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ABSTRACT

A mathematical model and an explicit finite difference
iterative integration algorithm for two-dimensional laminar
steady flow of an incompressible viscous electrically
conducting but neutrally charged liquid containing
electrically charged particles and exposed to an externally
applied electrostatic field were developed. The system of
governing electrohydrodynamic equations was derived
from a combination of Maxwell's equations of
electrodynamics and the Navier-Stokes equations. An
idealized charged fluid was assumed thus making magnetic
fields negligible so that the Maxwell's equations reduce to a
charge conservation equation and an equation for the
electric potential. Thermally induced buoyancy was
incorporated via an extended Boussinesq approximation
while including Joule heating due to induced electrical
current. Latent heat of phase change during
melting/solidification was incorporated using an enthalpy
method that accounts for mushy region by varying
viscosity and electric charge mobility by orders of
magnitude between liquidus and solidus. Numerical results
demonstrate the existence of strong electro-
thermoconvective motion in the liquid during the
solidification/melting and quantify its influence on the
amount of accrued solid, deposition pattern of the
electrically charged particles inside the accrued solid, and
the melt/solid interface shape. There is clearly a stronger
influence of the applied electric field in reduced gravity than
under terrestrial conditions. This suggests an attractive
actively controlled solidification process involving dielectric
fluids in reduced gravity. It also offers for a possibility to
layer the crystals grown from a meit with electricaily
charged particles. The control algorithm could also be used
for predicting the deposition pattern of electrically charged
dopants or impurities inside a crystal grown from the melt.
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NOMENCLATURE
b = charged particle mobility coeff.[m2s-1V-1]
c = specific heat coefficient (m2 K-1 s-2]
D = charged particle diffusivity coeff. [m2 s-1]
D*, D:S = diagonal matrices
E=HEx,Fy)= electric field vector [V m1]
E = x-flux vector in Cartesian coordinates
F = y-flux vector in Cartesian coordinates

g = g(8x,8y)= gravity acceleration vector {m 52

I = identity matrix

k = heat conductivity coefficient (kg m s-3 K-1]
kg = Boltzman's constant (kg-1 s K]

] = length [m]

L = latent heat of solidification [J kg-!]

P = fluid pressure [N m-2]

Q = solution vector in Cartesian coordinates
q = electric charge/volume [kg m-1 s-2 V-1]
R = residual vector

S = source term vector

T = temperature {K]

t = time [s]

v=v(u,v) = velocity vector in Cartesian coord. [m s-1]
X,y = Cartesian coordinates [m}

o = thermal expansion coefficient [K-1]

B = artificial compressibility coefficient

€ = electric permitivity coeff.[kg m 52 V-2
€4 = fourth-order artificial dissipation coeff.

¢ = gravity potential [m-2s-2]

1) = electric potential {V]

n = dynamic viscosity coefficient (kg m-1 s-1]
P - artificial dissipation sensor function



p = fluid density [kg m-3)
6 = non-dimensional temperature difference

Superscripts
* = non-dimensional quantity

' = function of non-dimensional temperature

T = transpose of a matrix or a vector
- Subscripts

cold = cold wall

hot = hot wall

0 = reference values

] = liquid

liquidus = liquidus

s = solid

solidus = solidus

E = electrical

s = differentiation
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Fluid flow under the influence of a combined
electromagnetic field (Landau and Lifshitz, 1960) can be
described by two extreme models: electrohydrodynamics
(EHD) or magnetohydrodynamics (MHD). The EHD model
assumes a quasi-static electric field applied to a fluid
‘containing electrically charged particles and having
negligible magnetic induction effects (Stuetzer, 1962:
Melcher, 1981; Babski et al., 1989). The phenomenon of
electrohydrodynamic instability or the generation of
vorticity resulting from a non-uniform electric charge
distribution in the fluid under the influence of an electric
field is well known (Landau and Lifshitz, 1960). This is due
to the existence of the Coulomb forces (Eringen and
Maugin, 1990) that arise from the interaction of the electric
charges and the electric potential energy.

A number of experimental observations and several
simplified analytical studies have been performed on the
general topic of interaction of electroconvection and heat
transfer. A comprehensive review of the operational
principles of the EHD in single phase and condensation heat
exchangers is provided by Ohadi (1991). For example, the
injection of charges between two electrodes was dealt with
In detail by Zahn and Chatelon (1977). The EHD
ienhancement of heat transfer has been demonstrated by
‘Fujino et al (1989) for flows between parallel plates.
Investigations by Fernandez and Poulter (1987) revealed
the enhancement of heat transfer rates exhibited by liquids
flowing in ducts when subjected to an electrostatic potential.
Several incomplete models of EHD flows without phase
change have been numerically solved in the past (Belo and
Polezhaev, 1991; Lee, Dulikravich and Kosovic, 1991;
Dulikravich, Ahuja and Lee, 1993a; 1993b). The main
reason is the extreme complexity of the physical
phenomena and the corresponding mathematical models
{Babski et al., 1989; Hosseini-Sianaki et al., 1992:
Dulikravich and Kosovic, 1992; Dulikravich, Ahuja and
Lee, 1993a). On the other hand, several recent publications
‘addressed simulation of MHD solidification under the
influence of a reduced gravity (Dulikravich and Kosovic,

—

1992; Dulikravich, Ahuja and Lee, 1993c).

This paper represents a more thorough and precise
analytical model of EHD solidification/melting than in our
earlier work (Dulikravich and Kosovic, 1992). Specifically,
here we elaborate on a single set of partial differential
equations capable of describing the entire phenomena not
only in the all melt regions, but also in the mushy (mixed
melt and solid) regions, as well as in the all solid regions.
This is possible by modeling the solid phase as been yet
another liquid having all physical properties of the actual
solid, except for its viscosity which will be extremely high
but finite. In such a way, the actual solid phase regions will
be computationally predicted as regions having practically
zero internal velocity field. For the purpose of clarity, we
will often refer to the melt as "liquid" and to the extremely
viscous fluid as "solid".

A detailed numerical investigation of the impact of the
EHD on the distribution of surface heat fluxes during
solidification in reduced gravity and in terrestrial conditions
will be presented for a simple case of a closed two- -
dimensional container. The results demonstrate the
significant influence that this fundamental phenomena has
on heat transfer enhancement, the amount of accrued solid,
the deposition pattern of the charged particles inside the
solid, and the liquid/solid interface shape.

EHD SOLIDIFICATION: ANALYTICAL MODEL

The mathematical model presented in this paper consists
of an electrically neutral, homocompositional, viscous,
incompressible liquid that is seeded with one type of
charged particles having all physical properties identical to
those of its immediate neighbourhood media (all liquid,
mushy region, or all solid) except that the particles are
electrically charged. This model can be extended to
electrically non-neutral liquids and solids and multiple-specie
charged particles having different physical properties. In this
paper, the objective is to demonstrate only fundamental
effects of the applied electrostatic field for which a single-
specie formulation will suffice. Although many practical
solidification/melting processes involve turbulent flows, we
have decided to study solidification/melting with EHD
effects in laminar flows only, since reliable and universal
turbulence models for EHD flows do not exist. We will also
assume that there is no electrolysis or pool boiling in the
liquid and that charged particles do not undergo chaining
(no electro-rheological effects).

The system of governing equations for EHD can be
derived from a combination of Maxwell's equations of
electrodynamics and the Navier-Stokes equations (Lee,
Dulikravich and Kosovic, 1991; Dulikravich, Ahuja and
Lee, 1993a; 1993b). An idealized charged fluid is assumed
(Stuetzer, 1962; Melcher, 1981) and, therefore, induced
magnetic fields can be neglected. In the same model, the
magnetic field vector and the electric polarization vector are
assumed negligible compared to the electric field vector.
Consequently, Maxwell's equations can be reduced to an
electric charge conservation equation and a Poisson's partial
differential equation for electric potential since the electric
field is irrotational.

Starting with the complete Navier-Stokes equations for
compressible fluid flow and assumning that density variations



as a function of temperature are small, an extended form of
the Boussinesq approximation can be derived for the fluids
with temperature-dependent properties (Gray and Giorgini,
1976; Lee, Dulikravich and Kosovic, 1991). Thus, the EHD
governing equations are:

Mass conservation

v.v=0 (1)

Linear momentum conservation (inciuding thermal
buoyancy force and electrostatic Coulomb force)

p%:-Vp—pagAT-«—V- (w(vv+ (V) +qE (2)
Energy conservation (including Joule heating)
pc%:V-(kVT)+J-E 3)

Electric charge conservation

9 g j-=

ETa v.J=0 4
Electric potential field

v.E=1 &)

€

Notice that the induced electric current per unit volume is
given by Ohm's law (including a charge diffusion term)

J=q(v+bE)-Dvg (6)

The electric charge diffusivity coefficient D and charge
mobility coefficient b are related by Einstein's formula
(Melcher, 1981)

kB Tp
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where m; is the mass of a charged particle and p; is the

density of the electrically charged particles. Since the
electric field is irrotational, it follows that

E =-vo (8)

vip=-g ©

Non-dimensionalization can be performed with respect to
the reference values denoted by subscript "o", so that
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Typically, if To)g is the temperature of the cold wall and

Thot is the temperature of the hot wall, then ATq = Th, -
Tcold where Tg is often taken as the solidus temperature,
that is T = Tggjiqus: Similarly, Agg is the reference value
of the electric potential difference between the two wall
electrodes. Here, for simplicity it was assumed that the
electric permitivity coefficient, ¢, is constant.

Our objective is to use a single system of governing
equations in the entire domain which could locally contain
the liquid alone, mixture of the liquid and the solid (mushy
region where Tj;quiqus > T > Tsolidus ) Or the solid alone.
Physical properties of the liquid and the solid phases are
quite different. The mass fraction of liquid at any point in
the domain determines locally to what extent should
physical properties of the liquid or the solid phase be taken
into account. For example, latent heat released or
absorbed per unit mass of the mushy region is proportional
to the local volumetric ratio of liquid phase to the entire
local volume. This ratio is often modeled (Voiler and
Swaminathan, 1991) as

Vi 0 - Bgolidus 0

f=v7v;= ¢

6liquidus - Bsolidus (12)

where the exponent n is typically 0.2 < n < 5. We will
assume separate linear variations of density as a function of
non-dimensional temperature in the liquid and in the solid.
Thus, in the liquid we have

: 9(pi/pol) *
pr="1+—5| (6-8)=1-05(8-6) (13)

with a similar expression for the liquid simulating the solid
phase. For certain materials their physical properties can be

significantly different in the liquid as compared to its solid
phase. Density, viscosity, heat conductivity, electric charge
mobility, electric charge diffusion, and heat capacity in the
liquid can be expressed as arbitrary functions of non-
dimensional temperature
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with similar expressions for the liquid simulating the solid
phase. Here, we assumed thermal expansion coefficients and
electric permitivity coefficients to be temperature non-
dependent in both liquid and the solid phase. We can now
introduce non-dimensional numbers defined as:

Reynolds number Prandtl number
vol 1 c

Re =200 0 Pr= 210 (16)
Ko ko
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Charge diffusivity number Coulomb force number

Uo do Ao
D= -
E~ po Do SE Po Ivol* (19
Electric Prandtl number Electric field number
Lo Jo lo?
T — Ng = 20
Pre Po bo Apo E™ &0 Ago @

Consequently, the non-dimensional system of equations that
is valid throughout the computational domain comprising of
the liquid, the mushy region and the solid with separate
temperature-dependent physical properties in each phase
and containing electrically charged particles while under the
influence of electrostatic and gravitational arbitrarily
oriented external fields can be expressed in a conservative
form as:

Mass conservation equation
viv' =0 (1)

‘Linear momentum conservation equation

ov*
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Energy conservation equation
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Charge conservation equation
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and electric potential equation

V2 =-Neq" (=+ ) (25)

Here, we used the following symbols for the mixture
density, mobility, heat capacity, and thermal expansion

=x * * =x * * o
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uses the non-dimensional gravity potential ¢* defined as g*

= v*¢*. We used an enthalpy method to formulate the

equivalent specific heat coefficients in the liquid and the

. * * 1 of
solid phases as ¢, = ¢, s ° S, 36

respectively. Notice that this expression allows for the
latent heat not to be a constant, but to be released in the
mushy region according to the empirical law given in
equation (12). According to the Boussinesq approximation,
viscous dissipation can be neglected (Gray and Giorgini,
1976; Lee, Dulikravich and Kosovic, 1991) since its ratio
with respect to the convective term in the energy equation
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is of the order % which is typically a very small number.

EHD SOLIDIFICATION: NUMERICAL MODEL

The non-dimensional system of governing equations (21-
24) can be written in a fully conservative vector form in



physical Cartesian x,y coordinates as follows

E

18 =19

r

* * * *
* x,0E | oF | GE'S GF'S
D 2 o (E e E) 4 (10 oy (B E
Ix ox oy
9 9
_DNS[f( o 3*)+- (D Q*))
3 . xs 9Q" 3Q"
+(1-D (D =P + —5 Dy % +s* 30
(8x* NS ax* S ay" 2 0
» where the solution vector Q* and the vectors E*l, F'lare
Q'={ou v'e ¢} 31)
' N ¢
o* v o]
u*2 . 51* v*u*
ko) =%
* ¥ vV T +p
1= Uy S 2 > (32)
u¥e v'e
x %
by E, blE
* %
(4 O Repr? | 4 "+ reprg )]

with similar expressions for E" S and F *. The source vector is
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Here, diagonal coefficient matrices are

D*=diag[1
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For the purpose of developing a versatiie EHD

solidification/melting analysis code applicable to arbitrary
configurations where correct boundary conditions could be

easily enforced precisely at the boundaries, the system of
equations (30) was transformed in a fully conservative
vector form expressed in general curvilinear boundary-
conforming non-orthogonal coordinates (E,n) (Lee,
Dulikravich and Kosovic, 1991; Dulikravich, Ahuja and
Lee, 1993a; 1993b) as
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Here, J = det[d(E,n)/3(x,y)] and gjj is the metric tensor
=V X v X'

. . * *
given by g;; = j» while U and V= are the noo-

dimensionalized contravariant velocity vector components.
*
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A non-physical term, u representing an artificial
it

compressibility (Chorin, 1967) was added so that the system
(30) can be made non-singular and consequently integrated

in time simultaneously. The parameter § is a constant



specified by the user. It depends on the Reynolds number
and computationai grid clustering, orthogonality and
smoothness (Lee and Dulikravich, 1991). The artificial
compressibility concept is more consistent and easier to
code than an equally common pressure-based algorithm for
incompressible Navier-Stokes equations. The system of
coupled nonlinear partial differential equations (36) was
discretized using central differencing and integrated
iteratively using a four-stage explicit Runge-Kutta time
stepping (Jameson et al., 1981) given as

o= gn
Aam:-ymAt Rm-1
6n+1: QD+A64

m=1234 (39

where the iteration level is denoted by n, and each stage of
the Runge-Kutta algorithm by m. Here the coefficients are
Ym = 1/4, 1/3, 1/2 and 1, respectively. The residual vector

R is computed by moving all terms from the right side of
the system (36) to its left side and explicitly adding a fourth

. order artificial dissipation defined as (Steger and Kutler,
1977)

€4 Yy ( 84 64 ~ %
- 1 J
4] At(a§*4 * an*4 qQ)

(40)

to stabilize the algorithm which is otherwise prone to
oscillations due to even-odd decoupling because it uses
central differencing in space. The sensor function 1y was
based on normalized second derivative of electric charge
- distribution. Poisson's equation (25) for electric potential

- . was solved separately during each global iteration using a
~ | fast alternating-direction implicit algorithm. Wall boundary
-+ conditions for the pressure were computed from the normal
_ i momentum equation. Boundary conditions for electric

_ | charges on the electrically isolated boundaries were of the
= | Neumann type. Otherwise, electric charges were injected
- uniformly at one boundary and their pattern was computed

- at the opposite boundary.

 NUMERICAL RESULTS

Based on our theoretical model and the numerical
algorithm, a FORTRAN code was developed capable of
predicting details of the convection and conduction heat
transfer in EHD flows involving solidification/melting.
Although the code is applicable to arbitrary two-
dimensional configurations, for the purpose of analyzing the
fundamental phenomenas we chose to numerically test
solidification processes in a simple configuration consisting
of a closed horizontal two-dimensional rectangular container
of aspect ratio 2:1 (lo = 0.033333 [m] in height) fully filled
with the molten gallium arsenide (Brodsky, 1990;

Sabhapathy and Salcudean, 1990). The container area was
discretized with a symmetrically clustered orthogonal

computational grid of 60 x 60 rectangular grid cells.

Physical properties used in this work are summarized in
Table 1 and the corresponding non-dimensional numbers
are given in Table 2. Certain properties were estimated
based on the analytical relations given by Eringen and
Maugin (1990) and by Kuffel and Zaengl (1984). For
example, since we did not have reliable information as to
the typical level of the electric charges and mobilities, we

used q; = 1 X107 [C m™] and by = 1 x108 [m2 V-1 &1}

as the reference values which correspond to an aqueous
biological solution (Saville and Palusinski, 1986). Since there
is no mean velocity in this type of flows, we defined

Reynolds number as Re = (Gr)o'5 which determines the
reference velocity in full gravity as Vo = 0.02473 [m s]

and in reduced gravity test cases as Vo = 0.002473 [m s'l].

All other reference values used in the non-
dimensionalization corresponded to the liquidus temperature
(Table 1). The following non-dimensional numbers were

used in all the test cases: Pr = 0.068, Ste = 5.98 x10~3 , DE

= 1.95x10% Top wall was specified as uniformly cold at
=-05 (Tcold = 1505.995 [K]), bottom wall was uniformly

hotat 6 =0.5 (Thot = 1515.995 K), while vertical walls

were adiabatic. Gravity vector was applied vertically
downward. The user-specified parameter ¢4 in the fourth

order artificial dissipation was g4 = 0.0005. Initial guesses
were v=0,p=0,6=05g=q,(orq=0), and E =

constant (or £ = 0). Several distinct test cases were
numerically analyzed.

Case 1: There was no electric field applied in this case and
no charged particles were introduced while full gravity
force was applied. This is the typical case of solidification
from above where two strong thermo-convective counter
rotating vortices (Fig. 1a) exist in the steady state situation
below the solid that accrued on the top wall. Strong
temperature gradients exist inside the solid and the
solid/liquid interface is highly curved (Fig. 1b). Due to the
strong convection in this test case the computed normal
temperature gradients (negative) at the bottom wall and at
the top wall are highly nonuniform (Fig. 1c). Notice that
differences in the magnitudes of the arrows in Figure Ic at
the top and bottom walls are due to the fact that thermal
conductivities of liquid and solid GaAs are quite different
(Table 1). This case resulted in 579 solid cells. When
running this same test case with 1% of terrestrial gravity

(g = 0.01), only mild convection started initially.
Nevertheless, as the solidification front advanced
downwards from the top wall the effective melt height
reduced thus strongly reducing Gr and the effective
Rayleigh number (Ra = Gr Pr). Consequently, the effective
Ra number became subcritical and thermal covection
ceased altogether. As a result, this test case produced a
steady state with pure conduction in the accrued solid and
in the melt below. The predicted isotherms were practically
horizontal and the number of predicted solidified
computational cells was 1217.

Case 2: A uniform external electrostatic field of 5000 V was
applied in this case acting downwards as was the full gravity



force. We assumed that the charged particle concentration
was uniform at the lower wall while treating the top wall as
an exit boundary for the charged particles since the side
walls had a Neumann condition imposed on electric
charges. Negligible differences between the results in this
case and in the previous case have been observed.
Specifically, the computed velocity field (Fig. 2a),
temperature field (Fig. 2b) and the normal derivatives
(negative) of temperature at the top and the bottom walls
(Fig. 2¢) are practically the same as in Figures la, 1b and
le. Consequently, an almost identical number of 566
solidified computational cells was predicted. This is due to
the strong thermal convection that exists in the full gravity
suggesting that a stronger electric field is needed for its
control.

Case 3: A uniform external electrostatic field of 5000 V
was applied in this case acting downwards as was a low

normalized gravity force of g* = 0.01. We enforced a
uniform distribution of the charged particles at the lower
wall while treating the top wall as an exit boundary for the
charged particles since the side walls had a Neumann
condition imposed on electric charges. The resulting
Coulomb force in this case was strong enough to overcome
- the viscous force and cause a pure electro-convection (Fig.
5a) consisting of two weak counter-rotating vortices. The
predicted isotherms (Fig. 5b) are mildly curved, while the
predicted normal temperature derivatives at the top and the
bottom walls (Fig. 5c) are only mildly non-uniform. There
were 1206 solidified computational cells predicted in this
test case.

Case 4: In this case an external electrostatic field of 15000
V was applied horizontally while full gravity acted vertically
downwards. A uniform electric charge density was specified
at the left vertical wall, normal derivatives of charges were
zero at the top and the bottom walls, and charges were
computed at the right vertical wall. Because of the strong
interaction of thermal buoyancy and the electro-convection,
this case resulted in a highly asymmetric solution containing
a complex pattern of counter-rotating vortices (Fig. 3a).
The asymmetry is obvious in the predicted thermal field
(Fig. 3b) and the corresponding normal temperature
~derivatives at the top and the bottom walls (Fig. 3c). This
i test case resulted in 609 solidified computational cells.

.Case §: In this case an external electrostatic field of 10000

V was applied horizontally while reduced gravity (g* =
0.01) acted vertically downwards. The electric charges were
specified as uniform at the left vertical wall. A dramatic
change of pattern of the resulting electro-convection
consisted of a single asymmetric vortex (Fig. 6a) causing
also a slight asymmetry in the predicted isotherm pattern
(Fig. 6b) and the normal temperature derivatives at the top
and the bottom walls (Fig. 6¢). In this case there were 1195
solidified computational cells predicted.

CONCLUSIONS

. A complex analytical model capable of simultaneously
- capturing thermo-convective and electro-convective motion

inside a liquid, details of the mushy region, and the accrued
solid phase has been successfully numerically implemented
for the cases with electrically charged particles and arbitrary
externally applied electrostatic and gravitational fields.
Numerical simulation of two-dimensional solidification from
above of a GaAs melt reveals that the electrostatic field has
definite consequences on the thermal field inside the melt
and the solid accrued because of the creation of electro-
convection. Consequently, predicted wall heat fluxes with
the applied electrostatic field differ significantly from those
without the electric field. These effects are more
pronounced in the reduced gravity than in the full gravity
environment for low Rayleigh numbers. Computational
results indicate extreme importance of understanding the
interplay between the externally imposed electric and
gravitational field strengths and orientations. If the
solidification process had been simulated with a time-
accurate code, precise impurities deposition pattern inside
the solid could be predicted. This suggests possibilities to
develop an algorithm for a judicious application of the
external electric field to actively control impurities or
dopant deposition pattern in the crystal, heat transfer, the
amount of solid accrued and the solid/liquid interface shape.
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Physical property Numerical value Source

pol [kg m3] 5710 c

pos [kg m3] 5196 a (page 1.1)
Cor [J kgl K-1) 434 c

Cos [ kg'l K-1] 416 a (page 1.8)
kot [W mrl K-1] 17.8 c

kos [W m-1K-1) 7.0 c

Tol K] 1511 c

Tos (K] 1510.995 c

bo [m2 V-1 s1 1x108 e

bos [m2 V-1s-1] 1x 1010 assumed
Dot [m? s-1] 2.5x% 1071 b (page562)
Dos [m2 s1] 2.5x 10714 assumed
ag K1) 1.87x 104 ©

aos [K1] 7.95x 1076 a(page 1.7)
ot kg ! 571 2.79x 103 c

Hos [kg m1 571 2.79 x 102 specified
g0l [kgms2v-2 1x10°10 e

gos [kg ms2V-2] 1x 1010 assumed
Lo [J kg1 726 000 c

Table 1. Physical properties for GaAs: a) Brodsky, b)
Eringen and Maugin, ¢) Sabhapathy and Salcudean, d)
Kuffel and Zaengl, e) Saville and Palusinski.




Case no.] | Caseno.2 |Caseno.3 |Casenod |Caseno.S
g 1 1 0.01 1 0.01
Ap(V) |0 5000 ¢ 5000 * 15000 — | 10000 —
Re 1687 1687 168.7 1687 168.7
Gr 2.85x10% {2.85x10° |2.85x104 [2.85x106 |2.85x104
Ec 1.41x10-7 | 1.41x10-7 |1.41x10-9 |1.41x10-7 |1.41x10-9
NE -NA- 0.222 0.222 0.07407 0.111
SE -NA- 0.143 14.3 0.429 28.6
Pre -NA- 9.77x10-3 19.77x10-3 |3.26x10-3 |4.88x10-3
Table 2. Input parameters for EHD solidification of GaAs melt in

a 2:1 aspect ratio closed container. Arrows designate
orientation of the uniform electrostatic field vector E.

Figure la. Case 1: Velocity vector field due to thermo-
- convection in full gravity without electric field and charged

particles. Solid accrues from top wall.
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Figure 1b. Case 1: Isotherms in the accrued solid and in
the melt due to thermo-convection in full gravity without
electric field and charged particles.

Figure 1Ic. Case 1: Normal temperature derivatives
(negative) on the top and the bottom walls due to thermo-
convection in full gravity without an electric field and
charged particles.
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Figure 2a. Case 2: Velocity vector field due to combined Figure 3a. Case 3: Velocity vector field due to electro-

thermo-convection and electro-convection in full gravity.
Electric field (Ag = 5000 V) acts vertically upwards. Solid
accrues from top wall.
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convection in reduced gravity. Electric field (Ap = 5000 V)
acts vertically upwards. Solid accrues from top wall.

Figure 2b. Case 2: Isotherms in the accrued solid and in
the melt due to thermo-convection and electro-convection
in full gravity. Electric field (Ag = 5000 V) acts vertically
upwards. Solid accrues from top wall.

=D
T
==
=
=
— =

Figure 3b. Case 3: Isotherms in the accrued solid and in
the melt due to electro-convection in reduced gravity.
Electric field (Ag = 5000 V) acts vertically upwards. Solid
accrues from top wall.
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Figure 2c. Case 2: Normal temperature derivatives
(negative) on the top and the bottom walls due to thermo-
convection and electro-convection in full gravity. Electric
field (Ag = 5000 V) acts vertically upwards. Solid accrues
from top wall.

Figure 3c. Case 3: Normal temperature derivatives
(negative) on the top and the bottom walls due to electro-
convection in reduced gravity. Electric field (Ag = 5000 V)
acts vertically upwards. Solid accrues from top wall.
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Figure 4a. Case 4: Velocity vector field
thermo-convection and strong electro-convection in full
gravity. Electric field (Ap = 15000 V) acts horizontally from
left to right. Solid accrues from top wall.

Figure 5a. Case 5: Velocity vector field due to electro-
convection in reduced gravity. Electric field (Ap = 10000
V) acts horizontally from left to right. Solid accrues from
top wall.

Figure 4b. Case 4: Isotherms in the accrued solid and in
the melt due to thermo-convection and strong electro-
convection in full gravity. Electric field (Ap = 15000 V) acts
horizontally from left to right. Solid accrues from top wall.
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Figure 5b. Case 5: Isotherms in the accrued solid and in
the melt due to electro-convection in reduced gravity.
Electric field (Ap = 10000 V) acts horizontally from left to
right. Solid accrues from top wall.
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Figure 4c. Case 4: Normal temperature derivatives
(negative) on the top and the bottom wails due to thermo-
convection and strong electro-convection in full gravity.
Electric field (Agp = 15000 V) acts horizontally from left to
right. Solid accrues from top wall.

Figure 5c. Case 5: Normal temperature derivatives
(negative) on the top and the bottom walls due to electro-
convection in reduced gravity. Electric field (Ap = 10000
V) acts horizontally from left to right. Solid accrues from
top wall.



