HTD-Vol. 312

Proceedings of the 30th

1995 NATIONAL
HEAT TRANSFER
CONFERENCE

VOLUME 10

* CONJUGATE HEAT TRANSFER, INVERSE PROBLEMS, AND OPTIMIZATION
* INVERSE PROBLEMS IN HEAT TRANSFER

presented at

THE 1995 NATIONAL HEAT TRANSFER CONFERENCE
PORTLAND, OREGON
AUGUST 6-8, 1995

sponsored by
THE HEAT TRANSFER DIVISION, ASME

edited by

WILLIAM J. BRYAN
ANSYS, INC.

JAMES V. BECK
MICHIGAN STATE UNIVERSITY

THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS
United Engineering Center « 345 East 47th Street » New York N.Y. 10017



HTD-Vol. 312, 1995 National Heat Transfer Conference - Volume 10

ASME 1995

INVERSE DETERMINATION OF BOUNDARY CONDITIONS IN
STEADY HEAT CONDUCTION WITH HEAT GENERATION

Thomas J. Martin

Department of Aerospace Engineering
Pennsylvania State University
University Park, PA

George S. Dulikravich
Department of Aerospace Engineering
Pennsylvania State University
University Park, PA

ABSTRACT

Our unique inverse methodology for finding unknown
boundary conditions for Laplace equation utilizing the
Boundary Element Method (BEM) has been extended to the
solution of two-dimensional inverse (ill-posed) Poisson
problem of steady heat conduction with heat sources and
sinks. The procedure is simple, reliable, non-iterative and
cost effective. Accurate results in two-dimensional heat
conduction with arbitrary distributions of heat sources have
been obtained for several test cases where boundary
conditions were unknown on certain boundaries. Because of
its non-iterative, direct nature, our algorithm does not
amplify errors in the over-specified input data supplied to
parts of the boundary. Furthermore, it does not require
regularization schemes, extrapolation to the boundary or
mollification to suppress the amplification of input errors.
Instead, a straight-forward modification to the BEM
produces a single, highly singular solution matrix which we
solved using a singular value decomposition matrix solver.
Our method for the solution of ill-posed boundary condition
problems governed by the Poisson equation also accepts
input data at isolated interior points.

INTRODUCTION

The integrity of energy producing or consuming devices
depends on maintaining an acceptable operating temperature
by proper heat transfer. For example, Joule heating generated
inside the electronic components strongly depends on the
frequency of the alternating electromagnetic field and the
local material properties. Another example of such domain-
distributed heat sources is the microwave heating of food and
materials processing. In the case of a buried nuclear or
chemical toxic waste, the heat generated by ongoing reactions
will be distributed throughout the burial site. In general, the
internal beat generation may lead to local overheating,
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potentially serious equipment failures, and environmentally
disastrous consequences. In order to understand the steady
thermal field in these problems, a well-posed boundary value
problem is often constructed, governed by the Poisson
equation. It requires either temperature, heat flux or
convective heat transfer coefficient specification over all
boundaries of the domain. Well-posed Poisson problems
also require the specification of heat source intensities
throughout the domain.

However, local measurements and continuous monitoring
of the heat sources in the entire domain are often impractical.
This is because of the intrusive nature of a large number of
sensors. Using sensors may be impossible to achieve in
practice because of the highly volatile environment, as in the
case of a waste dump, or because of the prohibitively small
size of the domain available for placement of sensors as in
the case of a computer chip. Thus, in many cases we are
forced to solve an ill-posed boundary value problem where
no data is available on certain boundaries. In other words, it
would be highly desirable to develop a non-intrusive
monitoring technique capable of utilizing over-determined
thermal measurements on accessible boundaries of the
domain. The over-specified boundary conditions would then
be used to predict temperatures, heat fluxes, and convective
heat transfer coefficients on the inaccessible boundaries.
This objective is termed the steady inverse heat conduction
problem (SIHCP) since it calls for the solution of the
Laplace or Poisson equation for a steady temperature field
subject to partially overspecified and partially underspecified
(unavailable) thermal boundary conditions.

We have developed a non-iterative algorithm that can
reliably and efficiently solve inverse boundary condition (ill-
posed) problems governed by the Laplace equation on two-
dimenstonal multiply-connected domains including regions
with different temperature-dependent material properties
(Martin and Dulikravich, 1993; 1994a; 1994b; Dulikravich



and Martin, 1994a). An extended version of this method
was also successfully used in solving ill-posed problems in
two-dimensional elasticity (Martin, Halderman and
Dulikravich, 1994). There, no boundary conditions for
traction and deformation vectors were known on some of the
boundaries while both traction and deformation vectors were
specified on the remaining boundaries.

In this paper we elaborate on the extension of our method
for the solution of the inverse (ill-posed) boundary
condition problems to the Poisson equation involving an
arbitrary known distribution of heat sources or sinks
throughout the domain. This objective is different from the
objective of a more common inverse shape (domain)
determination problem (Dulikravich and Martin, 1994b) and
the unsteady (Beck et al.,, 1984) inverse (ill-posed) heat
conduction problem (UIHCP). The major concern when
attempting to solve the UIHCP computationally has been
with the automatic filtering of noisy data in the discrete
thermocouple measurements. All measurement data errors, as
well as numerical round-off errors, are amplified by the
typical UIHCP algorithms. These numerical methods are
usually formulated in the least squares sense where the
overall error between the computed and measured
temperatures is minimized (Kagawa et al., 1995). Among
others, the method of regulizers, discrete mollification
(Murio, 1993) against a suitable averaging kerel and other
filtering techniques have also been implemented in order to
smooth the extrapolated boundary values. To date, many of
the UTHCP solutions were performed for specific geometries
and cannot be readily extended to complex geometries. In
fact, most attention has been focused on the one-dimensional
UIHCP. Another basic concern is that relatively few UTHCP
techniques used in engineering provide a quantitative method
for determining what effect their smoothing operations have
on the accuracy of the estimates (Hensel and Hills, 1986).
Our new method solves a steady-state inverse (ill-posed)
boundary condition problem governed by the Poisson
equation and does not utilize any of the approaches used in
UIHCP:.

The theory behind our SIHCP met.hod is based on the
Green's function solution method, commonly referred to as
the Boundary Element Method (BEM). It is an integral
technique that generates a set of linear algebraic equations
with unknowns confined only to the boundaries. For well-
posed problems, the resulting solution matrix can be solved
by Gaussian elimination or any other standard matrix
inverter. When an ill-posed problem is encountered, the
matrix becomes highly singular. We have shown that the
proper solution to this singular matrix provides accurate
results to various STHCPs. Our method has also been shown
to be quite insensitive to measurement errors (Martin and
Dulikravich, 1994a; 1994b) in the specified boundary
conditions. The approach is somewhat similar, at least in
theory, to those delivered by Backus and Gilbert (1970) and
Lanczos (1961). These authors have discussed techniques
which allow one to selectively discard eigenvalues and
eigenvectors of a partmular system of equations that tend to
magnify errors.

NUMERICAL FORMULATION

This paper elaborates on our simple, robust and fast
numerical solution algorithm to the ill-posed two-
dimensional Poisson equation using the BEM. The
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algorithm is applicable to complex, multiply-connected, two
and three-dimensional geometries as well as to inverse
initial value problems. Temperature and heat flux data are
not required on those boundaries where such measurements
cannot be obtained. Instead, over-specified measurement
data involving both temperature and heat flux are required
on the of remaining, more accessible boundaries or at a
small number of points within the domain. .

The BEM (Brebbia, 1978) is based upon a Green's
function solution procedure. It has been proven to be the
most efficient numerical technique for solving linear
boundary value problems such as those governing heat
conduction, elasticity, wave propagation and electromagnetic
fields. The BEM has recently been used to solve nonlinear
problems such as viscous fluid flow, heat conduction with
radiation, moving boundary problems such as solidification
and melting, conjugate heat transfer, and other phenomenon.
Our method of solving the SIHCP uses the BEM because
this numerical technique has certain distinct advantages over
the more common finite element or finite differencing
methods. Analytic solutions to the partial differential
equation, in the form of the Green's function, are part of the
BEM solution. Therefore, high accuracy is expected with
the BEM because introducing the Green's functions does
not introduce any error into the solution. The BEM does
not, like the finite element method, neglect the inter-element
continuity terms. The degrees of freedom of the system are
reduced such that unknowns are strictly confined to domain
boundaries. The noniterative nature of the BEM eliminates
reliability and convergence problems.

The governing equation for steady-state heat conduction
in a solid with temperature-dependent coefficient of thermal
conductivity, k(T), and arbitrarily distributed heat sources
or sinks, g(x.y), per unit volume is

Ve (KT)VT) + gx,y)=0 (1
where T is the temperature. Equation (1) can be linearized

by the application of the classical Kirchoff transformation
which defines the heat function, u, as

T
_Tem o

0 ko

where kg is the reference coefficient of thermal conductivity.
Equation (1) is subsequently transformed into Poisson
equation operating on the heat function, u. The boundary
integral equation (BIE) for the Poisson equation is obtained
from the weighted residual statement or Green's Theorem

(2

c(x)u(x) + fq*(xg) uE) dr =
r

Ju*(x®) qE)dl + Ju*(xE) g€) dQ €
r Q

The integration here is over all the boundaries,I' =I'1 +I'2
4 ... + I'N,, of a multiply-connected domain. Here, q = du/dn



is the heat flux, u* is the fundamental Green's function
solution (Brebbia and Dominguez, 1989) so that q* =
‘du*/dn, n is the direction of the outward normal to the
boundary T, while c(x) is a free term arising from the
Dirac's delta function and the integration over the
singularity in the sense of the Cauchy principal value at the
point x. Consequently, ¢(x) = 0.0 when x is outside the
domain, ¢(x) = 1.0 when x is inside the domain, and c(x) =
6 / 25t when x is on the boundary. Here, 0 is the internal
angle of a corner between two neighboring boundary panels.

The fundamental solution for the two-dimensional
Poisson equation is

1 1

* o —] 4
" 2% n(]x-ﬁ) “

where E is the point of integration and x is the control
point. The boundary can be discretized into N boundary
panels connected at N boundary points. The functions u
and q are interpolated linearly between their values at the
end points of each boundary panel. This results in a set of
N boundary integral equations, one for each of the N control
points on the boundary. If temperature is known at discrete
locations within the domain, additional equations can be
added to this set, one for each additional control point. In
addition, heat fluxes are allowed to be double-valued at
corners formed by each pair of neighboring boundary panels.
This formulation requires the domain, L, to be discretized
into Ny cells sharing both domain and boundary points in
order to evaluate the field source integral. Since the
unknowns are only on the boundary, the set of BIE's can be
arranged in the following matrix form.

[H] {U} = [G] {Q} + {P} (&)

Without using internal temperature measurements, there will
be a total of 2N unknowns in the equation set. For a well-
posed boundary value problem, every point on the boundary
is given one Dirichlet, Neumann or Robin-type boundary
condition. The equation set that will result has N
unknowns and N equations. The boundary conditions may
be multiplied out on the right hand side and added to {P}
to form a vector of knowns, {F}, while the left-hand side
remains in the standard form [A]{X}. The equation set
becomes a system of linear algebraic equations that can be
solved for the unknowns at the boundanes by any standard
matrix solver such as Gaussian elimination or LU
factorization.

If the boundary conditions in the above example are not
properly applied or if internal temperature measurements are
included in the analysis, the problem becomes ill-posed, but
a solution may still be obtained. If at some boundary points
both u = U and q = Q are known while at other boundary
points neither is known, the BIE set can still be arranged
into the standard form (Martin, Halderman and Dulikravich,
1994). For example, if at two comer points on a quadrilateral
cell both u = U and q = Q are known, but at the remaining
two comer points neither is known, the BIE set before any
rearrangement appears as
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H, H, Hy Hylly
Hy Hy Hy Hylu,
Hy, Hzp, Hy Hyllu,
Hay Hpp Hggo Hyy fuy
G;; G G Sul[Q P
Gy Ga3 G Gpql9, P
G3; G3p G333 Gy ||Qg P,
Ga1 Ga2 Ca3 Caa]|ay| |Pg

(6)

In order to solve this set, all of the knowns will be collected

on the right-hand side, while all of the unknowns are
assembled on the left. A simple algebraic manipulation then
yields the following set

H, Gy Hyy Guflwn
Hyy Gy Hyy Goull9y
Hy, Gzp Hyy Ggylluy
Hyp Gyp Hyy Oyl
H;; G;; H G|y,
Hy; Gy Hyz Gp3|jQ
Hy; G3; Haz Gg3i|Us
Hyy G4 Hyz Gu3|Qs

)

Since the vector on the right-hand side is known, it may be
multiplied by its coefficient matrix and added to the vector
of known sources, {P}, to form a vector of knowns, {F}.
The left-hand side remains in the form [A]{X}. At first
glance, the solution of this set of linear algebraic equations
appears straight-forward, but it is not. This equation set is
highly singular and most standard matrix solvers will not
produce a correct solution.

There exists techniques for dealing with sets of equations
that are either singular or nearly singular. These techniques,
known as Singular Value Decomposition (SVD) methods,
are widely used in solving most linear least squares
problems (Press et al. 1992; Throne and Olson, 19%94; To,
1994). Any M x N matrix [A] can be written as the
product of an M x N column-orthogonal matrix, {B], anN x
N diagonal matrix [W] with positive singular values, and
the transpose of an N x N orthogonal matrix {C].

w. 0 O
[al-[B]|0 © o |[c]
0 O wN @)

The singular values W s Wo, oy Wy aIE conceptually similar

to the eigenvalues of a matrix. For a well conditioned
matrix, these values will be roughly of the same order or
magnitude. But as the matrix becomes ill-conditioned, that



is, more singular, its eigenvalues become more dispersed.
Eliminating very small singular values has the effect of
removing those algebraic terms that are dominated by noise
and round-off error. In order to determine which singular
values are eliminated, we must chose a number, 8, as a zero
threshold. The choice of & was based upon the information
about the uncertainty in the BEM matrix computation. A
good indicator of the accuracy of the matrix formulation,
unique to the BEM is the diagonal of the [H] matrix. It
may be computed implicitly by assuming a constant
temperature and zero heat generation so that

N
hi = - ) h;
=t

This term must equal the internal angle, 8,/2x, between the

neighboring boundary panels at the ith node. The
singularity threshold, 8, must be, approximately, an order of
magnitude larger than the error of this term. This rule,
though, only gives us an absolute lower bound. In fact,
there is a range of threshold values where the algorithm will
produce a correct solution. A choice of & outside of this
range will yield another solution space also satisfying the
equation set, but it is wrong. These solutions are
characterized as having an oscillatory behavior in the
temperature and heat fluxes computed on the unaccessible
boundaries. The range of the threshold value, &, is more
thoroughly explained in the section detailing the algorithm's
sensitivity to measurement errors in the over-specified
boundary data. A SVD algorithm (Press et al., 1992) was
used in this work to solve the equation set. Singular values
were explicitly zeroed and a solution to the highly singular
BIE formulation was obtained. Since the SVD algorithm is
capable of solving non-square matrices, the number of
unknowns in the equation set need not be the same as the
number of equations (Martin and Dulikravich, 1993). Thus,
virtually any combination of boundary conditions will yield
at least some solution (Okuma and Kukil, 1993). Also,
additional equations may be added to the equation set if, for
example, temperature or heat flux measurements are known at
certain locations within the domain.

(&)

ANALYTICAL TEST CASES

The temperature distribution was obtained within an
annular domain with an arbitrary heat source distribution, g
= g(r,8), such that the temperature satisfies the Poisson
equation '

d*T 1dT 1 d*T
—_— —— — - H/k =0
dr? r dr + r: do? + & 9)

(10)

The outer circular boundary of the annular domain,atr=r, ,

is kept at zero temperature, while the inner circular
boundary, atr=r,, is thermally insulated. We can obtain an

eigenfunction set written in the form of the Helmholtz
equation satisfying the homogeneous boundary conditions.
After separation of variables and applying the single-

42

valuedness condition, the analytic result for the temperature
field in the annular domain is

S Jn(Wpmlp)
T ’6 = Jn am ___Yn nm )]
(r.0) .n'S;omE:'l[ (u‘ r) Y o (Bore) (rpmr

x[Ansinn® + B, cosn6] (11)

Here, Jn and Y o &€ the Bessel functions of integer order n,
and Mom &rC the roots of the characteristic equation. The
Fourier coefficients, Anmaad Bnm’ may be found knowing

that the eigenfunctions form an orthogonal set. For
example,
2
ra
Am = N
TlamNnm
Thy2n
x ffr g(r, )R, (r) sin(nB) dr d6 (12)
r, O

where k = 1.0 W m™! K1 was assumed. If the boundary
conditions and the heat generation in the cylindrical domain
are axisymmetric, then the analytic solution simplifies to

r r

T@) = f ng(r)rdr} dr + ¢lnr + ¢, (13)
)

RESULTS

A BEM algorithm was developed using the theory
discussed in the numerical formulation. The application of
the Kirchoff transformation, used to remove the nonlinearity
when the coefficient of thermal conductivity varies
arbitrarily as a function of temperature, has been verified
against a known analytic solution for the heat flow in a
finite thin rod (Martin and Dulikravich, 1994a; 1994b).

In order to test our inverse (ill-posed) boundary condition
method governed by the Poisson equation, we chose to
solve first the forward or well-posed problem in an annular
region between two concentric circles (with r q = 0-5mand

Ty = 1.2 m) subject to axisymmetric thermal boundary
conditions (T as 0.0K and Tb = 0.0 K) and constant heat

generation function, g(x,y) = 1.0 W m'3. The coefficient of
thermal conductivity was constant, k = 1.0 W m 1K1 The
analytic solution is easy to obtain from equation (13)
indicating that the maximum temperature, Tm ax = 0.06258

K, is reached at the radial distance of 0.8244 m.

This solution was then compared to the numerical BEM
solution of the same problem. Both inner and outer circular
boundaries were discretized with 36 non-clustered, linear,



isoparametric flat panels and the annular domain was
discretized with 36 x 10 quadrilateral cells. Comparison of
analytic and computed radial temperature distributions
(Figure 1) and relative percentage errors (Figure 2)
demonstrate high accuracy of the BEM.

Next, the boundary conditions supplied to the BEM
algorithm were changed to make the problem ill-posed. The
outer circular boundary was specified with T, =0.0K and a

normal temperature derivative, (dT/dn), = 03168184 Km ),

taken from the analytic solution. At the same time nothing
was specified on the inner circular boundary. A 72 x 72
BEM matrix set was solved using the SVD matrix solver

with a singularity threshold parameter of 6 = 1.0 x 103,

Figure 2 illustrates the percentage error as a function of
radius generated by the BEM for the ill-posed problem.
Clearly, the BEM was capable of accurately predicting the
unknown boundary values on the inner circular boundary as
well as the temperature field in the entire annular domain in a
single, non-iterative run without the use of any regularizers
or mollifiers. The computing time was less than half of a
second on a Cray C-90 computer with a single processor.
Our BEM algorithm was then tested against the complete
analytic solution for the same geometry, but with the heat
generation taken as a function of both radius, r, and
azimuthal angle, 8. Specifically, we used the following
expression when computing the coefficients in equation (12).

[ I-Tip ]

—_—
I_rout —Tin J

For the well-posed problem, the outer circular boundary
temperature was specified to be Tb = 0.0 K, while the inner

g(r,0) = g...sin sin 6 (14)

circular boundary was kept adiabatic, (dT/dn) = 0.0 K m'!
andg  =10W m ~. Both outer and inner boundaries

were discretized with 36 linear panels and the domain was
discretized with 36 x 20 quadrilateral cells. The comparison
of the well-posed BEM solution to the analytic solution of
the Poisson equation for this test case is shown in Figure 3a.
The agreement is excellent showing an average error of less
than half of a percent.

Next, the outer boundary heat fluxes were taken from
analytic solution and supplied as over-specified boundary
conditions together with temperature on the outer circular
boundary. No boundary conditions were specified on the
inner circular boundary. The results of this inverse (ill-
posed) boundary condition problem versus the analytic
results are shown in Figure 3b. Notice that the largest
percentage error found in the domain is less than 0.65% and
that the solution errors in both the direct (well-posed) and

inverse (ill-posed) problems are very low and nearly
identical.

Results With Input Data Noise

The major concern of researchers working on the inverse
problems 1s with the sensitivity of their algorithms to errors
in the specified boundary data. In order to verify that our
technique did not amplify the input data errors, random

43

Gaussian noise was introduced into the temperature boundary
condition supplied to the outer circular boundary. The same
annular geometry was used for this purpose and the heat

generation was kept at a constant g(x,y) = 100.0 W m.
For the temperature boundary condition on the outer
boundary a random real number R between 0.0 and 1.0 was
generated using the RANF subroutine on the Cray C-90.
Using this value as the normalized probability density
function, a randomized temperature boundary condition on
the outer circular boundary was determined from the
following equation ’

T(@) = Ty + y-20°In[R(B) ] (15)

Here, T, = 0.0 K is the mean value of the temperature

boundary condition on the outer boundary and o? is the
variance. The outer circular boundary was also specified
with the flux taken from the analytic solution. No boundary
conditions were specified on the inner circular boundary.
Our BEM program was tested with a variety of variances
while computing the unknown temperatures and heat fluxes
on the inner circular boundary. Figures 4a, 4b and 4c¢ depict
the percent errors both supplied to the program as outer
boundary temperatures and those computed by the program as
inner boundary temperatures and normal temperature
derivatives. These figures serve to prove that our BEM
algorithm does not noticeably amplify errors in the input
measurement data for the solution of the inverse (ill-posed)
boundary condition problem governed by the Poisson
equation.

Using numerical experimentation, we formed the following
table that should be helpful in chosing the singularity
threshold, 9, used in the SVD code.

Case _ Variance © Threshold &
a 000001 0.1x 107
b 00001 05x 107
¢ 0001 05x 104
d 001 05x 1073
e 0l 0.5x 1072
f 02 05x107!
g 05 05x 10’}

Results With Interior Temperature Measurements

Finally, our approach to solving the inverse (ill-posed)
boundary condition problems governed by the Poisson
equation was shown to be capable of using internal
temperature measurements at isolated points. Given the same
annular geometry, only the temperature Ta = 0.0 K was

specified on the inner circular boundary. No boundary
conditions were specified on the outer circular boundary.
Instead, analytical values for temperatures at various
locations within the domain were used as additional input
data. These temperatures (T = Tm ax = 0.065 K)

corresponded to the analytical solution of the Poisson



equation with Ta =00K, Ta =00K and gx,y) =10 W

m3 (Figure 1). The values of temperature were specified at
the finite number of circumferentially equidistantly spaced
points in the annular domain. Figure 5a illustrates the
1sotherms computed by our inverse (ill-posed) boundary
condition BEM algorithm when only four circumferentially
equidistantly spaced internal temperature values were. The
errors in the predicted temperature on the inner circular
boundary are significant. This is understandable since the
resulting BEM equation set contained 76 equations and 108
unknowns. The isotherms in Figures Sb and Sc result from
using 6 and 9 equidistantly spaced internal temperature
points, respectively. From these figures one notices that our
algorithm produces very good results when at least 9
thermocouples are used at points within the annular domain
and temperature is given on only one boundary.

CONCLUSIONS

Our boundary element or Green's function method has been
shown to provide stable and accurate solutions to several
simple ill-posed problems of the Poisson equation where the
boundary conditions were unknown on certain boundaries.
The algorithm is non-iterative because it uses the BEM. Our
algorithm has been shown to be robust and fast. Its accuracy
bas been proven against several two-dimensional heat
conduction analytic solutions. Furthermore, our technique
does not iterate to minimize a global function based upon the
residual between the overspecified and computed boundary
values. The magnification of errors in measurement data, the
need for mollifiers to smooth the intermediate predictions
and the influence of regularizers on the physics of the
problem have been eliminated because the procedure is non-
1terative. Our method can be readily extended to the solution
of three-dimensional inverse (ill-posed) boundary condition
problems governed by the Poisson equation.
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Figure 1. Radial temperature distribution computed by the
well-posed BEM (squares) compared with the analytic
results (line) of the Poisson equation on an annular domain

withry, =05m, r, =1.2m, g(xy)=1.0W m3, Ta=Tp
=0.0K.
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Figure 2. Comparison of errors in the computed radial
temperature distribution compared with the analytic results
of the Poisson equation on an annular domain with r, =
05m, rp=12m, gxy)=10Wm?3 T, =Tp =00K.

a) Ermror in numerical results obtained with our direct (well-
posed) BEM with Ta = Tb =0.0K,

b) Error in numerical results obtained with our inverse (iti-
posed) BEM with T, = (dT/dn), = unknown, T, =00 K,
(dT/dn),, = -0.3168184 K m™' (from the analytic solution).

The temperature differences were normalized with AT =
0.0625 K.
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Figure 3. Contours of constant error levels in computed
temperatures compared with the analytic results of the
Poisson equation on an annular domain with g = 0.5m, 1,

=12 m, g(x,y) = sir{{(r - ra)ry, - ra)]n} sinf W m’s,
(@T/dn), =0.0Km ', T, =00K.
a) Error in numerical results obtained with our direct (well-

posed) BEM with (dTIdn)a =0.0K m'1and Tb =0.0K.

b) Error in numerical results obtained with our inverse (il-
posed) BEM with T, = (dT/dn), = unknown, T, =0.0K,

(dT/dr'u)b = from the analytic solution. The temperature
differences were normalized with AT = 0.2 K.
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Figure 4. Specified (input) temperature percentage errors
on the outer circular boundary and computed (output)
percentage errors in temperature and heat flux on the inner
circular boundary for rag=05mr,=12m, gxy)= 100.0

wms, T4 = (dTAn), = unknown, Ty, = 0.0 K plus/minus

a randomized error, (dT. /dn)b =-31.68184 K m'1 (from the

analytic solution). The input temperature variances were:
a)o=0.1,0)0=02 ¢c)oc =05.

46

degrees K

0.0810092
0.0694364
0.0578637
0.0462903
0.0347182
0.0231455
0.0115727
-3.725E-9
-0.0115727
-0.0231455
-0.0347182
-0.046291
-0.0578637
-0.0694364
-0.0810082

wMp WA N®OP>PDOOMT

degrees K

0.0500266
0.0448831
0.0397397
0.03459862
0.0294528
0.0243083
0.0191658
0.0140224
0.00887892
0.00373546
-0.001408
-0.00855145
-0.0116949
-0.0168384

“NMWAMON®OP>POBOOM

PO

15

degrees K

0.0578341
0.0537192
0.0496043
0.0454895
0.0413746
0.0372597
0.0331448
0.0290299
0.0249151
0.0208002
0.0166853
0.0125704
0.00845556
0.00434068
0.000225806

SN RAEMON®OP>PODOOMN

0.0

-10 -0.5

Figure 5. Isotherms computed in the annular region with
our inverse (ill-posed) BEM with g(x,y) = g(x,y) = 1.0 W

m3, T, = unknown, Ty = 0.0K and interior temperature

measurements provided at: a) four, b) six, and ¢) nine
circumferentially equidistantly spaced isolated points. The
correct answer should be T, = 0.0 K.



