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ABSTRACT

This work deals with the development of a numerical
algorithm for the prediction of magnetic force lines inside a flowing
solidifying melt with the ultimate purpose of simulating and
controlling alignment of short nickel coated fibers during the curing
process in composites. A complete mathematical model and an
accompanying computer program have been developed for the
computational simulation of a steady laminar flow of an
incompressible fluid with strong heat transfer (involving
solidification) and a strong superimposed magnetic field. An
extended form of the Boussinesq approximation allowing for
temperature-dependent physical properties of the fluid including
latent heat of phase change was incorporated. This formulation
simultaneously predicts detailed velocity, pressure and temperature
fields for the moving fluid while capturing the forming solid phase
by using a single computer code. The same code can simulate the
reverse process of thawing or melting of the solid phase. The
computed example configurations involve a two-dimensional closed
container, a straight and a U-shaped channel, and a passage of an
arbitrary shape. It was found that the presence of an external stcady
magnetic field: a) diminishes flow field vorticity, b) causes higher
velocity gradients within the boundary layers, c) inhibits the solid
phase accretion rate and the total amount of solid accrued, and d) is
?blc 10 orient magnetized fibers along the lines of local magnetic
orces.

NOMENCLATURE

¢, = specific heat at constant pressure, Jkg1K-!
¢, = specific heat at constant volume, J kgt K-!
E =clectric field, Vm!

Ec = Eckert number

Fr =Froude number

g = gravity force per unit volume, m s

Gr = Grashof number

H  =magnetic field, H kg™!

Ht = Hartmann number

J  =eclecmic current density, A m™2

k = heat conductivity coefficient, W m-! K1

i = length, m T
L = latent heat of liquid/solid phase change, Jkg™!

Mm = magnetic Mach number (Mm? = ReRm/H12)
p = pressure, kgm! 572

Pm = magnetic Prandtl number

Pr = Prandd number

Re = hydrodynamic Reynolds number

Rm =RePm = magnetic Reynolds number

S = volume fraction of the liquid phase
t = time, §
T = absolute temperature, K
AT, = T} - Te = temperature difference, K
v = (uv,w) = velocity vector, m s°!
x.y,z = cartesian coordinates, m
a = thermal expansion coefficient, K-1
B =anificial compressibility coefficient
8 = nondimensional temperature
p  =density, kg m3
N = coefficient of shear viscosity, kg m™1 571
{ = coefficient of secondary viscosity, kg m*! s°!
£, 1, {= non-orthogonal grid-following coordinates
g = magnetic permeability, Hm"!
o =clectrical conductvity, Q! m-!
¢ = nondimensional gravity potential
® = viscous dissipation function, kg m! s-3
subscripts
c = cold wall
h  =hotwall
o =reference values
sol = solidus
liq =liquidus
superscripts
* = nondimensional values

= functdon of nondimensional temperature
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INTRODUCTION

It is well known that the defects in short fiber composites
that are mainly due to uncontrolled fiber orientation during
composites manufacturing can reduce the swength of the composite
(Cranston and Reitz, 1980; Hatta and Yamashita, 1988). Thus, it
would be very desirable to perform a solidification of the resin

where the local concentration and orientation of the fibers is fully
controlled. The objective of this paper is to elaborate on a
mathematical model and an accompanying numerical algorithm that
are capable of simulating fully three-dimensional ferromagnetic fluid
flow (representing the resin and the suspended nickel coated fibers)
and solidification under the influence of an arbitrarily distributed and
oriented external magnetic field. The basic idea is that the coated
fibers will align with the local magnetic lines of force. The pattern of
these lines depends on the flow field and the variation of the
externaly applied magnetic field.

During a controlled solidification process (Dulikravich and
Hayes, 1988), it is very important to fully understand the process of
solid phase formation. The accumulated solid phase effectively
reduces and deforms the cross sectional area of the passages and
causes significant local variations in pressure and flow field shear
stresses. During the solidification or melting process, secondary
flows are generated due to strong thermal buoyancy forces. These
processes cannot be effectively controlled in the case of strong heat
transfer, except if influenced by a global body force.

One such body force is the general electromagnetic Lorentz
force which is created in any electrically conducting fluid when
cither 8 magnetic field or an clectric potential ficld is applied. It has
been shown (Lee and Dulikravich, 1991a; Lee and Dulikravich,
1991b; Lee, Dulikravich and Kosovic, 1991a; Dulikravich, Kosovic
and Lee, 1991a; 1991b; Kosovic, Dulikravic and Lee, 1991,
Dulikravich and Kosovic, 1992) that the magnetic field can eliminate
vorticity from the flow field, while the electric field can enhance it
(Lee, Dulikravich and Kosovic, 1991b). During the curing process
in composites manufacturing, we usually work with electrically
conducting resins. They are conducting either because of the
presence of iron atoms, salts, or acids. Nevertheless, if fibers are
coated with a thin layer of a ferromagnetic material, the fibers will
respond to the applied clectromagnetic fields by rotating and
rranslating so that they become aligned with the magnetic lines of
force (Hatta and Yamashita, 1988; Yamashita et al, 1989; Gandhi,
Thompson and Choi, 1989). This is especially true for short fibers
(Hatta and Yamashita, 1988). Thus, if a relatively strong magnetic
field is applied, the flow field will respond (Heiser, 1964; leviev
and Levy, 1989; Ozoe and Okada, 1989) and the solid/liquid front
shape and speed could be manipulated (Vives; 1989; Dulikravich,
Kosovic and Lee, 1991b; Dulikravich and Kosovic, 1992). In this
work we have formulated the entire problem as time-dependent and
three-dimensional although our computational results will be for
stcady two-dimensional situations only.

ANALYTICAL MODEL

From Maxwell's equations and 2 relationship between an
induced electric current, J;, an electric field, E;, and an externally

applied magnetic field, H;, in a moving media given by Ohm's law

Ji= 0 (E;+pegvH,) M
where o, i, and v; are the cocfficient of electric conductivity,
coefficient of magnetic permeability, and fluid velocity vector,
respectively, we can derive the magnetic field transport equation
(Chandrasekhar, 1961; Pai, 1962; Stuetzer, 1962; Jeffrey, 1966;
Lee and Dulikravich, 1991a) as

(2)

Subscripts after the comma designate partial differentiation with
respect to the variable or variables that follow the comma. The entre
set of Navier-Stokes partial differential equations for the fluid flow

1
Hi,- (V,‘ H;-v Hj).j = 0o Hi;
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and the magnetic transport partial diffcr.emial equations can be non.
dimensionalized by introducing the relations

Vi i . _'Y% _p
o —— = t = =
Vx Vo X; lo 10 P po V°2
©)]
. H.
g':é Hi'=—-l' 9=AT ¢’ = £ 4)
g H, AT, Cpo AT,

where T, is the temperature of the cold wall and Ty, is the

temperature of the hot wall, so that AT =T - T, and AT, =T}, - T,..
Here, subscript zero designates reference values, while asterisk
designates non-dimensional variables.

In this work only incompressible fluid flow will be
considered, while accounting for thermal buoyancy via an extended
Boussinesq approximation in the form which is valid even when
fluid properties vary as a function of temperature (Gray and
Giorgini, 1976). Fluid density and coefficients of specific heat,
viscosity and heat conduction can be expressed as general functions
of temperature (Gray and Giorgini, 1976)

P =pop'(8) Cp = Cpo Cpo'() (5)

n=n,M'06) k =k, k'(8) (6)

where the primed values denote functions of non-dimensional

temperature, 8. Here, p, 1, ¢, and k are fluid density, cocfficient
of viscosity, coefficient of specific heat at constant pressure, and
coefficient of thermal conductivity, respectively. The non-
dimensional density p' can be expanded in a Taylor series while
retaining only the first order term

p=1-0AT=1-a 8 %)
so that
] ] AT
a.=9_p_ =£‘£2?_p_ =___°g%=AToa (8)
38 p, AT, 00 p,

It can be assumed that the cocfficient of thermal expansion, «, is
constant in the range of temperatures which are of interest in a

particular case. When the term (ATo a) « 1, equations more general

than what is known as Boussinesq approximation can be derived
for the fluid with non-constant propertics (Gray and Giorgini,
1976). For incompressible flows ¢, = ¢,. Thus, it follows that de =
¢, dT = ¢, dT. In the case of a liquid/solid mixture the enthalpy per
unit mass of the mushy region becomes

dh=c,dT+ LdS 9)

where L is the latent heat (enthalpy of solid/liquid phase change) and
S is the volumetric fraction of the solid phase. Then

v; h'i=cp viT;-L v;S;= (cp- LS.T) v; T, (10)
Let c,.=cp-L ST be an equivalent specific heat so that

, LSeb7
Cpe = Cpo Cpe = Cpo (cp ’_—c;_) (I
where S could be an arbitrary function of 6 and ¢p." is the non-

dimensional equivalent specific heat. This approach is called the
"enthalpy method" (Poirier and Salcudean, 1986). With the
following non-dimensional groups
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the conservation laws in non-dimensional form become
vi.i = O (13)
1 , Gr8 Hd
vie+ (vi Vj)J = Re (n Vu)J_ “Pi+ R 5 ¥ ReRe (H; H) &
(14)
o1 . EcH/?
Bu+vif;= RePro,, (ko) + Rm?Rec o eij_xﬁank.me.]
(15)
1
H,- (Vj H;-v; Hj).j =R Hiij (16)

It should be pointed out that the viscous dissipation can be neglected
from an order of magnitude analysis since

0. c T
o “pe Gt Re
o® T E >>>1 an

The combination of non-dimensional hydrodynamic, hydrostatic
and magnetic pressures is

¢

Fr2 as

}-)=p+ +FA_m—2HiHi

where ¢ is the non-dimensional gravity potential defined as g; = ¢ ;.

NUMERICAL ALGORITHM

~ Equations (13-16) represent a global system of coupled non-
linear partial differential equations. The global system has been split

in two subsystems in order to simplify pro ing. The Navier-
Stokes equations (13-15) constitute the first subsystem and magnetc
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field transport equations (16) constitute the second subsystem. To
integrate each subsystem, the explicit Runge-Kutta time stepping
method (Jameson et al., 1981) was used in an alternating manner
(Lee and Dulikravich, 1991a).

The general form of cach subsystem is the same. The non-
dimensional three-dimensional Navier-Stokes equations for
incompressible flows in conscrvative form expressed in generalized
curvilinear non-orthogonal coordinates are ,

oE  oF oG
t——+—=
o on g

D?+8S L)

where Q is the solution vector and E, F and G are the flux vectors.

The transformed source vector is denoted by S. Definitions of these
vectors will be given for both systems of equations (Navier-Stokes
and magnetic transport) scparately, For the Navier-Stokes
cquations, the generalized vectors are defined as

—~_ o 9) T — \"% ]
p/B . .
Uu + &,p Yu +n,p
u
~ 1 = 1 A -
Q:j- v E:j‘ UV+§yp F=J_ VV+nyp
— Y - - U - . ve A
Wu + §,p d n'
G=1 S -3 A I P B
=3 Wv+{p | S=|9 | D=p (20)
- - n'
Ww + L,p d, "
wo - - LPr cp'_
Ld,
9(g.n,%)

is the Jacot<an determinant of the geometric

where J = Sy
transformation from physical Cartesian coordinates x, y, z into g,

{ computational space.
The system of equations given by (13-16) is not hyperbolic
since there is no physical time derivative term in the mass

conservation equation. Consequently, the system cannot be
integrated simultancously. In order to intcgraic the system
simultaneously and obtain a steady state solution, an artificial

3 (;
compressibility (Chorin, 1967) term, 3t (‘ép}} has been added to the

mass conservation equation (13). Here, p is an arificial
compressibility coefficient, a user specified parameter that depends
on the problem geometry, grid, flow parameters, efc. (Lee and
Dulikravich, 1991c). In the steady state limit the artificial
compressibility term tends to zero. Thus, it does not influence the
steady state solution.

The source vector S contains the influence of the
ponderomotive force due to the magnetic field and the thermal
buoyancy force. Its components are given as



.

- H® | égﬂz) dJ DHZ) E{HEHI) Grd
ds = RmRe _55( )+ P + atL 1 t oy (23)

2

~ 1 EHIl52 . 52,

dee—m=221Pt 4 PY o+ P2 (24)
57 Cpe Rchz[ vl 3]

where H,, H,, H, are the components of the magnetic field vector in
Cartesian coordinates, €z €y, ey are components of the unit vector in
the direction of gravity force, and

ﬁ] = E(Hzgy; Hﬁ)*__a_{ﬁz“v; Hynz)*_i(Hsz; Hsz)
95 on 9

(25)
= 0 ngz - Hzgx 0 Hxnz - Hznx 0 Hsz - Her
), a0t

(26)
5, =£(H:.§x . Hx§,)+g{ﬂvn‘ - Hgl)+g(ﬂyf;x : H@)

% : on J % Qen

The diffusion term in general curvilinear coordinates is

Dﬁ{?gij(xé) , j]i 28)

The metric tensor is defined as

_ 3%i% (29)
gij - aA al\

Xj X
where X; is the Cartesian coordinate vector and X; is the curvilinear
coordinate vector:

%=EnQT (30)

Here, the superscript T rcpresents a transposc. The contravariant
components U, V, W of the velocity vector are related to the velocity
components u, v, w in the Cartesian system as follows

X =(x,y. 27

U g, & & | ¢
vislnanym |V €3]

\%% Cx Cy C.vz w

A A A .
Similarly, the contravariant components He, Hy, He of the magneuc

field vector are defined as
A
H§ éx iy () Hy
n|T Nx ny N H)’ (32)
Hg Cx cy Cz Hz

For the subsystem containing the magnetic field transport equations,

T

the solution vector Q, the flux vectors E, F, G, and the source

vector S are

H, t q
H,U - uHg H,V - an
~ 1 = 1 A = 1 A
Q—_T Hy v E:j‘ HyU - VH{ Fﬁ HyV - VH.,.|
H, H,U - wH; H,V - wi,
A
wa - UHC
~ 1 A - = 1
=y HyW-vH | §=0 D=p-1 (33

H,W - wh

In the case of three-dimensional magnetohydrodynamics, the
system of eight partial differential equations needs to be solved by
integrating intermittently a subsystem of five fluid flow equations
and a subsystem of three magnetic field transport equations and
rransferring the information through the source-like terms (Lee,
1990: Lee and Dulikravich, 1991a). The explicit Runge-Kutta time-
stepping algorithm and finite difference scheme with artificial
compressibility (Chorin, 1967) were used in the gencral non-
orthogonal curvilinear boundary conforming coordinate system. The
explicit time integration scheme was used because il can be
efficiently vectorized and because additional equations can be easily
added to the system. The rate of convergence of explicit schemes is
generally much lower than for implicit schemes, but when fully
vectorized, these schemes need less central processor unit time to
reach convergence than implicit schemes. This advantage of explicit
schemes is more pronounced when three-dimensional problems with
complex geometries are studied.

COMPUTATIONAL RESULTS

A computer code written in Fortran was decveloped for
simulation of two-dimensional solidification processes under the
influence of a steady externally applied magnetic ficld. Three
configurations were tested numerically: a closed container cooled
uniformly from above, a straight channel flow with non-uniformly
cooled top and bottom walls, and a U-shaped channel with non-
uniformly cooled inner and outer walls. Non-dimensional
parameters used in the calculations are summarized in Table 1.

Passage | Closed Straight U-shaped | Arbitrary
Melt (silicon) {undefined) | (undefined) | (saline)
Gr 56.769x106 |0 0.0 0.0
Re 8300 100 20 234.44
Ec 7.869x108 | |
6.46 x 10-8

p

! 0.0116 7.9 7.9 36.9
|3 -6

m 4.44x10 1 1 2 68 % 10°3
Ht 209.3B, or Sor 5 or 0.0 or

2093 B, 10 10 0.5027 B,

TABLE 1. Nondimensional Numbers

T w



Mathematical and numerical models for solidification of a fluid
flow were first tested in the case of a closed rectangular container of
aspect ratio 3:1. It was discretized with 60x60 gnd cells that were
clustered towards the four walls, Vertical walls were thermally
insulated, while the top wall had a uniform undercooling non-

dimensional temperature of 6 =-10. At the same time, the bottom

wall had a uniform non-dimensional temperature of 6 = 1. A
uniform magnetic field of Hi = 209.3 B, was applied vertically
downward. We have specified B, = 1 Tesla. The resulting velocity
vector field (Fig. 1a) indicates strong recirculation of the melt due to
thermal buoyancy. The solid accrued is visible towards the top wall.
The resulting magnetic force lines (lines that are locally tangent to
the magnetic force) are depicted in Fig, 1b indicating that the fluid
motion has distorted the magnetic force lines.

When a stronger magnetic field (Ht = 2093 B,,) was applied,
the thermal buoyancy flow was significantly suppressed (Fig. 2a)
and the magnetic force lines straightencd somewhat (Fig. 2b). The
amount of solid accrued at the top wall is smaller than with Ht =
209.3 B,. :

~ The second configuration studied was a straight two-
dimensional channel of aspect ratio 3:1 with the flow direction from

left to right (Fig.3a). A uniform non-dimensional temperature 6=1
was imposed at the inlet. Along the walls a smoothly varying

cooling was specified as 8 = 1 - 11 sin (t x/3). Both velocity
components were specified at the inlet, while combination of
hydrostatic, hydromagnetic and hydrodynamic pressurc was
specified at the exit. Properties of the fluid flow were defined by the
non-dimensional numbers which are given in Table 1. All physical
properties were assumed not to vary with temperature, The flow

field was discretized with 60x60 non-clustered grid cells.

The first test case represents a solidifying flow field with an
imposed uniform magnetic field of Hi = 5 acting vertically
downward. The computed velocity vector field clearly outlines the
solidified zones attached to the channel walls as given in Fig. 3a.
Computed lines of magnetic force are given in Fig. 3b indicating that
they have been strongly affected by the flow field.

To test the influence of a stronger magnetic field on
solidification, a test run was performed with the viscosity varying
linearly in the mushy region and 2 vertically downward pointing
constant magnetic field of He = 10. The computed velocity vector
field (Fig. 4a) and the magnetic lines of force (Fig. 4b) demonstrate
that the magnetic field is affected even further by the flow field. The
presence of a magnetic field inhibits the growth of the solid layers
because of the higher speed of the fluid next to the solid/fluid
interface. This is typical for magnetohydrodynamics.

The next test configuration represented a solidifying flow in a
U-shaped channel of constant width where the fluid enters at the
upper end and exits at the lower end. The same type of boundary
conditions was imposed on inlet temperature and velocity as in the
case of a straight channel. Along the straight pans of the walls the

temperature was kept constant (8 = 1). Along the curved parts of
the walls the non-dimensional temperature varied according to 6=1
<11 sin (n/2 - ) where @ is the angle between the wall point and

the horizontal. The computational grid had 264x60 cells that were
clustered towards the walls. Non-dimensional numbers used with
the U-shaped channel are given in Table 1.

In the first test case a uniform magnetic field (Ht = 5) was
applied perpendicular to the walls of the entire U-shaped channel.
The computed velocity vector field (Fig. Sa) demonstrate that the
magnetic field effectively eliminates flow recirculation regions. The
predicted magnetic force lines (Fig. 5b) are significanstly distorted
from the straight-line pattern that would connect inner and outer
walls if there would be no flow through the channel.
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In the second test case a stronger magnetic field (Hi = 10) was
applied in the same manner resulting in a dramatic change in the
flow pattern (Fig. 6a). Plot of the magnetic lines of force (Fig. 6b)
demonstrate their complex pattern that could be exploited to posidon
and orient short feromagnetically coated fibers in the flow field and,
consequently, in the solidified layers.

In the case that the externaily applied magnetic field is not
uniform, but instead varies along the curved parts of the channel

walls according to Ht = 10 - 5 sin (r/2 - w), the flow field pattern
(Fig. 7a) and the magnetic lines of force (Fig. 7b) will be
considerably different. This clearly demonstrates the conceptual
feasibility of controlling not only the orientation but also the
concentration of the fibers in the resin during the curing process.

Arbitrary Channel
Finally, the mathematical model and the computer code were
tested using a set of physical flow parameters corresponding to a

saline solution flow in an arbitrary shaped channel with undercooled
walls. As in the case of channel flow, the temperature of the walls
from inlet to exit was varying according 10 a sinusoidal distribution

@ =1-11 sin (x i/ imax) where i is the grid cell index in the x-
direction (1 <1 < imax). Fluid temperature at the inlet was a uniform

T = 283 K corresponding 10 8 = 1 since Ty, = 283 Kand T =273 K

so that AT, = Ty, - T, = 10 K. This made the coldest point on the
wall have a iemperature of -100 degrees Celsius. In the case when a
steady uniform magnetic field was applied, it acted vertically
downward between the inlet and 80% of the channel length, while
no magnetic field was applied over the remaining 20% of the
channel length. The characteristic quantities that were used for non-
dimensionalization are: Cpg = Cpo lig: ko =Koiq:lo=0.01 m v, =
0.1 m/s. Since the value for the magnetic permeability could not be
found in the open literature, we have arbitrarily assumed it to be p =
50 p, . where g, =4 X 10-7 is the magnetic permeability for

vacuum, If B = i, Hg, the remaining terms in the equation for Ht
can be grouped so that Hiis directly proportional to By which is
measured in Teslas. For example, if Hi=0.5 Bg and the value for
By is 10, this means that the Hartmann number Ht= 5 can be

achieved with the magnetic field of 10 T.

The non-orthogonal boundary-conforming computational grid
consisted of 100x58 grid cells that were clustered towards the inlet
and the passage top and bottom walls. The grid was generated using
our grid optimization algorithm (Kennon and Dulikravich, 1986).

A comparison of the computational results with and without an
external magnetic field shows that the velocity profiles change under
the influence of the magnetic field due to the ponderomotive force
(Figs. 8a and 9a). More importantly, the solidified layers in the case
where no external magnetic field was applied are thicker and
differently shaped compared to the freczing with the magnetic ficld
as indicated by the isotherms in the solid phase without (Fig. 8b)
and with (Fig. 9b) the magnetic field. A very complex pattern of
magnetic lines of force (Fig. 10a) clearly indicates that the coated
short fibers could be manipulated using appropriately distributed
magnetic field strength along the boundaries of the domain. It
should be pointed out that it is the higher speed of the fluid close to
the solid/liquid interface that decreases the residence time of the fluid
particles in the mushy region, thus decreasing the rate of solid
accretion. This increase in the fluid speed in the boundary layer
regions is caused by the presence of the magnetic field. On the other
hand, Joule heating (Fig. 10b) would have a profound influence on
the solidification rate in the case of a lower electrical conductivity of
the fluid and in flows generated purely by thermal buoyancy

CONCLUSIONS

A complete analytical and numerical formulation has been
developed for the theoretical prediction of solidificaton processes 1n
fluid flows inside undercooled passages with and without the
influence of an externally applied steady magnetic ficld.
Computational results confirm that the magnetic ficld has a profound

‘e



influence on the solidifying flow field since it eliminates flow
recirculation regions and causes distorted velocity profiles having
pronounced overshoots close to the solid boundaries. Temperature
field also changes under the influence of the external magnetic field.
This change influences heat transfer through the boundaries and
consequently the amount of the solid phase accrued on undercooled
walls. Specifically, the influence of the ponderomotive force and, 1o
a much lesser extent, Joule heating are such that they tend to reduce
the amount of the accrued solid phase. Combined with the predicted
complex patterns of the magnetic field force lines, this indicates a
possibility for the development of a computational optimization
algorithm capable of achieving desired configurations of the
solidifyed layers and desired distribution and orientation of
magnetised short fibers within the solidifyed layers.
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Fig. 1. Closed Container With a Weak Constant Magnetic Field
a) velocity vector field; b) magnetic lines of force

b)

Fig. 2. Closed Container With a Strong Constant Magnetic Field
a) velocity vector field; b) magnetic lines of force
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Fig. 3. Straight Channcl With a Weak Constant Magnetic Field
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Fig. 7. U-shaped Channel With a Variable Magnetic Field
a) velocity vector field; b) magnetic lines of force
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Fig. 9. Arbimary Passage With a Constant Magnetic Field

Fig. 8. Arbitrary Passage Without Magnetc Field

a) velocity vector field; b) isotherms

a) velocity vector field; b) isothems
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Fig. 10. Arbitrary Passage With a Constant Magnetic Field
a) magnetic lines of force; b) Joule heating contours
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