BETECH '97 - 9th International Conference on Boundary Element Technology
Editor: J. Frankel, Knoxville, TN, April 9-11, 1997

Inverse determination of boundary conditions in

multi-domain heat transfer problems

T. J. Martin & G. S. Dulikravich

Department of Aerospace Engineering, Pennsylvania State
University

University Park, PA 16802, U.S.A.

Email: tmartin@vn.nas.nasa.gov

Abstract

This paper demonstrates the capabilities of the Boundary Element Method (BEM) and the
Boundary/Domain Integral Method (BDIM) in determining boundary conditions in multi-
domain problems involving heat conduction and linear heat conduction/convection. The effect
of the conductivity ratios between muitiple regions is examined and it was found that the
condition number of the solution matrix increases with an increasing conductivity ratio. The
BDIM was also used to solve the thermal energy equation in a fluid given a known velocity
and pressure field. An iterative boundary condition correction procedure for exit thermal
boundary conditions in computational fluid dynamics analysis is discussed. A conjugate
conduction/convection heat transfer problem was also formulated and demonstrated using the
BDIM. The BDIM is fast and non-iterative. It does not require discretization within solid
regions and the solid/fluid coupling of the heat transfer is strongly implicit.

1 Introduction

A well-posed boundary value problem is constructed using boundary data
measured at a finite number of locations over every boundary of the multi-
dimensional domain. If the domain conatains sources, their magnitudes and
locations should be known everywhere in the domain.  Nevertheless,
measurements and continuous monitoring of the boundary data and internal
sources in the entire domain are often impractical because of the intrusive nature
of the large number of sensors. Using sensors may be even impossible to
achieve in practice because of the highly volatile environment on certain
boundaries. The placement of thermal sensors may also be impossible because
of the prohibitively small size of the domain. Thus, in many cases, we are forced
to solve an ill-posed boundary value problem where no data is available on
certain surfaces. Ill-posed problems involve the determination of unknown



boundary conditions on inaccessible boundaries using interior measurements and
over-determined measurements on accessible boundaries.

2 Steady inverse heat conduction using the BEM

Inverse heat conduction problems (IHCP) represent a subclass of ill-posed
problems which have been extensively investigated. The unsteady IHCP
involves estimation of the unsteady boundary heat fluxes utilizing measured
interior temperature histories. Measurement data errors, as well as round-off
errors, are amplified by the typical iterative unsteady THCP algorithms as pointed
out by Beck et al.". This error introduced into the algorithm, either by round-off,
discretization, or in the measurement data, is magnified as the solution proceeds.

To date, many of the unsteady IHCP solutions were performed for specific
geometries and cannot be readily extended to complex geometries. Another
basic concern is that relatively few of the IHCP techniques used in engineering
provide a quantitative method for determining what effect their smoothing
operations have on the actual heat conduction physics.

A simple modification to the Boundary Element Method (BEM) has been
found to be a very powerful alternative to the more common unsteady IHCP
methodologies by solving the steady IHCP. The BEM has been used to solve
many subclasses of ill-posed heat conduction problems for multi-dimensional,
multiply-connected domains, including regions with different temperature-
dependent material properties. Steady heat conduction is governed by

Ve(kVT)=0

where k is the coefficient of heat conductivity, T is the temperature, and V is
the spatial differentiation operator. Kirchhoff’s transformation linearizes this
equation and produces Laplace’s equation for the heat function, u.

The discretized boundary integral equation (BIE) of the steady heat
conduction system is normally written in the following matrix form (Brebbia &
Dominguez’).

[H]{U} = [GH{Q}

where each matrix has as many rows and columns as there are boundary nodes.
For two-dimensional problems the entire boundary contour is discretized into N
boundary elements connected at their endpoints between the same number of
boundary nodes. In order to solve this set, all of the unknowns will be collected



on the left-hand side, while all of the knowns are assembled on the right. Each
coefficient matrix may be multiplied by the vector of known boundary conditions
to form a vector of knowns {F}. The lefi-hand side remains in the form [A]{X}.
Also, additional equations may be added to the equation set if, for example,
temperature or temperature gradient measurements are known at certain
locations within the domain. With well-posed boundary conditions, the BEM
produces a solution matrix which can be solved by a Gaussian elimination or LU
decomposition matrix solver. When an ill-posed problem is encountered, the
matrix generally becomes highly ill-conditioned and non-square. Most matrix
solvers will not work well enough to produce a correct solution of the ill-
conditioned algebraic system.

Truncated singular value decomposition (SVD) methods (Press et al.”) can be
used to obtain a solution to a highly ill-conditioned system. The approach is
somewhat similar, at least in theory, to selectively discarding eigenvalues and
eigenvectors of a particular system of equations that tends to magnify errors.
The singular values are the eigenvalues of the square of the matrix [A]'[A]. For
a well-conditioned matrix, these values will be roughly of the same order of
magnitude. As the matrix becomes more ill-conditioned, these values become
more dispersed. Eliminating very small singular values has the effect of
removing those algebraic terms that, because they are dominated by noise and
round-off error, produce the oscillating solution vector.

In order to determine which singular values are to be truncated, we must
choose a parameter T as a singularity threshold. Any singular value whose ratio
with the largest singular value is less than this singularity threshold is zeroed out.
The zeroing of a small singular value corresponds to throwing away one linear
combination from the set of equations that is completely corrupted by round-off
error. The choice of 7 is based upon the information about the uncertainty in the
BEM matrix computation, the machine's floating point precision, and the
standard deviation of the measurement errors in the boundary condition data.
There is a range of threshold values where the algorithm will produce a correct
solution (Martin & Dulikravich®, Dulikravich & Martin®).

2.1 Spherical cavity within a sphere

The inverse BEM was compared to the analytic solution for muitiple
concentrically-located spherical regions (Dulikravich & Martin’). Consider an
axisymmetric solution for the temperature distribution in a spherical domain with
a concentrically located spherical cavity. Two concentrically-located spherical
shells were analyzed. The outermost spherical surface had a non-dimensional
radius of 1.2. The interface spherical surface between the two regions had a
radius of 0.9 and the inner spherical cavity surface had a radius of 0.5. The
outer spherical region was given a non-dimensional coefficient of thermal
conductivity of 1.0 and the non-dimensional conductivity of the inner spherical
region was varied from 1 to 100. The outer surface was over-specified with a



non-dimensional temperature u=1.0 and a non-dimensional heat flux from the
analytic solution. Nothing was specified on the cavity surface.

Isoparametric bilinear quadrilateral panels were used to discretize the
spherical boundaries. Initially, the spheres were discretized with a longitudinal-
latitudinal surface grid at various levels of refinements, including 8, 10, 12 and
16 boundary elements (panels), both longitudinally and latitudinally, on the outer
and inner spherical boundary. The analysis version of the BEM solved for the
fluxes on the outer and inner spherical boundaries. A biased error of 2% was
concentrated at the poles for all levels of grid refinement.
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Figure 1: Radial temperature variations for the well-posed and ill-posed BEM
solution. Results along radial lines and equatorial lines are compared to the
analytic solution for a single region (left) and two concentric regions with
conductivity ratio 1:5 (right).

The steady IHCP was then formulated by over-specifying the outer spherical
boundary (applying both temperature and flux from the analytic solution), while
not providing any thermal boundary conditions on the inner (cavity) spherical
boundary. The BEM predicted temperatures and heat fluxes on the spherical
cavity surface. The inverse results had errors of up to 16% in temperature and
3% in heat flux at the poles (see Figure 1). The error of the inverse problem was
the greatest at the poles because of the type of discretization used. The
quadrilateral boundary elements near the poles are nearly triangular in shape and,
therefore, behave very poorly in these regions. The isoparametric shape
functions become distorted and it is difficult to carry out the integration over
these polar surface integrals properly due to the nature of the singular
fundamental solution.

A series of numerical tests analyzed the two-domain spherical geometry for
conductivity ratios between 1:1 to 1:100. The variance in the computed
temperatures on the inner spherical surface were obtained for a range of SVD
singularity threshold parameters in order to find ton. It became evident that the



conductivity ratio had no effect on the value of T, which minimized the output
variances. On the other hand, the error in the temperature field predicted by the
inverse BEM worsened when a larger conductivity ratio was introduced. It was
found that the condition number of the solution matrix becomes larger with
larger disparities of thermal conductivity (Figure 1).

3 Exit boundary conditions in fluid flow

The BDIM can be used to solve the thermal energy equation in an
incompressible flow-field where the velocity field is decoupled from the
computed temperature field T.

pcve VT = Ve (kVT) + @

Here, ® is the viscous dissipation function for a known velocity field v, p is the
fluid density, c is the specific heat, and p is the pressure. The steady-state BDIE
of the viscous flow thermal energy equation has been derived.
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Note that this equation is different from the form used by Shi®. Here, the
integration over the boundary I' and domain Q are with respect to the source
variable £. The variable u is the Kirchhoff's transform of the temperature T,
q=0u/0n, and 0 is the geometric internal angle at the boundary node and is
equal to 2m inside a two-dimensional domain. The function u* is the

fundamental solution of Poisson’s equation as the reference velocity V — 0.
For high Peclet numbers, the convection/diffusion fundamental solution is
recommended. The two- and three-dimensional fundamental solutions were
given by Carslaw and Yaeger’.

1 Vet (Vr)
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where the thermal diffusivity @ = k/ pc and the Peclet number is Pe= VL/ .

The use of this system alone does not offer a realistic solution in most
practical situations. For example, the temperature field will affect the velocity




field in compressible flow situations, in the case where the thermal buoyancy is
not negligible, and where viscosity is a function of temperature. In these
instances, an iterative procedure can be implemented. It is sufficient to make an
initial guess to the flow-field exit temperature boundary conditions and solve the
full system of Navier-Stokes equations in order to obtain the velocity and
pressure fields. Then, the steady BDIM for the energy equation uses this
velocity to non-iteratively solve for the temperature field in the entire flow-field
with the flow exit boundary partially or entirely unspecified. In order to
compensate for the missing information, additional boundary conditions of heat
flux can be over-specified at the flow-field inlet. The BDIM will compute new
temperatures on the exit boundary which can be iteratively applied to the fluid
flow analysis.

3.1 Poiseuille flow between parallel plates

The concept will be demonstrated on a steady, incompressible, laminar flow field
with an unknown exit thermal boundary condition. Imagine two infinite flat
plates with a fluid in the slot subject to a constant axial pressure gradient. In the
fully-developed region, the velocity profile solution is

, _—h?dp 1_(1)2
o 2u dx h

where p is the dynamic viscosity coefficient.

The energy equation can be solved for the temperature field given the entire
velocity field in the fluid flow. The top and bottom walls were kept at constant
hot temperatures T,=1.0. The temperature of the inlet was uniform and cold
T¢=0.0. In the forward analysis mode of the BDIM, the temperature profile was
considered to be fully-developed so that adiabatic boundary conditions were
specified at the flow exit. The BDIM computational grid utilized 10 linear
boundary elements along the boundary in the x-direction and 10 linear boundary
elements along the y-direction boundary. The domain used 100 quadrilateral
grid cells. The solution for the temperature profile at the mean line is plotted in
Figure 3. The channel’s length L was chosen so as to provide a fully-developed
temperature profile at the exit.

Next, the boundary conditions at the inlet and exit of the same two parallel
plates have been changed to produce an ill-posed problem. No thermal
boundary condition was specified at the exit boundary, while the inlet was over-
specified with both uniform temperature and a zero normal temperature gradient.
The ill-conditioned BDIM system was solved using the SVD with a singularity
threshold of 1=0.01. Figure 4 shows the isotherms in the channel for the case
where the length of the channel was L/2 and Pe = 20.0.
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Figure 3: Temperature along the mean line for Poiseuille flow between parallel
plates. Results are shown for Peclet numbers Pe = 2.0, 20.0, 40.0 and 80.0.
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Figure 4. Temperature field for the thermal entry problem with a fully-
developed Poiseuille velocity profile and an unknown exit temperature boundary
condition.



4 Conjugate heat transfer

Conjugate heat transfer problems have been studied for many years. In most
publications, conjugate heat transfer predictions involve an explicit coupling
between the computational regions with separate analysis programs (Yeung and
Liburdy®') such as Finite Element (FEM) and Finite Difference (FDM)
algorithms for both domains. However, FEM and FDM require the generation
of grids within the domain of the solid container. This can be very difficult,
especially when the solid containers have complicated internal coolant flow
passages.

The BEM requires minimal computational effort and eliminates the need for a
computational grid within the solid since it requires only surface grids. Li and
Kassab’ used the BEM to calculate the temperature field within an internally
cooled turbine blade coupled with the finite volume method for predicting the
viscous fluid flow. The fluid flow and thermal convection were resolved by
solving the time-dependent Navier-Stokes equations on a non-skewed, shifted
periodic grid. The temperature distribution in the solid portion of the blade was
determined using the steady-state BEM. The conjugate solution was obtained
iteratively until convergence to the steady-state was achieved. The blade’s
surface temperature obtained from the solution of the Navier-Stokes system was
used as the boundary condition to the BEM. The heat flux computed by the
BEM was then iteratively enforced as a boundary condition to the Navier-Stokes
energy equation. Hildebrand et al.'® have presented a similar coupled
FDM/BEM strategy for high-temperature, hypersonic re-entry vehicles. A
complication arises in these situations because there is a lack of strict
enforcement of the balance of heat fluxes predicted at the interface between the
fluid and solid regions.

As an alternative, a steady-state BDIM can be used to resolve the thermal
energy equations in the fluid-flow and solid regions simultaneously. A multi-
domain BEM heat conduction analysis program could be implicitly coupled to a
BDIM thermo-viscous energy equation solver through the compatibility relations
at the solid/fluid interface boundary.

(Dsotia = (Dra (" k %) Solid - (k%)

Fluid

The strong coupling strategy involves bringing both computational domains
together in a single solution matrix. For example, the two energy equations that
govern heat convection and conduction in the fluid flow region and heat
conduction in the solid region can be represented in the following matrix form.
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Here, the subscripts S and F indicate solid and fluid region quantities,
respectively. The subscript FS indicates quantities at the solid/fluid interface.
The {Sr} vector entries include the source terms associated with convection and
the viscous dissipation function in the thermal energy equation.

The BDIM approach has three distinct advantages: no grid discretization is
required in the solid region, the strongly implicit conjugate analysis non-
iteratively predicts the temperature field in the solid and fluid concurrently, and
the BDIM is non-iterative. Because of these advantages, very accurate
predictions of the temperature and heat flux at the solid/fluid interface surface
should be obtained. In addition, ill-posed conjugate fluid flow problems can be
resolved when the exit thermal boundary conditions are unknown. When the
temperature field influences the velocity field, as is the case when thermal
buoyancy or compressibility exists, the BDIM can serve as an iterative boundary
condition correction to the flow-field analysis. Only a very small number of
iterative viscous flow-field solutions is required in between the fast BDIM
analyses.

4.1 Poiseuille flow between parallel plates for conjugate heat transfer

This concept will be demonstrated in the following simple example. The solid
parallel plates which are separated by the fluid have been included within the
computational region. Each plate has a thickness of d. The bottom edge of the
bottom plate and the top edge of the top plate are kept at constant temperature
(T;=1.0). The incompressible flow-field was discretized with a 10x20 grid and
each solid plate was discretized with a 5x20 grid. The conductivity ratio
between the solid and the fluid is 5 to 1.

T=T, I————= . dT/dx=0

Figure 5: Poiseuille flow between parallel plates with connected solid regions.
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Figure 6: Temperature field for the conjugate thermal entry problem with a
fully-developed Poiseuille velocity profile.
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The conjugate BDIM/BEM solved for the temperature field within the fluid
and two solid regions concurrently. Figure 6 shows the predicted isotherms in
both regions. Notice the isotherms reaching into the solid wall plates. The grid
in the solid regions is shown in the figure because it was necessary for the
isotherm plotting but it was not used during the computation. The conjugate
BDIM/BEM problem can obviously be solved in the inverse mode when the
thermal exit boundary conditions are unavailable at the flow inlet or exit
boundaries.

5 Conclusions

The inverse BEM has been developed for the determination of steady thermal
boundary conditions. It has been demonstrated on a multi-domain spherical
geometry made up of concentric spherical shells having different coefficients of
thermal conductivity. The thermal conductivity had no effect on the SVD
threshold parameter required to obtain a solution, but the temperature field
predictions were worsened with the increased difference in the values of thermal
conductivity. The BDIM has been shown to provide accurate results for the
solution of the linear convection/diffusion equation with unspecified thermal
boundaries. The procedure is non-iterative if the fluid velocity field is
independent of the temperature. The BDIM appears to provide accurate results
at even very high Peclet numbers. A steady-state BDIM solution of the thermal
energy equation for a fluid flow has been coupled with the BEM heat conduction
algorithm in a solid to solve the conjugate heat transfer problem on some simple
geometries given a known fluid velocity field. The BDIM/BEM strategy is
presently being extended to solve the non-linear system where the velocity field
depends on the heat transfer in the fluid and solid regions simuitaneously.
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