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Inverse problem of aircraft structural parameter
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In this article, a novel method for estimating inertial and stiffness parameters for aircraft
structures is presented. The method is based on a combination of the finite element method
(FEM) and artificial neural networks (ANNs). ANNs are known for their non-linearity
and input/output mapping features and the proposed procedure aims to develop network
architecture and training data capable of overcoming many of the shortfalls associated with
previous parameter estimation techniques, such as uniqueness of solution and inadequate
performance in the presence of uncertainties. The proposed parameter estimation technique
is used to determine inertial and stiffness properties of a linear FEM comprised of planar
Hermitian beam elements. It achieves this with surprising accuracy. The stiffness distribu-
tion is estimated from static load/deformation considerations, while the inertial distribution
is estimated from the modal characteristics of the model. Finite Element Analysis
in MATLAB® is used to generate the training data for the networks, which are simulated
using its Neural Network Toolbox.
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1. Introduction

1.1. Preface

As the demand for aerospace structures with greater reliability and efficiency increases,
so do the levels of complexity and computationally demanding analysis required
to engineer them. Classical techniques consistently fail to have adequate robustness and
dexterity when adapted to modern engineering problems. There is compelling evidence
that Soft Computing techniques like Artificial neural networks (ANNSs) hold the key to
solving traditionally awkward engineering problems by basing them on novel
approaches existing in nature. Mathematically speaking, the inverse problem is
ill conditioned, hence solution uniqueness is not guaranteed. It is here that traditional
techniques begin to falter, and those such as ANNs flourish. Since the task
of identifying aircraft structural parameters is an Inverse Problem, the proposed
application of ANNSs to parameter identification is anticipated to be a powerful and
useful means of addressing the many issues that arise when such a taxing task
is undertaken.

1.2. Literature review

Currently, there is little research activity involving the application of ANNs to
parameter identification techniques for aircraft wing structures, making the research
detailed here truly novel. There exists a large research effort into the application
of single objective [1] and multi-objective [2] optimization techniques to the task of
wing parameter identification, which for the most part are ‘direct’ approaches to the
problem; however their usefulness has not been discounted.

The centre of most of the research regarding parameter identification for aircraft
structures is in the area of genetic algorithms [2]. Although being based on frequency
response functions (FRFs), which are not pursued in the method proposed here,
this work did prove very useful in shedding light as to the major limitations and
shortfalls associated with both conventional and unconventional parameter estimation
techniques. These were namely the existence and uniqueness of a solution and
the ‘curse of dimensionality’.

A technique being researched increasingly in the field of parameter estimation is
that of model updating, which seeks to marry the fields of ANN and the finite element
method (FEM) [3]. While quite juvenile in its development, it promises to be an
exceptionally powerful technique for aircraft wing modelling and parameter estimation.
While not directly used in this research task due to its high complexity and advanced
nature, it provides a direction for further research activities.

There also exists a large body of research regarding static and dynamic modelling
of ‘equivalent aircraft wing structures’. By either employing equivalent beam-rod
aircraft wing models [4], equivalent plate models [5], or equivalent skin models [6], these
techniques aim solely to replace complex physical aircraft wings with simplified and
equivalent models that accurately mimic the performance of the actual physical wings.
Most of these studies are rather specific and problem dependent in their development,
and have the main limitation of being ‘direct/conventional’ approaches to the problem
of aircraft wing structural parameter identification, which is an approach avoided here.
It is anticipated that while this body of knowledge is not entirely aligned with the



Inverse problem of aircraft structural parameter estimation 353

proposed research, it still provides useful insight into conventional parameter
estimation techniques.

1.3. Background into neural networks

An ANN is an enormously distributed parallel processing unit, consisting of simpler
individual processing units which have inherent tendencies to store and retrieve
observed knowledge [7]. ANNs resemble the human brain, in that they acquire
knowledge and information from their environment which is stored within inter-neuron
connections.

ANNSs derive their problem-solving prowess from their massively parallel architec-
ture and ability to learn and generalize. They also possess input/output mapping
capabilities, adaptivity, robustness and an ability to cope with non-linearity. These
traits assist ANNs in solving complex and large-scale (e.g. inverse) problems that
are currently unsympathetic to solution.

The Neural Networks utilized here are implemented using the MATLAB® Neural
Network Toolbox. The reader is referred to [7] and [8] for further information
on Neural Networks and their implementation.

2. Parameter estimation using neural networks

2.1. Model development

In order to apply ANNs to the estimation of aircraft structural parameters, it is
necessary to construct a simplified, but representative model of the desired structural
component. As this study deals solely with the estimation of inertial (p4) and stiffness
(EI) parameters of a cantilevered beam, representative of a real aircraft wing,
an appropriate finite element cantilevered beam model was chosen. A schematic of the
beam model can be seen in figure 1.

Once a suitable model of the wing has been constructed and the properties of the
model that are to be identified established, exactly how these properties are to be
estimated needs to be ascertained. Hence, it is also necessary to obtain some empirical
or numerical data regarding the mechanical behaviour of the cantilevered beam, which
will be used as a gateway for establishing the desired inertial and stiffness parameters.
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Figure 1. Cantilevered beam model of a real aircraft wing.
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This is the essence of ANN training. In this article, two sets of simulated numerical
data form the basis of the training data for the ANNSs. The first are deformation
characteristics of the beam model when subjected to a variety of static loads, whilst
the second is the modal characteristics of the beam model from an eigenvalue analysis.
In practice, these data sets may be sought from actual experiments undertaken directly
on the structure under consideration. Alternatively, the data sets may be synthesized
from a detailed static and dynamic finite element analyses performed on the structural.
The manner in which this numerical data is used defines the manner in which
the estimation problem is formulated. The authors have highlighted three possible
approaches to the parameter estimation problem which are depicted in figures 2—4.
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Figure 2. FEM/eigenvalue approach using one ANN.
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Figure 3. FEM/eigenvalue approach using two ANNSs.
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Figure 4. Hooke’s law/eigenvalue approach using two ANNS.
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Approach 1 involved establishing a single ANN which takes natural frequencies (w)
as inputs, and determines pA4 and EI for each beam element in the model. Training data
was developed by solving the eigenvalue problem for models with varying mass and
stiffness properties. A diagram of this approach is shown in figure 2.

Approach 2 utilized two ANNSs; the first takes natural frequencies (w) and EI
as inputs, and outputs pA, while the second takes natural frequencies and pA4 as inputs
to determine EI. The training data was developed in the same manner as for the first
approach. A diagram of this approach is shown in figure 3.

In Approach 3, p4 and EI for each element in the beam model is estimated using
two different ANNs using two entirely different approaches. The stiffness properties
are estimated from static load/deformation considerations, while the inertial properties
are estimated from an eigenvalue formulation of the model. Hence, two sets of training
data are simulated, the first by using Hooke’s law to find EI from load/deformation
data, and the next by conducting the direct eigenvalue problem for the beam model,
calculating the natural frequencies of the beam from pA4 and EI. Upon training, one
ANN shows load/deformation data to yield elemental stiffnesses, while the other ANN
shows the previously calculated EI values, as well as the natural frequencies of the beam
model, to yield pA.

Hence, the problem reduces to first estimating E/ for each beam element from
load/deformation data of the beam model, and then estimating p4 from both the
natural frequencies of the beam and the previously estimated E7 values. This approach
is depicted in figure 4.

After considerable investigation into which of the three approaches was most
feasible for the task considered here, it was found that Approach 3 was the most
flexible, more manageable and had fewer inherent deficiencies and limitations.
Approach 1 was found to be the most impractical and most difficult to implement.
This is mainly due to the fact that, no matter how many elements were used to model
the beam, the resulting network was forced to estimate more parameters than it was
provided with (the size of the output vector was always greater than the size of the
input vector). Such a situation is not at all favourable for ANNS.

Approach 2 attempts to overcome the adverse problems associated with Approach 1
by reducing the size of the output vector and correspondingly increasing the size of the
input vector, through the use of two ANNs. However, this approach encounters grand
problems of its own, which are tied to the nature of eigenvalue problems. The natural
frequencies of a mechanical system are dependent on the mass and stiffness
distributions of that system, hence the frequencies can be thought of as a function
of mass and stiffness. In Approach 2, it is assumed that ecither the mass or stiffness
distribution of the beam is initially known. In general, this will not be the case, and
it imposes severe limitations on the applicability and generality of the parameter
estimation procedure. Thus it was not considered here.

Hence, Approach 3 is the nominated procedure for estimating the inertial and
stiffness properties of the beam model. Of all the three approaches, it is the most
physically intuitive method, relying heavily on real physical relationships between
parameters. This is a very important consideration, since most techniques used to
solve inverse problems are very much ‘black box’ approaches, with little regard for
the underlying physical relationships relating system parameters. While not entirely
‘white box” modelling, Approach 3 is an example of ‘grey box” modelling.
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Table 4. Mass estimation results.

Target (kg) Estimate (kg) Error (%)
84.2 89.58 —6.39
63.9 65.27 —2.14
49.80 48.25 3.12
32.3 29.99 7.16

Table 5. Accuracy of ANN at estimating beam structural properties.

Target (Hz) Estimate (Hz) Error (%)
16.4058 15.5049 5.49
79.6216 73.6173 7.54
201.8719 192.6780 4.55
388.8942 375.2358 3.51

Now the stiffness distribution of the beam and its total mass are shown to the
second ANN, which is used to estimate the inertial distribution for the beam model,
by modelling the inverse relationship existing between eigenvalues of the beam and
its structural properties. The results for the ANN used to estimate the inertial
distribution of the beam are listed in table 4.

Finally, to further test the robustness of the proposed method and validity of results,
the first four natural frequencies of the beam model are calculated from the ANN
estimates of the structural properties. These are then compared with the actual
first four natural frequencies of the beam model to establish the performance of the
proposed parameter estimation technique. The results are shown in table 5.

4. Discussion

It can be seen that upon review of the results presented, the estimated beam parameters
represent a beam that closely resembles the real physical beam, with regards to its
modal characteristics. Each ANN was able to accurately estimate the properties of the
beam model, which in turn led to very accurate estimates of the first four natural
frequencies of the beam model.

4.1. Advantages

The power of the proposed parameter estimation method lies in its ability to accurately
model the generally highly non-linear relationships that are inherent in such structural
and dynamic analyses. Hence the proposed parameter estimation technique is not
limited to linear static and dynamic systems, greatly enhancing the method’s generality
and applicability. The input/output mapping capability of ANNs bypasses the need
to formulate and work with any highly coupled and non-linear partial differential
equations (PDEs) relating the static and dynamic response of the beam to its
structural parameters. This greatly facilitates the identification of the required
structural parameters for the beam, since highly coupled non-linear PDEs (in general)
have no closed form solution and are extremely difficult to solve even numerically.
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It is indeed the task of each ANN to approximate such equations, which they inherently
do in an extremely efficient and accurate manner by learning how the static and
dynamic response of the beam relates to the structural parameters of the beam during
the training process.

4.2. Disadvantages

The main limitation of the proposed parameter estimation method is its heavy reliance
on the existence of a significant amount of mechanical data (experimental or numerical)
pertaining to the type of structure to be identified. The response of the beam structure
to some known static loading regime, as well as the free vibratory characteristics of
the structure must be known in advance. This data must be also be converted such that
it is suitable for use with a simple FEM which, depending on the initial form of the
data, may require significant post-processing.

An additional limitation of the proposed parameter estimation method is the use
of relatively few beam finite elements in the beam model to represent the aircraft wing.
It is well known that by increasing the number of elements used to model the beam, the
accuracy of results obtained from the finite element analysis will (to a point) increase,
particularly for dynamic analyses. In this case, a small number of elements were used
in order to strike a compromise between computational accuracy and efficient
implementation of the ANNs. Using more beam elements in the method will require
more training and testing data, more hidden layer neurons and longer training times.

Most important, however, is the increased computational expense (longer CPU
time and increased memory requirement) that accompanies an increase in the number
of beam elements used to represent the real beam. For greater than four beam elements,
the computational expense of the method becomes overwhelming, while the resulting
structural parameter estimates become less accurate, as compared to the four-element
beam representation of the physical structure. Hence, the use of four Hermitian beam
elements in the beam model was identified as providing the most accurate structural
parameter estimates for a modest computational cost.

Similarly, since the task at hand was to determine the structural parameters of the
beam from a relatively small amount of data regarding its load/deformation and modal
characteristics, the simple beam model used in the parameter identification procedure
may not be totally representative of the physical structure. Hence, the results achieved
must be considered in the light of the numerous assumptions made regarding the
loading regime, boundary conditions and geometry of the aircraft wing.

It is therefore apparent that the proposed parameter estimation method can be
improved in many ways from the discussion so for. Further sophistication of the beam
model accompanied with more physical data for the real aircraft wing will lead to more
accurate and realistic results. Further, post processing of current available real data may
lead to an increase in useful data that the proposed estimation technique can employ.

5. Conclusions

The inertial and bending stiffness distributions of a cantilevered finite element planar
beam were accurately estimated using the proposed hybrid FEM-ANN parameter
estimation technique. This simple beam model is capable of small deflections and
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rotations and is treated as a simplified representation of an aircraft wing. The stiffness
distribution is estimated from static load/deformation considerations, while the inertial
distribution is estimated from the modal characteristics of the beam model. The results
from the implementation of this proposed parameter estimation technique show that
the estimated parameters produce a beam that has modal characteristics that closely
resemble those of the real physical beam. The proposed parameter estimation method
showed proficiency at modelling the highly non-linear relationships between input
parameters and desired outputs. However, it is anticipated that further refinement
of the beam model will eventually lead to a model that is more representative of the
real structure, for which more accurate results may be obtained.
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