values of temperature Ty, are known at a finite number of
locations. At these points, the values of the heat function up are
also known. Therefore, the values of conductivity kp at these
points can be determined using the Kirchhoff’s transformation.
The inverse of the Kirchhoff’s transformation can be expressed as
a system of algebraic equations represented in the following
matrix form

[CH{K/ko}={U-T } (15)

where the elements of the lower-triangular [C] matrix have been
determined as follows.

Ty - T
cy = % when j= 1 (16)

T. _’1".

17 -1
Ci=—""T—" wheni=j 17

2

T; T

j+1 j=1
Cjj = ‘2— when j <1 (18)

By inverting the [C] matrix, the values of the thermal
conductivity can be obtained at the same points where the
temperature measurements were taken. The values of the
temperature must be sorted in ascending order {T{,T3,...,TN}
and identical temperature readings must be discarded. In
addition, for better accuracy, the temperature measurements
should be equally distributed in the temperature range. That is,



the difference between two temperature readings Ty and T4
should be approximately the same. This system represents N-1
equations for N unknowns. The additional equation arises from
the knowledge of the conductivity at the minimum temperature
point. At this point, u = T1, the following limit also applies.

du ar
lim —={— 19)
T-T on on 1

Since, at this point, we know both the value of the heat flux,
Qj, from a measurement, and the normal derivative of the heat

function, q = (Bu / 6n)l = (61‘ / 6n)l from the BEM solution,

the coefficient of heat conductivity at the point of minimum
temperature is

Q
a1

ky = (20)

The trapezoid rule provided good results, but the predicted
values of the conductivity were often oscillatory. Simpson’s rule
of numerical integration was attempted to remove this oscillatory
behavior. Specifically, we used

T k(1)
Up =uj + Jj —=dt1
T ko
N k, +4k +k
n n-—1 n—2
=T] + Z (Tn —Tn_z)( 6k )
n= 0
forn=3,5,7,....N-1. 210
K, -li
u, =Ty +\THh = T4y )| —
N

N kp +4k,_1 +kp_o
+ X (Tn - n-Z)(
n=4 6k0

forn=4,6,8,..,N. (22)

Although the Simpson’s rule removed the oscillatory behavior,
the k-T curve which it predicted often was very incorrect at the
endpoints of the measured temperature range. Instead, very good
results were obtained by simply averaging the results predicted
by the trapezoid rule alone.

4.1 Regularization Approaches

Regularization was required to properly invert the [C] matrix
when random error was introduced into the temperature
measurements. In order to evaluate the sensitivity of the
algorithm to errors in the measurement data, a random error
based on the Gaussian probability density distribution was added

to the temperature measurements. A random number 0 < R < 1
was generated using a standard utility subroutine. The desired
variance g2 was specified and error was added to the analytical
temperature data points Typ.

Ta =Ty £ —2(1'2 InR (23)

The truncated Singular Value Decomposition (SVD) technique
(Press et al., 1987) was initially employed to invert the €]
matrix resulting in

{k/ko} =[E] diag(—l—J ([D]T{U—Tl}) 24)

w

m
where
wyp 0 0
[c]=[p}] o . o [E]. 5)
0 0 WN

In order to determine which singular values were to be
truncated, we chose a parameter 1 as a singularity threshold. Any
singular value whose ratio with the largest singular value was less
than this singularity threshold was zeroed out. The zeroing of a
small singular value corresponds to throwing away one linear
combination from the set of equations that is corrupted by round-
off error. The choice of T was based upon the information about
the uncertainty in the BEM matrix computation, the machine's
floating point precision, and the standard deviation of the
measurement errors in the boundary condition data. In order to
zero out a singular value, the associated 1/wj value was replaced
by zero.

The predicted values of thermal conductivity at the discrete
temperature measurements were improved by using a different
type of regularization scheme.  Tikhonov’s regularization
(Tikhonov & Arsenin, 1977) is another type of single-parameter
minimization where the solution vector {K/kg} minimizes the
weighted sum of the norm of the error vector. A minimum error
norm is found by differentiating this equation with respect to
each component of the unknown vector {K/kg} and setting the
result equal to zero. After substituting the singular value
decomposition and solving for the unknown vector, the resulting
formulation is as follows,

(o} = [EX(wITtwl o)) [wI[o{u -7,

(26)

where [I] is the identity matrix. Tikhonov’s regularization is a
generalization of least-squares truncation, but instead of simply
climinating terms associated with small singular values, they are
weighted by a factor (1 + A/w2).



4.2 Results for a Rectangular Plate

Although the non-iterative BEM approach with the Kirchhoff’s
transform is directly applicable to three-dimensional problems,
for the sake of simplicity we will demonstrate this method on a
two-dimensional, rectangular plate test specimen 10.0 cm wide
by 1.0 cm long. The four sides were discretized with 24 linear
boundary elements; ten on each of the horizontal walls and two
on each of the vertical walls. Figure 2 illustrates the geometry of
the numerical test specimen. The ends of the plate were kept at
constant temperatures of 100.0 ©C and 0.0 ©C and the side walls
were considered to be adiabatic. Two different variations of the
conductivity versus temperature function were used; the linear
function described previously (Eq. 10) and an arctangent function
of the type

1 1
k(T) = ;(1 3 —_— ;(1 +E)K max @7
where
k k.. T, + T.;
& _ max min arctan 8 ( max mln) (28)
27 2

Here, 8 is a parameter which sets the slope of the jump in
arctangent k-T curve.

The heat fluxes that were supplied as boundary conditions for
the BEM solution of Laplace’s equation were taken from the
well-posed BEM solution where k(T) was known. Temperatures
were also taken from the results of the well-posed problem for the
over-specified temperature measurements.

4.2.1 Linear Conductivity Variation. The actual variation
of conductivity versus temperature was linear between the values
of k(T =0 9C) = 1.0 W/m°C and k(T = 100 °C) = 6.0 W/m OC.
The top and bottom walls of the rectangular plate were specified
to be adiabatic (Q = 0). The right and left end walls were
specified with the heat flux taken from the analytical solution (Q
= +/- 35 W/m2). The BEM solved for the Kirchhoff’s heat
functions at each of the boundary nodes. These heat functions
were converted into values of thermal conductivity at the nodes
where the temperatures from the analytical solution were
specified. Figure 3 shows the non-iteratively predicted values of
thermal conductivity versus temperature. The average error in
predicted conductivity from the inverse BEM without input
measurement errors was less than 0.1%.  Errors in the
temperature measurements were then simulated by adding
standard deviations of 0.1 ©C and 1.0 ©C. Figure 4 shows that
the computed k-T curve was very good when the temperature
measurements were accurate to within 3 significant figures.

4.2.2 Conductivity With Steep Jump. Next, the actual
variation of thermal conductivity versus temperature was
described by the arctangent function (Eqs. 27 and 28). The top
and bottom walls of the rectangular plate were specified to be
adiabatic and the right and left walls were specified with the heat

flux taken from the well-posed BEM solution (Q =+/-15 W/m?2).
The temperature measurements were taken from the well-posed
BEM solution and prescribed to the program with varying
degrees of error (¢ = 0.0, 0.1 and 1.0 °C). Figures 4 and 5 show
the computed k-T curves when & = 0.1 and & =1.0 in equation
(28), respectively. Again, the results are very good when the
input temperature measurements have errors with a standard
deviation o of less than 0.10C.

5. SENSITIVITY TO ERRORS IN HEAT FLUX
MEASUREMENTS

In order to evaluate sensitivity of this non-iterative technique
to errors in the measured values of surface heat fluxes, we have
introduced different levels of random error in the surface heat
fluxes for the test case with linear conductivity variation
described above. Specifically, the exact value of constant heat
flux on the two opposite ends of the square plate were Q = +/- 35
W/m2. Random errors of Q were introduced that had varying
degrees of standard deviation (¢ = 0.0, 0.1, 1.0, and 3.5 W m'2).
The resulting values of temperature-dependent thermal
conductivity are shown in Figure 8. By comparing Figures 3 and
8 it may be concluded that this non-iterative inverse methodology
is less sensitive to measurement errors of heat fluxes than it is to
measurement errors in surface temperatures.

6. CONCLUSIONS

The BEM has been used to non-iteratively predict the
temperature variation of thermal conductivity given over-
specified thermal boundary conditions. The procedure is entirely
non-intrusive and non-destructive. It requires the knowledge of
the heat flux over the entire surface of an arbitrarily-shaped two-
or three-dimensional solid object.  Steady-state temperature
measurements are also required on the over-specified part of the
surface of the solid. The algorithm can rapidly predict the values
of the thermal conductivity that correspond to the measured
temperatures.  The non-iterative inversion of the inverse
Kirchhoff’s transformation is very accurate when the errors in the
surface temperature measurements are less than 0.1% of the
maximum reading. The accuracy of the algorithm is improved
when the temperatures are evenly distributed, that is, when the
difference between two thermocouple readings sorted in an
ascending order are approximately equal. The non-iterative
solution procedure was compared to the more common iterative
minimization techniques. The non-iterative BEM approach was
found to be much faster, as well as being more reliable, than the
iterative approach. The entire non-iterative inverse algorithm
required only several seconds on a personal computer for test
cases shown.
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Figure 1. Convergence history of the objective function for
the iterative method of predicting temperature-dependency of
thermal conductivity.
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Figure 3.  Variation of the thermal conductivity versus

temperature for different levels of measurement error in surface
temperature. The BEM results are compared to the analytical
solution where the conductivity versus temperature function is
linear and 8 = 0.05 ©C-1, Tg =0 9C and kg = 1.0 W/mOC.

20

-3

BEM. 3gma~0 0 C
BEM. sigma=0 1 C
BEM. sigma«10C
ANALYTIC

>
lODD

CONDUCTIVITY (Wim C)
-

LT L .

40 60
TEMPERATURE (Celsius)

80

Figure 4.  Variation of the thermal conductivity versus
temperature for different levels of measurement error. The BEM
results are compared to the analytical solution where the
conductivity versus temperature function was an arctangent with
5=0.10C-1. An example with a small number of surface heat
flux measurements.
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Figure 5.  Variation of the thermal conductivity versus

temperature for different levels of measurement error. The BEM
results are compared to the analytical solution where the
conductivity versus temperature function was an arctangent with
8 = 1.0 0C-1. An example with a small number of surface heat

flux measurements.
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Figure 6.  Variation of the thermal conductivity versus

temperature for different levels of measurement error. The BEM
results are compared to the analytical solution where the
conductivity versus temperature function was an arctangent with
8 =0.10C-1. An example with a large number of surface heat

flux measurements.
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Figure 7. Variation of the thermal conductivity versus

temperature for different levels of measurement error. The BEM
results are compared to the analytical solution where the
conductivity versus temperature function was an arctangent with
8 = 1.0 0C-1. An example with a large number of surface heat
flux measurements.
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Figure 8.  Variation of the thermal conductivity versus

temperature for different levels of measurement error in heat
fluxes. The BEM results are compared to the analytical solution
where the conductivity versus temperature function is linear and
B =0.059C-1, Tp = 0 0C, kg = 1.0 W/mOC and exact Q = +/-35
W m-2,



