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INTRODUCTION AND BACKGROUND

Reduction of total computing time required by iterative algorithms for numerical integration

of Navier-Stokes equations for three-dimensional, turbulent flows with heat transfer is an

important aspect of making the existing and future analysis codes widely acceptable as main

components of design tools. Reliability of flow field analysis codes is an equally important
item especially when varying input parameters over a wide range of values. Although a
variety of methods have been tryed, it remains one of the most challenging tasks to develop
and extensively verify new concepts that will guarantee substantial reduction of computing
time over a wide range of grid qualities (clustering, skewness, etc.), flow field parameters
(Mach numbers, Reynolds numbers, etc.), types and sizes of systems of partial differential
equations (elliptic, parabolic, hyperbolic, etc.). The existing techniques are known to have
certain drawbacks. Specifically, residual smoothing [1], although simple to implement, is
a highly unreliable method, because it can offer either substantial reduction of number of
iterations or it can abruptly diverge due to a poor choice of smoothing parameters [2,3,4).
Enthalpy damping [1,5] assumes constant total enthalpy which is incompatible with
viscous flows including heat transfer. Multigridding in three-dimensional space is only
marginally stable [5] when applied to non-smooth and non-orthogonal grids. GMRES
method [6] based on conjugate gradients requires between 20 and 80 solutions to be stored
which is intractable in three-dimensional viscous flow computations. Power method [7]
which is practically identical to our GNLMR method [8,9] works well with a multigrid
code. Without multigridding, it is highly questionable if it would offer .ny acceleration
when applied to a system of nonlinear partial differential equations (PDE). Superstep
method [10] seems to offer a good performance for elliptic and parabolic problems. It
remains to be developed and tested for hyperbolic systems of PDE. Dominant eigenvalue
annihilation [11,12] approach is very simple, yet its performance and especially reliability
need to be improved. Time-inclination method [13] does not provide any noticeable
acceleration at low and very high Mach numbers. Our own DMR mecthod [14-16] in its
present form has the same problem in transonic range. Numerous other methods have been
published that are considerably more complex, while less reliable and effective. While a
number of methods are capable of reducing the total number of iterations required to reach

the converged solution, they require more time per iteration so that the effective rec 'ction in

the total coinputing time 1s often negligible.

The main commonality to all of these methods is that they all experience loss of their ability
{0 reduce the computing time on highly clustered grids that are needed for turbulent flow
computations. Consequently, this will be one of the main objectives of the proposed work
which can be briefly summarized in the following the categories.



ZONAL DISTRIBUTED MINIMAL RESIDUAL (ZDMR) METHOD

Existing iterative algorithms are based on evaluating a correction to each of the variables
and then adding a certain fraction of the corrections to the present values of the variables
thus forming the next iterative estimates.

qn+1 =qn_,_maqn

The optimal values of the relaxation factor can be determined from the condition tha; the
future residual is minimized [17]. Instead, corrections from several consecutive iterations
could be saved and then added to the present value of the variable in a weighted fashion,
where each of the consecutive iterative corrections is weighted by its own relaxation factor.
Optimal values of the relaxation factors can be determined from the condition that the future
residual is minimized. This is our GNLMR acceleration method [8,9], summarized as

q™*! = q" + 0" 8q" + @™ §gm 14 - + oM 8gM

Now, let us consider an arbitrary system of L partial differential equations. If the GNLMR
method is applied to each of the L equations so that each equation has its own sequence of
M relaxation factors premultiplying its own M consecutive corrections, then this 1s our
DMR acceleration method [14-16] (Figs. 1 and 2).
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Although offering between 15-75% reduction in total CPU time, the DMR method in its
present form is not fully optimized. Specifically, the DMR is presently formulated as

n+1 n+1l n n n-1 n-1 M M
q; =9, +w18q1+m1 6q1+--~+u)16q1
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It is applied periodically where the number of iterations performed with the basic non-
accelerated algorithm between two consecutive applications of the DMR is an input
parameter. Furthermore, the present formulation of the DMR uses the same values of the L
x M relaxation parameters at every grid point although different parts of the flow field
converge at different rates. Consequently, we propose to apply the DMR to each
distinctive flow subdomain separately. This approach will be especially suitable for parallel
processing. Also, frequency of the application of DMR and the number of consecutive
solutions combined will be optimized to achieve further gains in convergence rate and to
enhance reliability of the DMR [2].



POINTWISE APPLICATION OF THE DMR

In the present formulation of the DMR, the optimal relaxation factors are constant over the
entire domain. Nevertheless, if the the relaxation factors are computed using local values
of residuals, they vary orders of magnitude. When the relaxation factors are allowed to
vary not only from equation to equation in a PDE system, but also from grid point to grid
point, and when we use one set of relaxation factors for each iteration level, i.e. M=1 in the
DMR formulation, it can be shown that the DMR method is equivalent to the Newton
iterations with the improvement that the relaxation factors are optimized. As a result, the
DMR no longer needs other scheme to provide the corrections. This is [2] potentially the
right answer to the acceleration on extremely clustered grids and we propose to investigate
this approach in detail.
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