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ABSTRACT

For bodies at zero incidence in hypersonic flow, the
minimization of pressure drag was investigated. Using
Modified Newtonian Theory (MNT), a general analytical
mode! and a numerical optimization algorithm were developed
for bodies comprised of cross-sections determined by the
super-elliptic Lame function. This function enables the
modeling of circular and elliptical cross-section bodies along
with bodies whose cross-sections vary from a "star” 1o a
"square”. MNT accounits for pressure drag on body surfaces
directly exposed to the free stream so that the coefficient of
pressure drag is strictly a funclion of body geometry and the
stagnation pressure coefficient, Using MNT, a computer code
was writlen to minimize the normalized pressure drag by
changing the body shape. The body volume and length were
fixed in accordance with an initial input shape. The computer
code then varied the super-elliptic Lame function parameters
along the length of the body in a search for a minimum value
of the normalized pressure drag. This was performed for
three different classes of bodies. The results of the test
cases compared well with linearized known analytic solutions
for the optimum ogive shapes.

- INTRODUCTION s

The objective of this investigation is to demonstrate
the feasibility of a hypersonic missile shape optimization
method for minimizing the pressure drag. A computer code
was used that employs MNT in order 1o analyze the pressure

drag of a body in Mach 8+ flow which cannot be analyzed by
conventional means. MNT states that for those surfaces
which are exposed to the oncoming flow, the local pressure
coefficients are given by multiplying the stagnation pressure
coefiicient at the nose tip by the cosine of the angle between
the outward norma! to the surface and the oncoming flow
squared.

Previous work in the field of optimization of missile
bodies in hypersonic flow [1,2,3,4,5] addressed the case
where the geometry of the missile is axisymmetric. In
contrast, this paper extends optimization to the cases where
the radial coordinate of the missile is a function of the
angular coordinate. We decided to represent the hypersonic
missile cross-sections by utilizing the super-elliptic Lame
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function where the cross-section radial coordinate vary as a
function of three paramelers: a, b, and n. Our tests aliowed
for : (1) all circular cross-sections (a=b, n=2), (2) all
elliptical cross-sections (a=#b, n=2), (3) Lame cross-
sections with all three parameters a, b, and n independently
varying, and (4) Lame cross-sections with only n varying.
When deriving an analytical expression for the pressure
drag, the following assumptions were made: (1) the body has
two planes of symmetry, (2) the body is slender lengthwise,
(3) free stream angle of attack is zero, (4) the base plane is
perpendicular to both planes of symmetry, (5) the
freestream flow is parallel to both planes of symmetry and
thus perpendicular to the base plane, (6) the base drag is
negiected, (7) the pressure coefficient is determined
according to MNT, (8) the length is kept constant, and (9) the
volume is kept constant during the drag minimazation.

PRESSURE DRAG

The optimization code employs an analytical expression
for the pressure drag. The pressure drag is a function of the
missile body geometry and the nose tip stagnation coefficient
of pressure. MNT for hypersonic fiow was used 1o
determine this expression. A Cartesian coordinate system
was used lo describe the missile body geometry (Fig. 1)
The missile body has cross-sections based on the super-
elliptic Lame function. This function consists of three
geometric parameters; a, b and n. The function is given as

Xx.n

s =1 (1)

Clearly, if a=b and n=2 then the above function describes a
circle. As n --> o, the shape approaches a square. When
n=1 the shape becomes a rhombus, and when n<1 the shape
becomes "starred” (Fig. 2).

The super-elliptic function can be manipulated into polar
coordinates as follows:

X = R cos6
y = R sin@ (2

where {R,8) is the local polar coordinate system of a crosss-
section. Hence,

R = ab (3)
[(a sind)" + (b cose)"''"
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The analytical expression for pressure drag was
developed using the MNT for hypersonic fiow. This theory
states that for those surfaces on the missile body that are
exposed to the flow, the local pressure coefficient,Cp. is

given as:
2
Cp= CPo cos“B, (4)

where Cpo is the stagnation coefficient of pressure and B, is

the local surface normal angle. This equation can be restated
as:

L2
Cp = Cp, Sin°By (5)
where B, is the local surface tangential angle.

Under the assumption that the body is slender, and that the
radius is a function of 8 and z, the pressure coefficient
becomes [6]:

2 .2
Cpo R™R,

Com— 2 (6)
R~ + Rg

Given the length of the missile ,L, the drag is defined [7] as:

4
7 R AP R,d6f dz (7)
0

D =
0
After dividing this expression with the dynamic pressure of

the free stream, ¢.., and since, Cp = AP/q. , the analytic
expression for the normalized pressure drag becomes [8}:

- ——d6 / dz (8)

0

The radius, defined in equation (3), must be differentiated
with respect to 8 and z so that:

dR i

darR _ ab cqse - B sin® 9)
de [A + B}'/"*! sin® cos®

where

A = (a sine)” ; B = (b cose)". (10)

Since R = R(a,b,n), R, becomes:

RZ=(1F3_=d_Rd__§+gBd__§+gBd__n (11)
dz da dz db dz dn dz

where

R___ bB (12)

da [A+B]1/n+1

dR aA

gr____d”n 13

db [A+B]1/n+1 ( )

dR_R A InA + B InB 14

an nz[ln(A+B)- B (14)

The final expression for the normalized pressure drag can be
obtained by substiluting equations (3) and (9)-(14) into
equation (8).

OPTIMIZATION OF MISSILE GEOMETRY

After an equation for D/Cpoq.,° has been developed for a

missile in hypersonic flow, it would be desirable to find the
missile geometry which minimizes this guantity. In order 1o
do this, several steps must be performed. First, the missile
body is assigned an initial configuration. From this shape, its
volume and D/Cpoqm are determined. Next, the missile body

is slightly changed while maintaining a constant volume. A
new D/Cpoqw is caiculated for the changed shape. This is

done for several body changes whereupon the shape having
the minimum D/Cpoqm is chosen as a new initial shape. The

global iteration cycle, using a Q-P gradient search
optimization algorithm [9], is repeated until a certain
tolerance between cousecutive changes in the Lame function
parameters a, b, and n is met.

The initial missile shape is defined by N cross-sections,
including the nose (i=1) and the base {i=N). Each section is
assigned separate values for the Lame parameters a, b, and
n. A linear variation of these parameters is used between
adjacent sections. Given these section parameters, each
cross section area is determined by

) 1
Si=248 G2+ + a2 + ... + a2+ 505 (15)

where

ry =16 = 0)

0] =r(6=A6)

rg =1(6=240),0<6<7m/2

(
ri =r(6 =(i-1)a8)
k=r6=mn/2)

Using the cross-sectional areas, the total volume is
determined from
N - 1
(Si + Si+1)
Ve Dy Bir Sy Ly (16)

i =1



This volume will be held constant throughout the optimization
of the missile geometry, thus constituting a global
constraint.  Next, D/Cpoqw. is calcutated for the initial

missile configuration. In order 1o determine D/C PoGeor the

mid-point sectional parameters of the Lame function are
represented as:

_aiata  _biiD
2 moo2

_ Djygthy

m 5 (17)

am

The axial derivatives from equation (11) for each set of
adjacent cross-sections are represented as:

da _ @ie1 Nigt -

- -a;.db _Div1 - Bi.dn _
dz z;,1 - z; dz

'Zi’dZ

i(18)

Zisy Zis1 - 2

Integrating with respect to 6 from 0 1o n/2 for a set of
cross-sections, (D/Cpoqm)/dz for the entire cross-section is

determined from

(D/C, Q.
____B)___)=4(;_f1+f2+f3+.,..+fk_1+.;—fk) (19)
dz
where
R® R’
TS (20)
R? + Rs
Then (D/Cpoqw)i is
(D/Cp A.)
(DICpau)i = — = (zis1 - 20 (1)

Finally, the normalized pressure drag for the initial missile

configuration is:

D
5

. 22
CPoq"") ' ( )

A decrease in D/Cpoq°° is sought by changing the initial

missile shape. For a given cross section, each Lame function
parameter is decreased by a certain percentage factor, F.
The necessary change at another cross section is then
determined in order to maintain a constant missile volume.
At this point, the D/Cpoqw is found for the changed body.

Afterwards, the D/Cpoq,o for each cross section with

" respect to every other axial section are calculated for each

section parameter a, b, and n. Then the body with the

. greatest decrease in D/C pode is chosen as the new missile

. configuration and the procedure is repeated.

in the event

' that a decrease has not been found, F is halved and then the

procedure is repealed using the old missile body instead of a
new shape. If F becomes less than a specified minimum
percentage factor, Fin. the missile body with a minimum

pressure drag has been found for the specified initial volume.

RESULTS

The initial configuration of the missile shape used in the
first three test cases is depicted in Fig. 3 and will be
referred 1o as shape A. The initial missile shape used in the
fourth test case is depicted in Fig. 9 and will be refered 1o as
shape B. The initial missile shape used in the fifth test case
is depicted in Fig. 13 and will be referred to as shape C. The
shapes were divided into 21 cross-seclions and each cross-
section was divided into 76 angular sub-sections. The initial
missile shapes A and B had a non-dimensiona!l volume of
0.0105. Shape A had a normalized pressure drag D/Cpoqm=

0.000314. The convergence criterion used in these cases
was: Fin € 10-5.

In the first test case, all missile cross-sections were
represenied by circles (a=b, n=2). The optimized missile
shape can be seen in Fig. 4. For the first 40 iterations,
D/Cpoqw decreased rapidly as can be seen in Fig. 5. After 40

D/Cpoqw decreased rapidly as can be seen in Fig. 5. After 40
iterations, drag reductions were very small and D/C e

eventually became 0.000170 after 364 ilerations. This
represents a 46% reduction from the initial drag.
In the second test case, the allowed cross-sections had

varying axes (a=b, n=2). For the first 10 iterations,
D/Cpoqw decreased rapidly and then leveled out (Fig. 6). The

optimization code terminated after 314 iterations giving the
same shape as the one given in lest case 1 (Fig. 4). The final
D/Cpoqm was .000163 representing a reduction from the

initial drag of 48 %.

In the third test case, the enlire Lame function was
allowed to vary (azb, nzconst) for each cross-section. Even
though all three parameters were allowed to vary
simultaneously, D/Cpoqw decreased in the same manner as in

test case 2. After iteration 311, the optimization code
terminated with a D/C poQee of .000163 giving a reduction of

48 % of the initial drag.

Two analytical solutions for optimum ogive shapes have
been used in order to determine the validity and accuracy of
the shape optimization code. The results from the
axisymmetric case were used for comparison. The first
comparison was made wilh the shapes obtained from power
law solutions (Fig. 7). The plot consists of a 3/4 - power
body curve, a 2/3 - power body curve, the initial shape
curve and the optimized body curve. The second comparison
was made to the Sears - Haack [10] body for minimum drag
and the von Karman ogive for minimum drag (Fig. 8). The
optimized shape was found to fall between the von Karman
ogive and the Sears-Haack body.

In the fourth test case, a star-shaped initial missile
shape was used (Fig. 9). Allowing only the parameter n 10
vary, D/Cpoq‘,° decreased extremely rapidly in the first 6

iterations (Fig. 10) and extremely slowly thereafter
requiring 6600 iteralions to approach, but not reach, the

desired convergence of Fmiy = 10°5. The optimization was

manually terminated (due to-time constraints) resulting in
the shape shown in Figs. 11 and 12. The final D/Cpoquas

.000248 giving a drag reduction of 39% from the initial
normalized drag of .000407. Notice that the front end of the
missile retained its "star” shape which has been proven
experimentally [11] to have lower drag.

in the fifth test case, a blunt circular cylinder (Fig. 13)
was optimized resulting in an already familiar ogive shape
(Fig. 7 and Fig. 8). Here, all three Lame parameters



(a, b, n) were aliowed to vary along the missile. The drag
reduction amounted 10 99.8%.

CONCLUSIONS

The presented shape optimization of missile bodies in
hypersonic flow is a feasible method of minimizing pressure
drag in preliminary design. In the class of shapes
represented by circular cross-sections, our results
compared favorably with theories such as Power Laws for
hypersonic bodies, Sears-Haack body, and von Karman ogive.
This proves that our optimization algorithm is accurate. In
the class of shapes comprised of general elliptical cross-
sections, the bodies converged to axisymmetric geometry.
However, we had unusual results when the initial cross-
sections were represented by the "star” shapes. Instead of
converging to a body with circular cross-sections, the
optimal missile shape began with a "starred” nose which
gradually varied into round cross-sections which in turn
varied into rounded square cross-sections al the base of the
missile. In all test cases, the drag of the initial cylinder
shape was reduced significantly.

Even though our optimization algorithm works quite
well, it can still be greatly improved. For example, skin-
friction drag and surface heat transfer can be added to the
present analysis of pressure drag [12]. Incorporating
modificalions due to centrifugal force effects, frequently
called Newtonian-Busemann theory {13}, would be a frivial
modification. Similarly, we highly recommend improving the
optimization method itself since the present optimization
algorithm is relatively time consuming, although it runs in a
matter of minutes on a VAX type machine.

In addition, missiles with curved centerlines and fins
could be optimized or generated using this approach.
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Figure 1: Description of coordinate system
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Figure 2: Super-elliptic functions: variation of exponent n

Figure 3: Initial configuration for first three test cases
(shape A)
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Figure 5: Test case no. 1: convergence history
2
o
3+
D
ED 34
w
z
[a)
, 2
[
pu}
[¢]
e 1- ¥
D reretrie ettt rn e T T T T T —————— e
-1 T T T T T T R
0 50 100 150 200 250 300 350
ITERATIONS v

Figure 9: Test case 4: front view of the initial configuration

Figure 6: Test cases 2 and 3: similar convergence histories
(shape B)
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Figure 12: Test case 4: Optimized configuration after 6600

iterations (shape B)

Figure 10: Test case 4: convergence history

Figure 13: Test case 5: initial configuration (shape C)

Figure 11: Test case 4: front view of optimized

configuration (shape B)



