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ABSTRACT

Recent advances in numerical techniques and computing
technology, as well as new, fully ngorous, theoretical treatments,
have made analysis of combined electro-magneto-hydrodynamic
(EMHD) flows well within rcach. A survey of electro-magnetics
and the theory describing combined electro-magneto-
hvdrodynamic flows is presented. In Part 1 emphasis is placed on
describing the sources and interactions of electric and magnetic
fields described by Maxwell’s equations. The natural and induced
sources of material polarization and magnetization are described
as well as the sources and transport of electric charge in the fluid.
The paper concludes with a presentation of the unified EMHD
system of equations, combining Maxwell’s equation, the Navier-
Stokes equations and material constitutive relations. Part 2 of this
paper will concentrate on the equations of fluid motion and the
additional forces and energy imparted to them by electro-magnetic
fields.

NOMENCLAT
= magnetic field vector, kg Als?
= rate of deformation tensor, s”'

electric displacement field vector, A s m?

= internal energy per unit mass, m*s™

= electric field vector, kgm s A™

electromotive intensity vector, kg m s~ A’

= mechanical body force vector per unit
mass, m 52

= electromagnetic body force vector per unit
volume. kg m? 572

= heat source or sink per unit mass. m’ s

magnetic field strength vector, A m'

= apparent magnetization current vector. A m’?

electric drift current vector, A m”

= polanzation current vector. A m™
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electric current vector, A m?

electric conduction current vector, A m
thermal conductivity coefficient,

kgms® K

magnetization vector per umt volume due to
rotational motion of charged particles. A m™
intrinsic or natural magnetization vector per
unit volume, A m™!

total magnetization vector per unit volume,
Am’!

magnetomotive intensity vector per unit
volume, A m™

pressure, kg m™ s

polarization vector per unit volume due to
electric charge, A s m’

polarization vector per unit volume due to
total dipole moments, A s m”

total polarization vector per unit volume,
Asm?

local free electric charge per unit volume,
Asm?

inhomogeneous clectric charge per unit
volume, A s m”

apparent electric charge per unit volume,
Asm’

heat flux vector. kg s

free electric charge per umt volume,
Asm”

point electric charge. A s

entropy per unit mass, m’ kg K™ s~
hvdrodynamic stress tensor. kg m's?
fluid velocity vector. m s!

volume. m*



Greek Symbols

€ = dielectric constant or electric permittivity
coefficient, kg'1 m>s' A®

€ = dielectric constant or electric permittivity of
vacuum (g, = 8.854 x 10"2), kg'I m> s A?

c = electric conductivity coefficient,
kgm st A7

n = shear viscosity coefficient, kg m™ s™

0 = absolute temperature, K

p = fluid density, kg m”

T = viscous stress tensor, kg m’s?

n = magnetic permeability coefficient,
kg m A%s?

Mo = magnetic permeability of vacuum,
(Mo=41x 107), kgm A 57

xE = relative electric Eermmvmty or
susceptibility (x = €/g, - 1) , nondimensional

XM = relative magnetic permeablllty or
susceptibility (xM =1-u,/p ), nondimensional

(o] = viscous dissipation function, kg m's?

¥ = material free energy function, m? s

1. INTRODUCTION

The ability of electro-magnetic fields to influence fluid flow
and heat transfer has long been known and used with varying
degrees of success. The equations governing these flows consist
of the Navier-Stokes equations of fluid motion coupled with
Maxwell’s equations of electro-magnetics and material
constitutive relations. The field studying these flows is Electro-
Magneto-Hydrodynamics (EMHD). The full system of equations
has, up until recently, been far too complex to solve generally.
The full Navier-Stokes relations are complex and become even
more so when analysis of flows of realistic interest are desired
(that is, turbulent, chemically reacting, multi-constituent, non-
Newtonian and/or visco-elastic flows). Coupled with Maxwell’s
equations the complexity of the system is raised by orders of
magnitude. Recently, rigorous theoretical continuum mechanics
treatments of EHD (Wineman and Rajagopal, 1995) and unified
EMHD flows (Eringen and Maugin, 1990) have allowed greater
varieties of EMHD flows to be studied. These continuum
mechanics approaches are limited to non-relativistic, quasi-static
or relatively low frequency phenomenon (Bergman, 1962;
Marcinkowski, 1992; Lakhtakia, 1993).

The objectives of this paper are to provide background
resource and theory to allow implementation of numerical
analysis for unified EMHD flows. The field is too vast to
exhaustively cover the subject, so the intent is to provide an
introductory survey of the field. To accomplish this, Part 1
provides an overview of electro-magnetic theory with
concentrated effort placed on descriptions of the electric and
magnetic fields and electric charge and current.  Effort is also
made to provide a physical understanding of the field-material
interactions causing polarization and magnetization. Finally, the
system of equations governing the unified EMHD theory is
presented (Eringen and Maugin, 1990). Part 2 will discuss the
equations of motion in more detail and will compare the unified
EMHD theory with classical EHD and MHD models.

2. ELECTRIC FIELD

The concept of an electric field is typically developed from
the Coulomb force between two electric point charges in free
space (vacuum). The force, F, between two point charges Q, and
Q, is defined as (Cottingham and Greenwood, 1991, p. 15)

Q]Qz(Fz - Fl)
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where ¥ and ¥, are the position vectors of the stationary point

charges Q, and Q, and g, is the permittivity of free space. From
this definition of electric force, the static electric field, E, at ¢
due to a single, stationary charge, Q,, at position r| is defined as
(Johnk, 1988, p. 32)
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This concept can be expanded to define the electric field due to
multiple charges, Q;, through the superposition principle
(Cottingham and Greenwood, 1991, p.16). In this case the static
electric field at the location T is defined as
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Thus, the electric field is a measure of the amount of force that
can be exerted on a point charge by the electric charges
surrounding it. Through concept of the electric field, no longer
must the effect of each charge be considered individually.

If the electric field vector is integrated over the surface of a
control volume, S, the result will be
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since (Cottingham and Greenwood, 1991, pp. 16-20)
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After transforming the surface integral to a volume integral and
rearranging, equation 4 becomes

IV (€.E)dy= IZ - F a7 ©)



The result is the well known Gauss’s law of electrostatics in a
vacuum

V-(e,E)=1q, A

where q,, the local free charge density, is defined as

2.0
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Gauss’s law states that the electric field, E, diverging from a
point is related to the free charge density, q, at that point.

3. POLARIZATION

Previously, the interactions of charges and electric fields in a
vacuum were considered. The presence of material media affects
these interactions. In order to define these effects it is necessary
to introduce the concept of polarization. Charge polarization or
polarization is created when charges of opposite signs are
separated by a distance. Thus, polarization is related to the
orientation of charges in space and may occur in many forms.
Atoms under the influence of an electric field may have a
displacement of the negatively charged electron cloud and the
positively charged nucleus which result in polarization. A
molecule may have natural polarity due to its atomic geometry.
An example of molecular polarization is a water molecule. Also,
a solid or liquid continuum may have polarization due to an
internal charge gradient.  Similarly, electric fields passing
through two different, contacting materials may cause
polarization.

The existence of polarization creates a moment called the
electric or dipole moment. The dipole moment is defined as the
distance from the net negative to the net positive charge
multiplied by the net positive charge. For a simple dipole with a
single positive charge, Q', separated from a single negative
charge, Q , by a distance, &, the dipole moment is defined as
(Eringen and Maugin, 1990, p. 29)

p=Q't ©

An atomic dipole is created when the electron cloud of an atom is
displaced from its nucleus through the action of an applied
electric field (Figure 1).

Electron Cloud ~ Nucleus
Qr _~ @ Q*
g

Figure 1. Example of an atomic dipole

A similar moment is produced in any atom, molecule, group of

particles or continuum in which a net positive charge is separated
from a net negative charge. In the case of a group of particles,

the encountered moment is the sum of the individual particle
dipole moments. Of more importance to this discussion,
however, is a discussion of polarization in a continuum. If p is
the dipole moment per unit volume and % is the continuum
volume, then the continuum polarization is defined as (Sutton
and Sherman, 1965, p. 21)

foo
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This definition holds regardless of whether the dipole moments
arise from free electrons, ions, atoms, molecules or simply a
charge gradient within a continuum.

Although many references define several sources of
polarization (Pohl, 1978), there are essentially two main sources
of polarization: induced and natural (Sutton and Sherman,
1965). Induced polarization, P, is caused by an electric field
acting on natural dipoles or neutral particles. The applied
electric field induces an initial charge separation in neutral
particles (Figure 2, adapted from Johnk, 1988). The applied
electric field also creates greater charge separation within the
molecules and causes molecular alignment with the applied field
in natural dipoles (Figure 3, adapted from Johnk, 1988). The
polarization shown in the first figure is wholly dependent on the
electric field, whereas the second figure shows polarization
which is dependent on both the electric field and on molecular
geometry.
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Figure 2. Induced polarization on initially non-polar molecules

In contrast, natural polarization, P, , arises from natural
dipoles and charged particles. An example of a natural dipole is
water which has a geometry such that one end of the molecule is
more positive than the other. Figure 3 shows natural dipoles.



Ions, on the other hand are atoms or molecules whose overall
charge is uneven; either positive or negative. At this point it is
vital to realize that Figure 3 illustrates both types of polarization:
both the natural polarization caused by the molecular geometry
and induced polarization from the alignment of the molecules
with the electric field. This requires further discussion.

Applied E field, P30

Figure 3. Induced polarization on initially polar molecules

Although the molecules in the upper half of Figure 3 have
polarization on a particle or molecular level, they do not have
polarization on a continuum level. Consider water, H,0, as a
liquid or vapor for instance (a geometry similar to that in Figure
3). On a molecular level water has polarization by virtue of its
geometry. However, due to the fact that it is in a fluid state and
the molecules are allowed to move freely and orient randomly, it
will not have polarization on a continuum level. The sum of the
molecular dipole moments throughout the continuum is zero.
For water to be polarized on a continuum level an electric field
must be applied as shown in the lower half of Figure 3.

Now consider the fluid water as it is frozen with an applied
electric field. The molecules are no longer able to change their
position or orientation. Even after the electric field is removed,
the ice still has polarization on a continuum level. The
polarization caused by the applied electric field aligning the
water molecules is literally frozen into the ice. From this
example it can be seen that even though a substance is polarized
on a molecular level it need not be polarized at the level of a
continuum.

From the above discussion it may seem that there is no
reason, when dealing with fluids, to consider natural polarization.
This, however, would be an erroneous assumption. Though the
natural polarization may show no continuum effects without the
presence of an electric field, in an electric field the overall
polarization seen is both the induced polarization, Pp, due to the
electric field and the natural polarization, P,, of the molecules

(which are now aligned by the electric field). The total
polarization, P, is defined as (Sutton and Sherman, 1965, p. 22)

P=P,+P, an

Both types of polarization can produce a charge density
within the continuum. This may be seen by taking an elemental
control volume around a polarized continuum and performing a
volumetric charge balance as performed by Johnk (1988, p. 118).

Figure 4. Volumetric charge balance for derivation of
polarization charge

By summing the polarization into the control volume one obtains
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This states that there is a net negative polarization or, in effect, a
net negative charge within the control volume. This charge is
designated Quoarizaions the polarization charge density. When the
preceding analysis is expanded to three dimensions the following
relationship is obtained

Qpolarization = -V - P (13)

This derivation is valid for any type of polarization. Applying
this definition to induced polarization, P, gives rise to the
apparent charge density, q,, which is defined as (Sutton and
Sherman, 1965, p. 21)

qp=—V-P (14)

p
Similarly, natural polarization, P, gives rise to an

inhomogeneous charge density, q,’, which is defined as (Sutton
and Sherman, 1965, p. 22)

qe =-V-P, (15)

The inhomogeneous charge density is caused by an non-uniform
distribution of charges within the continuum.

From the dipole moment (equation 9) it can be seen that a
time-varying distance, &, will produce a charge movement; in

effect, an electric current. This polarization current, J,, is



defined as the variation of the total polarization with respect to
time (Johnk, 1988, p. 121)

_op

==
P= 5

(16)

From the above discussion it can be deduced that the degree
to which material is polarized is related not only to the strength
of the applied electric and magnetic fields, but to physical
properties of the material expressed in terms of the material free
energy, Y. The general constitutive relation for electro-static or
low frequency polarization is defined as (Eringen and Maugin,
1990, p. 173)

P- 4{%&%(5- B)B) an
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These relations, especially the free energy relation (equation 18)
can be quite complex. Fortunately a large number of materials
are relatively linear, meaning that polarization is a function of
one material property and the strength and direction of the
applied electric field (Haus and Melcher, 1989, pp. 220-222). For
linear materials the free energy of the material becomes (Eringen
and Maugin, 1990, p. 178)
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The material constant, xE, is the dielectric susceptibility and is
typically obtained experimentally (Cottingham and Greenwood,
1991, p. 86). Thus, for linear materials only the first term in
equation 17 remains and is usually written as (Eringen and
Maugin, 1990, p. 178; Johnk, 1988, p. 164)

oY
P= ~2p—é-l—-5 =g, XEE 24)
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The dielectric susceptibilty is often a constant value, although
the medium in use and external factors, especially electro-
magnetic frequency and temperature, may have vary its value
(Haus and Melcher, 1989, pp. 220-222).

4. MAGNETIC FIELD

The magnetic field is the second type of field of force
originating from an electric charge. However, a derivation of the
magnetic field is not as intuitively straightforward as the
derivation for the electric field. There are several analogies that
may be drawn between the two. First, both the electric field and
magnetic field create forces.

The electric field is obtained from the Coulomb force
between electric charges while the magnetic field, B, is obtained
from the ponderomotive force. The Coulomb and
ponderomotive forces combine to form the Lorentz force, which
is defined as (Johnk, 1988, p. 28)

FEM = g E +q,v xB (25)

where the first term is the Coulomb force. The second term states
that the velocity of the free charge q,, the magnetic field, B, and
the resulting force are all mutually perpendicular.

Analogous to the electric field relation to electric charge, the
magnetic field is related to charge movement or current, J. The
fundamental statement to this effect is called Ampere’s law and,
for the case of steady magnetic field in a vacuum without
polarization or magnetization, is expressed as (Johnk, 1988, p.
85)

Vx—=J (26)

This law states that a steady current, J, will produce a circulating
or rotational magnetic field, B.

5. MAGNETIZATION

Magnetization is the magnetic field analogy of the electric
field’s polarization. Magnetization comes from two sources:
particle circular motion and intrinsic or natural particle
magnetism. To derive the magnetization due to circular motion
of the particle, its velocity vector, v, may be expressed as a sum
of the linear drift velocity, v,4, and a rotational velocity, oxr
(Sutton and Sherman, 1965, p. 25).

V=V,+0Xr 27
For a particle, the magnetization moment, v , due to this
rotational velocity is defined as (Sutton and Sherman, 1965, p.

26)

Qrle
2

v= (28)

where Q is the particle charge, r is the distance from the particle
to its center of rotation, and @ is the angular velocity vector.
Similar to the way continuum polarization was defined,
continuum



magnetization due to circular motion is the average value of the
particle magnetization (Sutton and Sherman, 1965, p. 26).
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M, = W 29)

Intrinsic or natural magnetization, M, is not associated with
circular motion of the particle itself. Instead, intrinsic
magnetization is associated with electron and nuclear spins;
motion of the particle around a center to which it is attached by
atomic forces. Thus, intrinsic magnetization is a material
property. The total magnetization, then, is the sum of the
magnetization from particle circular motion and that from
intrinsic spin of the particle and may be written as

M=M,+M, (30)

Neither type of magnetization gives rise to charge densities
as polarization did, but magnetization due to circular motion of
the particles does create an electric current, the apparent
magnetization current, which is defined as (Sutton and Sherman,
1965, p. 26)

J,=VxM, G1)

Intrinsic or natural magnetization does not have a related current
because electric current is generally defined as the macroscopic
or external movement of charges. Because intrinsic or natural
magnetization is caused by internal movement of charges, that is
electrons attached to the nucleus, there is no electric current
created (Sutton and Sherman, 1965, p. 26). At this point it is
important to note that the charged particle drift velocity, vy, in
equation 27 creates the convection or drift current, Jy3. The drift
current is defined as (Sutton and Sherman, 1965, p. 67)

J 4= QoV4a (32)

The drift current is not associated with magnetization, but with
the physical linear motion of charged particles.

Magnetization, like polarization, depends not only on the
electromagnetic field strengths, but on material properties as
well. The constitutive definition of magnetization for steady or
relatively low frequencies is defined as (Eringen and Maugin,
1990, pp. 177, 130)

ovY o¥
w=-2p —B+—(E-B)B 33
p(alz 613( )) (33)
where
M=M+vxP 34

The other variables have been previously defined in equations
18-22. If the material in question may be considered linear, that
is the magnetization is a function of one material property and
the strength and direction of the applied magnetic field, then the

magnetization is defined as (Eringen and Maugin, 1990, p. 178;
Johnk, 1988, p. 164)

W =-2 6WB XMB
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where xM is the magnetic susceptibility, and is usually obtained
experimentally. This expression is similar to equation 24 for
polarization of linear materials. Haus and Melcher (1989, pp.
371-377) and Cottingham and Greenwood (1991, pp. 92-96)
discuss material aspects of magnetization in more detail. As with
dielectric susceptibility, magnetic susceptibility may be a
function of electro-magnetic frequency, temperature and other
physical conditions.

6. ELECTRIC CHARGES

The purpose of this section is to categorize and define the
sources of electric charges and to combine these charges into the
free charge density, q,, found in Gauss’s Law for a polarizable
material medium. Electric charges come in two types: free and
bound. Free charges arise from electrons in the outer or free
atomic shells and from ions. Bound charges are those arising
from the molecular geometry and displacement of atomic inner
clectron shells. Polar molecules are one example of bound
charges.

Gauss's law without polarization and in a vacuum states that

V-(EE)=1. (36)

where q. is the local free charge density caused by free ions and
electrons. Polarization occurs as the applied electric field passes
through a medium. The apparent and inhomogeneous charge
densities, noted in equations 14 and 15, are caused by
polarization and must be added to Gauss's law. The local free
charge density, q,, accounts for all the free electrons and ions in
the continuum.

Knowing that the inhomogeneous charge density, q.’, is
caused by a free charge gradient within the continuum, it can be
seen that the inhomogeneous charge density is part of the local
charge density. By using the definition of inhomogeneous
chargedensity due to natural polarization from equation 15, the
inhomogeneous polarization charge density can be explicitly
shown in Gauss’s law as

V-EE)=q. - (qe' +V- Pe) 37

Note that the second and third terms add to zero. The only other
source of charge is the apparent charge from induced
polarization, q,, given in equation 14. This may be added
directly to the free charge density to form

V-(€E)=qc-q,-V-P,-V- P, (38)



Noting from equation 11 that the total polarization, P, is the sum
of the inhomogeneous and natural polarizations, the polarization
charge terms may be grouped together to form

V- (SOE) =q¢ —q,-V-P 39)

The local free charge density minus the inhomogeneous charge
density is, by definition, the total or free charge density, q,,
defined as (Sutton and Sherman, 1965, p. 21)

qo=9e — ¢ 40)

Introducing the free charge density and grouping the polarization
charge density with the electric field, Gauss's Law becomes

V-(,E+P)=q, (41)

Usually the electric field vector and the polarization vector are
combined to form the electric displacement or electrical
induction vector, D, which is defined as (Johnk, 1988, p. 164)

D=¢gE+P (42)
Gauss’s Law then becomes (Sutton and Sherman, 1965, p. 22)
V-D= qQ 43)

Note that if polarization is a linear function of the steady or
relatively low frequency electric field, E, then the displacement
vector becomes

D=¢E 44)

where € is the dielectric permittivity and is derived by
substituting equation 24 into equation 42 and is shown as

D=¢,E+P =g, +yE)E =¢E 45)

7. ELECTRIC CURRENT

Analogous to the definition of free charge density through
the assembly of Gauss’s law, the total current will be defined
through the assembly of the Ampere-Maxwell law. In addition
to the currents arising from magnetization and direct charge
motion defined in equations 31 and 32, other conduction
currents, 4, have been observed and must be taken into account
when defining the total current, J (Eringen and Maugin, 1990,
pp. 161-163). These currents are caused by the Seebeck, Hall,
Nernst and a host of other effects which will be described in
greater detail in Part 2 of this paper. With this in mind, the
Ampere-Maxwell law with no magnetization or polarization
states that (Johnk, 1988, p. 86)

\% B 68°E+J + (46)
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where the magnetic ficld, B, the drift current J,, and the electric
field, E, have previously been defined. Note that this is different
than the Ampere’s law in equation 26. This is due to the fact that
equation 26 was for magnetostatics; the case where the applied
electric and magnetic fields are constant. Introducing the effects
of magnetization and polarization and rearranging constants, the
Ampere-Maxwell law of electrodynamics may be rewritten as
(Sutton and Sherman, 1963, p. 30)

VxB = Og,E OP
xB =y, ot +E+VxM+Jd+y 47)

From equation 30 it can be seen that the total magnetization, M,
is the sum of the circular motion and intrinsic or natural
magnetizations. The intrinsic magnetization does not give rise to
a current since VxM,=0. Thus the magnetization current could
be written in terms of the circular motion magnetization, M,,
only. The polarization current is defined in equation 16 as the
time derivative of the polarization vector. Thus, the third term
on the right hand side of equation 47 and the polarization current
may be combined into the electrical displacement vector, D.
Additionally, the magnetization and magnetic field vectors are
often combined to form the magnetic field strength vector, H,
shown as

B
=—-M (48)
Ho

Implementing these two changes, the Ampere-Maxwell law for
electrodynamics of polarizable and magnetizable media can be
written as (Johnk, 1988, p. 147)

%) )]
VxH=—-+J,+¢ (49)

At times it is necessary to define the total current, J, as the sum
of the apparent magnetization, drift and phenomenological
currents (Sutton and Sherman, 1965, p. 26)

J=J,+7 (50)

since the contribution to the magnetization current by intrinsic
magnetization is zero. The Ampere-Maxwell law for polarizable,
magetizable media can be written as (Johnk, 1988, p. 132)

\Y B J+J +6D 51
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8. GOVERNING SYSTEM OF EQUATIONS

The full system of equations governing unified EMHD flow
consists of the Maxwell’s equations governing electro-
magnetism, the Navier-Stokes equations governing fluid flow
and constitutive equations describing material behavior. This set
of 27 equations allows solving for the 27 unknowns: fluid
density (p), charge density (q,), temperature (8), pressure (p),
and the three vector components of velocity field (v), electric



field (E), magnetic field (B), magnetization (M), polarization
(P), current (J), heat flux (q ), and conduction current (). The
system of equations is made up by the set of equations 17, 33,
52, 53, 55, 56, 57, 58, 59, 61, 62, 63, 64 and an equation of state.
Note that the conservation of electric charge has been grouped
with Maxwell’s equations, although it is not traditionally part of
the system.

8.1 Maxwell Equations

Maxwell’s equations are the system of linear differential
equations governing electro-magnetic fields. They are given as
(Cottingham and Greenwood, 1991, p. xv)

Gauss’ law

V-D = q, (52)

Ampere-Maxwell law

VxH oD J 53
X -— =
ot (53)
or
D
VxB=p0VxM+J+-§- (54

Conservation of magnetic flux
V-B=0 (55)

Faraday’s law

oB
VxE+-a—t-=O (56)

Conservation of electric charges (from equations 52 and 53)

5
"‘29‘+V-J =0 57
ot

Detailed descriptions of these equations can be found in any
number of texts (Johnk, 1988; Cottingham and Greenwood,
1991; Haus and Melcher, 1989). Only a brief description of
some of the implications of these equations is given here.

Two of the physical implications of Gauss’s law are that
electric field lines radiate from a charge and are influenced by
polarization. This was discussed in section 6 of this paper. The
magnetic counterpart to Gauss’s law is the conservation of
magnetic flux. It may be interpreted as the fact that magnetic
field lines form closed loops instead of ending in space. This law
is a consequence of the fact that no magnetic monopoles have
ever been found. Faraday’s law may be physically interpreted as
the fact that an electric field induces a time-varying magnetic
field, or equivalently, a time-varying magnetic field produces a
steady electric field. The last of the typical set of Maxwell’s
equations is the Ampere-Maxwell law which which is discussed
in section 7 may be interpreted as the fact that a steady magnetic
field produces a time-varying electric field (magnetic analogy of

Faraday’s law). Additionally, a magnetic field induces a charge
current. The last equation included in the system of equations
governing electro-magnetic fields is the conservation equation of
the local free charge which states that in the absence of chemical
or atomic reactions, charges are neither created or destroyed.
Thus, the only change in charges comes from their motion into
and out of the point of reference.

8.2 NAVIER-STOKES EQUATIONS

The equations of motion governing EMHD flow are the
Navier-Stokes relations into which electromagnetic effects have
been included. A summary of these equations is given below
with a derivation from the global conservation law governing
continuum mechanics given in Part 2 of this paper. A rigorous
derivation of these equations for electro-magnetic fluids is
completed by Eringen and Maugin (1990).

Conservation of mass

op
—+ V. =0 58
3t (pv) (58)

Conservation of momentum

o(pv) EM _
T+V-vpv—£)—pf—F =0 (59)

where the electromagnetic force per unit volume is

FEM = g E+JxB+(VE)-P+(VB)-M
3 (60)
+ V(P x B)v)+-§(P x B)

Conservation of energy

2
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Clausius-Duheim Inequality
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where

9= E+0,d-E+0,025)
+(0, V0 +0,d- V0 + 0,02 V)
+E55$><B+0'“@-(2><B)—(g~5)xB)] (63)
+ E36ve xB+0,(d (VO x B)-(d- V) x B)
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+fExBre.@ExB)-@-&)xB)] 69
+ [<5V9 x B +x,,(d- (V0 x B) - (d- V0) x B)
+%,(B-VO)B +x,(B-E)B
Here o; and «; (i = 1-12) are the physical properties of the media.
In this case o, and k, are the electric and heat conductivities
respectively. Note that #=J - J, and is the time-invariant form of

the electric current and is called the conduction current (Eringen
and Maugin, 1990, p. 53). In the above relations, the tensor gis

the rate of deformation tensor given as (Eringen and Maugin,
1990, p. 13)

g = (Vi,j+ Vj,i) (65)

N | =

Additionally, (_13 = g . d= is the square of the rate of deformation

tensor. Here it is important to note that the same relationship
(equation 63) can be obtained by considering the second law of
thermodynamics and including viscous effects.

9. CONCLUSION

The objective of this paper was to survey background theory
to allow initial implementation of a unified EMHD theory
presented. To accomplish this, Part 1 presented introductory
concepts in electro-magnetic field theory. The sources of both
the electric and magnetic fields were derived with emphasis
placed on describing physical aspects of polarization and
magnetization.  Polarization was shown to arise from both
natural and induced sources and magnetization was shown to
come about from material intrinsic and particle circular motion.
The non-linear relations of both polarization and magnetization
were presented. However, many materials have linear material
properties, considerably reducing the complexity of caiculating
polarization and magnetization. The sources of electric charge
and electric current were discussed. Finally, the equations
governing unified EMHD flows as derived by Eringen and

for current, heat transfer and material equation of state. Part 2
will discuss these equations of motion in more detail,
concentrating on the material constitutive relations for electro-
magnetic force, electric current and heat transfer. A detailed
comparison of classical EHD and MHD models with the unified
EMHD model will also be presented in Part 2.
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