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Three-Dimensional Aerodynamic Shape Optimization Using
Genetic Evolution and Gradient Search
Algorithms

Norman F. Foster” and George S. Dulikravich
Department of Aerospace Enginecring
The Pennsylvania State University
University Park, PA 16802

Abstact

This study introduces various gradient scarch
methods as well as hybrid genetic techniques that
achieve impressive convergence rates on constrained
problems.  These methods are applied to three-
dimensional shape optimization of ogive-shaped, star-
shaped, and spiked projectiles and lifting bodies in a
hypersonic flow. Flow ficld analyses are performed
using Newtonian flow theory and, in certain cases
verified using a parabolized Navier-Stokes (PNS) flow
analysis algorithm.  Three-dimensional geometrical
rendering is achieved using a variety of techniques
including beta-splines from the computer graphics
industry.

Introduction

An integral part of a system’s development very
often includes the determination and design of the
shape of some surface.

Shape design generally affords a special degree of
difficulty. Determination of a surface’s geometry so
that some dependent parameter(s) is satisfactory
involves a certain degree of intuition. The designer
often needs cosiderable personal experience in order to
predict whether the aesthetics of some shape will be
functional. In an attempt to reduce the need for a
designer’s intuition, this study presents a tool to assist
in the acrodynamic shape design process

Previous Work

Optimization of hypersonic  bodies  with
axisymmetric cross sections has been performed in the
past'®.  These accomplishments did not address
optimization of arbitrary and complex geometrics.
Optimization of arbitrary three-dimensional hypersonic
vehicles was made feasible’™ by the use of an
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inexpensive method (a method which will also be used
in this work) of determining aerodynamic forces. A
problem faced was a limited ‘rank two update’
optimization process which could not operate on highly
constrained problems. Other works have concentrated
on optimization of small regions within a larger
configuration, such as nose shape'’, forebody'",
airfoils'’, wing size”’, and scramjet cngine
integration'*.

Optimization Problem Statement

In the most general sensc, optimization is the
process of achieving the best outcome of a given
operation while satisfying a set of given restrictions.
The cost (or objective) function is the term applied to
this outcome that needs to be improved (or optimized).
In a computational sense, this cost function is
expressed as a scalar value and it is mathematically
dependent upon a set of variables. These variables are
referred to as the design variables. The design
variables are the unknowns sought such that the cost
function is improved. As a convention, the cost
function is typically said to be optimized if it is
reduced. The ‘best’ solution of an optimization
problem would be the set of design variables such that
the cost function reaches its global minimum value.
Most often in engincering problems the design
variables are restricted in some sense. Such a
restriction is referred to as a constraint. The existence
of constraints placed upon design variables can
dramatically alter the nature, complexity, and solution
method of an optimization problem. A set of design
variables that does not violate any constraint is said to
be feasible, while one that does violate a constraint is
said to be infeasible. If a constraint is violated, or on
the verge of violation, it is known as an active
constraint.
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design can still be selected for reproduction. Elitisin
ensures that the value for the best fitness does not
worsen from one generation (design cycle) to the next.
However elitism might lead to narrowing of the choices
and convergence to a local minimum.

Genetic Algorithms and Constraints

The classical GA can handle bounds (boundary
constrainis) on the design variables, but it is not
inherently capable of handling equality or inequality
constraint functions”. Previous implementations of
the GA have involved problems posed in such a way as
to eliminate constraint functions, or to penalize the
cost function when a constraint is violated. These
treatinents of constraints reducc the chance of arriving
at the global minimum.

Onc successful method of satisfying constraints
during a genctic optimization process is 10 actively
cnsure that the initial design population, as well as any
later generated population members (created by
crossover and mutation of the previous gencration) are
feasible. This can be accomplished by performing a
Seasible search on any design that is determined to be
infeasible’”. A feasible search is a sub-optimization
problem in itsclf. One type of feasible search sub-
problem would be to implement steepest descent

method so as to minimize Z’g‘_(x)l iel,.

Another method for bringing an infeasible design
into the fecasible domain is to utilize the restoration
move used in Rosen’s projection method , Equation
(10), until all violated constraints arc simply active.

While implementing feasible searches is not a
method of transforming the classical GA into a true
constrained algorithm, it can effectively lead the GA to
constrained solutions. This is because, before a new
generation of designs is produced, all of its parent
designs have been proven to be feasible. By doing so,
the GA can be altered so it can handle non-lincar
constraint functions, which is not at all common for
the classical GA.

If an entire set of newly generated designs has
been analyzed without any improvement to the best
current design, then a search direction is determined as
is done according to the Nelder-Mead method. A
line search is then performed in this search direction.

This new type of genetic algorithm that
incorporates Rosen’s restoration move to handle
constraints, and computation of a search direction
using method® followed by a line search if there is no
reduction in the cost function after a standard GA
design cycle, will be referred to as the hybrid genetic
algorithm. The hybrid gradicnt and the hybrid genetic

5

algorithm are the two optimization techniques that
were utilized in this study.

Geometry Treatment

The external geometry of the hypersonic vehicle
configuration will constitute the design variables.
Therefore, the entire geometry must be represented by
a single vector of scalar quantities.

In this study, the method for describing the three-
dimensional vehicle geometry was done in several
ways depending upon the type of problem considered.
However, in all cases the surface nodes did not move
axially along the length of the body. All points were
grouped onto cross sectional planes, and the total
length of the vehicle was always preserved. Each
surface point location was specified as to how it can
vary on its cross section. Examples of different kinds
of point motions include cartesian and polar motion,
and motion according to a chosen spline technique'®.

Beta-Spline Control

There is a parametric piecewise curve
representation method that uses what is called beta-
splines.  These beta-splines™ have been used for
geometric computer modeling, and are closely related
to thc morec common v-splines and B-splines or
Bernstein  polynomials. A beta-spline curve is
specified by a sct of points called control vertices. The
positions of these vertices completely define the shape
of the dependent curve (beta-spline), although they
generally do not lie on it. The vertices are an ordered
sequence of points that form what is referred to as the
control polygon.

The beta-spline utilizes a piecewise representation,
in order to achieve local control, by defining each
segment as a function of only a few adjacent vertices.
Specifically each curve segment can be regarded as a
weighted average of four local vertices. Let

x,(u)
G.lw :{y,.(u)}

denote the i™ parametric two dimensional beta-curve
segment, where # is a non-dimensional curve-
following coordinate that varics from 0 at the
beginning of the segment, to unity at the end of the
scgment. This segment is dependent on four local
vertices according to

G, (u) = IZb,(ﬁl,ﬂz;u)Vw (O<u<l)

where V,_is the (i +#)" control vertex position vector.
The scalar weighting factors in Equation (21).
b,( B, ,Bz;u), arc called basis functions. These basis
functions depend on the domain parameter, u. and two

(20)

2D
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cost function calculated at that design point. Thus a
fitness vector is established as
'f -/ (Xl) ]
J -/(x,) [ (18)
) {

fit:I

s )

When the cost function has been computed for
cach design (population member), the population
members (designs) are ranked according to their
fitness. Using this information, M and fit can be
reordered according to descending fitness such that the
first row of M contains the design with the best fitness,
fit . and so forth.

Next, population members are sclected for
‘reproduction’ based upon their fitness. That is to say.
design sets corresponding to lower cost functions
possess a better chance for being selected for the
reproduction process.  Typically, n,, number of

member (design) pairings are determined through
some random sclection process that is weighted such
that the members (designs) with a greater fitness have
a greater chance of being selected. Any member
(design) can appear any number of times in the
pairings, and duplicate pairings are allowed.

Once these pairings have been established, the
‘crossover” procedure takes place. In this step, for each
reproduction pairing, the two selected population
members (or parents) arc merged to create two new
design sets (or children). In order to merge the two
parent design sets, each design variable of both parents
must be ‘coded’ into what is referred to as bit strings.
These bit strings are binary (base,) representations of
the design variablcs® values as a percentages of their
allowed values defined by their upper and lower bound
constraints. For instance, the first design variable of
population member (design) #1 is denoted as x,,. The

bit string representation for this variable would be
bit ! r(xu 7x1/, \ Ly, 11
x,, = base, 1m“——J(2 - I)J
t xul - xL, J

where x, and x, arc the upper and lower bound

19

constraints specified for the first design variable, and
L, 1s the number of binary digits (bifs) that have been

str

previously allotted to describe the design variable. In
effect, [, is a mcasurc of precision of the base,
representation of the design variable, and is chosen
before the optimization process. From Equation (19),
it should be noted that upper and lower boundary
constraints are required for the coding (and decoding)

process. As an illustration of this coding process. let
the variables in Equation (19) take on example values.
Supposc x, = 4.0 and its boundary constraints arc

X, =110 and x, =1.0 .
precisionof L =5,

y fa0-10)_. ]l
x,, = base_ yint| | ————— 2" ~ l)
110-10 J

= base, (9).

Then, using a bit string

Since

(2 -1 =(2"-1) =31=2"+2"+2" 42" 42"

can be represented as a binary number (11111), then
x} =basc,(9) = 01001=0+2" +0+0+2°.

Once the design variables of the two parents of a
reproduction pairing have been coded into bit strings.
then the crossover procedure can begin. Stepping by
one design variablc at a time, the bit strings of the
design variables of each parent are cut at a random
location and swapped. For the purpose of illustration

let design parent #1 equal {4.0 6.0}'1‘, let design
parent #2 equal {7‘0 5.0}T, and let the boundary

T T
constraints be x,, = {ll ll} and x, = {1 1} . Table

1 shows decimal and binary representations for cach
parent, and for the new resulting children after the
crossover has taken place. This crossover process is
conducted for every set of reproductive parings.

When the crossover procedurc is complete, a
mutation procedure is conducted. In the mutation
process, every bit of every design variable of every
child design is subject to a chance for change from a
‘0" to a “I’, or vise-versa. This chance for change is
referred to as a mutation probability and is typically a
small percentile. That is, there is a small chance for
cach bit in a child design to be toggled. This
procedure introduces another element of randomness to
the overall optimization process.

Completion of the mutation process marks he end
of a design cycle. At this point, the fitness of each
design child is evaluated (cost function analysis).
Then the new population is ranked and reordered as
discussed carlier. This is followed by reproduction,
crossover, mutation, and so forth. This cycle is
continued until the best fitness design reaches some
acceptable value, or until it does not change after many
iterations.

A common practice known as elitism is often used
to cnsure that the design corresponding to the best
fitness is not lost. Essentially, it involves transferring
the best design directly forward into the next
generation without crossover or mutation. This best
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The vector j contains positive numbers called
‘push-off” factors because their magnitudes determine
how far x will move from the constraint boundaries.
For example, if j is a large number in comparison to
the other entries in the j vector then the resultant
scarch direction vector § will tend (o point in the
direction morc normal to the first active constraint.
The vector b which minimizes Equation (13) yields
the direction vector S that compromises between two
goals: minimizing the cost function, and attempting to
stay as far away from any active constraint boundarics
as possible. This scarch direction is referred to as the
usable-feasible dircection: usable because it reduces the
cost function, and feasible because it points in the
dircction that docs not immediately violatc any
constraints.

Once a scarch direction has been determined, then
a line search is performed to find &' so as to minimize
fla') = f(x" +o! s’) along s°. Oncc again, the line
search should ensure that the resulting value for o'
reduces the cost function and at the same time yields a
feasible design when the design variables are lastly
updated by x' =x" +a's".

Hybrid of Projection and Feasible Direction Methods

While it is clear that the previously discussed
methods all have different uses, advantages, and
disadvantages, it would be very desirable to incorporate
most of their individual strengths into one optimization
technique.

In order to cffectively manage both equality and
inequality constraints, a natural approach would be to
Jjoin Rosen’s projection method with the MFD. Simply
put, the scarch direction will be determined by first
computing a usable-feasible search direction s, by

minimizing Equation (13) with any active inequality
constraints, then projecting it into a subspace tangent
to any equality constraints that exist by using

s=[plfs,} (14)
where
P=1-N(N'N)'N" (15)
and
N=[Vh|vh|.[vh] i=12..n (16)

When this scarch direction has been computed, a
line scarch should be performed to find «*'"' with the
objective to reduce the cost function so that the
resulting update in the design x*"' =x* +a*''s" does
not violate a constraint.

3

This method, which will be referred to as the
hybrid gradient method, was one of two optimization
techniques that were utilized in this study'®.

Genetic Evolution Algorithms

Genetic  algorithms  (GA)  are non-gradient
methods'™"®'* that offer a promising answer to
complex optimization problems.

In general, a genetic algorithm is broken into three
major steps: reproduction, crossover, and mutation.
An initial population of complete design variable scts
is analyzed according to some cost function. Then this
population is merged using a crossover methodology to
creatc a new population. This process continucs until a
global minimum is found. Generally, the design
variable set that corresponds to the current minimum
point will be representative of the most ‘successful’
features of previous ‘generations’ of designs in the
optimization process. The GA can be exceptional at
avoiding local minima because it tests possible designs
over a large domain in the design variable space.

In order to begin the genetic evolutionary process,
an initial population (of designs) must be defined.
Each population member (design) is in itself an entire
complete set of design variables. The population may
be represented in matrix-form as

[ Pop. member, T'
I
I =
|

Pop. member, X

(17)

X
M:‘

|
i
LPop. member, J L‘:w J

where

n = number of design variables

Mpop = number of population members (designs)
Each member in this initial population can be specified
meaningfully by performing inverse design of
aerodynamic shapes'*?’. However, commonly only the
first member is specified and the rest are generated
randomly.

Once the initial population has been constructed,
cach member is evaluated for what is referred to as its
Jfitness. Essentially the fitness of a population member
is a measurc of its ability to solve the problem at hand.
In common optimization terms, this means that the
fitness of a population member is the ncgative of the
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Optimization problems faced by engineers are
commonly constrained.  The general constrained
optimization problem can be mathematically stated as

minimize: f(x) xz{x,.xz,...,xn} xxeR" (D
such that:  x, <x<x,, (2)
gj(x)SO j:1,2,...,n[g 3)
m(=0  k=12,..n @)

Herc, fis the cost function, X is the vector of n design
variables, X, is the vector of lower boundary
constraints, x, is the vector of upper boundary
constraints, g, is onc of n, incquality constraints, and
h, is one of n, equality constraints,

Rosen’s Projection Method
This method'’ is specifically designed to handle
the existence of constraints. It is based on the idea of
projecting the search direction into the subspace
tangent to any active constraints.
Let N be defined as a matrix composed of the
active constraint gradients augmented columnwise
N=[Ve Vel V]
where /, is the set of n_ active constraints.

iel,

(5)
From
some initial design, x°, a scarch direction is projected
onto a surface tangent to the active constraints. That
is,

s=-PVf (©)
where P is the projection matrix defined as
P=1-N(N"N) 'N" (7

Note that for real cngincering problems, there are ofien
many more design variables than active constraints.
Therefore, N is typically not a squarc matrix and so
Equation (7) does not yield zero.

After the search dircction has been determined,
then the design is updated by

x'=x"+a's’ (¥

The value for a' can be determined from a
standard line search (while ensuring that its final value
will not lead to a constraint violation), or it can be
determined by specifying a desired percentage decrease
in /. This can be computed by

. pf

s"Vf(x")

where p is the percentage decrease in the cost function
that is desired.

After it has been updated, the resulting design x’
obtained by Equation (8) may become infeasible. This
can easily happen when Equation (9) is used to
determine o. If the design is found to be infeasible,
then a restoration move is required.

In order to restore the design to a location x” lying
along the constraint boundary, a restoration move is

®)

2

required from x’ so as to reduce g,(x) to zero. This
restoration move is defined as

(x* —x') =-N(N"N) "g,(x") (10)
where ga(x’) is the vector containing the values of the
active conmstraints in /.. Notc that N should be

evaluated at x' for high accuracy: however constraint
gradient values at x° can often be used as an
approximation to those at x', thus making the
approach morc economical.

Rosen’s projection method is therefore usually a
two step process.  First, the search direction is
determined by projecting —Vf (x") along a direction
tangent to g,(x°) i e/, using Equations (5) through
(7). After the design is updated by Equation (8), then
if it is detcrmined that x' is infeasible or too far away
from the constraint boundary, then a revised design is
obtained by

1 revised

=x'+(x"~x')=x" (11)
with the use of Equation (10).

This projection method is particularly well suited
for problems with equality constraints (replace g, with
h, in Equation (5) because the progress of the design
follows constraint boundaries. Therefore at any design
cycle, including the ending point, at least onc
constraint is active.

Mecthod of Feasible Directions

This is another method'® designed to handle
constrained optimization problems. Unlike Roscn’s
projection method which follows constraint boundaries
at all times, the method of feasible directions (MFD)
aticmpts to scarch in directions that avoid any
constraint boundaries.

Suppose at the current design, x°, two inequality
constraint functions are active. In order to determinc
the search direction, s, in which to proceed, gradients
of the active constraints g, and g,, as well as the cost
function, /. must be computed. With this gradient
information the search direction can be computed by
minimizing a subproblem. This subproblem can be
stated as

find: b=bh i=12.n, +1) (12
that minimizes: £, =—b"(A"A)j+b"b (13)
where,

A= [VgIIVg2 ...’Vg,!Vf} jel,

I, = sctof n active inequality constraint
functions.
When this subproblem has been solved, then the
search dircction is given by
s=—Ab
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shape parameters, #, and £,. Each basis function is
itself defined as a cubic polynomial,

AUNEUEDVRVNAT

In Equation (22), there arc sixteen unknown constants,
c“(,b’l,ﬂz), where 0<w<1,j=0,1,2,3andr=-2, -
1, 0, and 1. These constants are fixed quantities
(provided #, and g, arc fixed) that can be found by

imposing the following three connectivity boundary
conditions on any two segments.

(22)

G, (0=G (1) (23)
dG, (0) dG (1) (24)
' du
d’G,,(0 d'G,(1) dG (1) (25)
a7 * du

The first boundary condition, Equation (23), enforces
simple connectivity. The second boundary condition,
Equation (24), is derived from enforcing continuity of
the unit tangent vector at the joint of two segments.
The last boundary condition, Equation (25), comes
from imposing continuity of the curvature vector (and
thus curvature) at the connecting point of two adjacent
segments.

The shape parameter f, is referred to as the bias
paramneter. For purposes of the present study, the bias
parameter was set to unity. The other shape parameter,
B, is called the fension parameter and should always
be positive. For high values of S, the beta-curve will
be strongly attracted to the control vertices, and in the
limit, will be identical to the control polygon. In this
study, B, was also fixed at unity.

Implementing beta-splines for the control of the
geometry in this study was accomplished by specifying
the number of control vertices on each of the xy
parallel plancs. The locations of the control vertices
are defined to be the design variables to be optimized.

Results

A single computer program was produced that
performed three-dimensional hypersonic vehicle shape
optimization.  Two optimization techniques were
included: the hybrid gradient and the hybrid genetic
techniques, both using Rosen’s projection methodology
for improved equality constraint trcatment. Also, two
analysis methods were included: MNIT (modified
Newtonian impact theory) and a PNS solver. Either
optimizer could use either flow solver at any point
during execution.

6

Verification Test 1: Half Spherc-Cone Analysis

A serics of hypersonic wind tunnel experiments>
were reported in 1962, Some of these experiments
were performed on three-dimensional modecls called
“half spherc-cones’.  Aerodynamic measurements were
taken for a wide range of angles of attack, for several
different values of Mach number. This test case
attempts to duplicate these experimental results using
the MNIT flow solver.

One particular set of experimental data was chosen
for comparison. The geometry of the chosen half
spherc-conc is shown in Figure 1. The radius of
curvaturc of the hemispherical nose measured 0.365
inches. The diameter of the semi-circular rear plane
measured 2.43 inches. The total length of the model
measurcd 4.0 inches, and the planform area was 6.025
square inches. This model was subjected to a flow at a
Mach number of 12.6; the Reynolds number (based on
model length) was 490,000, Measurements were taken
for various angles of attack.

These test conditions were duplicated and
analyzed using the MNIT flow solver. The MNIT
analyscs were performed for angles of attack ranging
from -60 to 60 degrees, stepping every 10 degrees.
Figure 2 shows experimental data plotted with MNIT
computed values for lifi-to-drag ratio. Figurc 3
displays computed and experimental values for lift and
drag coefficients. These coefficients usc planform arca
and a dynamic pressure of 2,320.78 pounds per square
foot for normalization.

The computed results as shown in Figures 2 and 3
show a reasonable agreement with the experimental
data. Thercfore, at these flight conditions the MNIT
maintained a high level of accuracy.

Verification Test 2: Wave Drag Minimization

This test case is intended to validate the operation
of the optimization techniques. In this exercise, the
geometry of a three-dimensional axisymmetric body
was optimized to reduce wave drag at zero angle of
attack

Optimal bodics of revolution that minimize drag
have previously been analytically determined. Two
such solutions arc known as the Von-Karman and
Sears-Haack bodies®. These two bodies vield the
minimum drag under two different sets of
assumptions.

The Von-Karman body assumes that the body
terminates with a flat plane, that the basc area in this
plane is known, and that the total length of the body is
specified. The expression for the radius as a function
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of axial distance from the nose for this body is

r(x) = \/’LL—'“;—{H -0,,(x) +isin[20m(x)]}
T 2

where
2x— L
9;,K(X):cosl[ ; j

A,.,. 1s the specified base arca, and /. is the specified
total body length.

The Secars-Haack body assumes that the body is
pointed at both ends, that the total volume is known,
and that the total length of the body is given. In this
test casc only the front half of this body is of intcrest.
The expression for the radius as a function of axial
distance from the nose to the middle of this body is
given by

4 1
rg, (x) = \/E{sin[ﬁm(x)] - ;sin{3()m(x)}}

where

(26)

27

-L
()w(x):cosl[xl J,

V is the specified volume, and L is the specified length
for the front half of the body.

The hybrid gradient optimizer was used to
determine computationally the body of revolution that
minimizes wave drag at Mach = 10 and an altitude of
18 km. The MNIT was used for the flow field
analyses. Initially, the body was specified to be a 10-
meter-long, 15-degree angle right-circular cone. The
design variables for this exercise were specified to be
the radii of the body at 10 cross sections. Each design
variable (the cross sectional radii) was allowed to vary
from 0 to 10 meters. During the optimization process,
the total volume of the body was constrained (with an
equality constraint) not to change by more than 1.0
cubic meter from its initial value. The optimization
process converged to the threc-dimensional
configuration shown in Figure 4. This ‘bulged’ conical
body is called an ogive. Figure 5 displays plots of the
profiles of the initial and final (optimized) bodies. The
base area of the optimized body, and the total volume
(fixed) were used to compute Von-Karman and Sears-
Haack bodies. The profiles of these analytically
optimal bodies of revolution are also plotied in Figure
5. Inspection of Figure 5 shows the computed
optimized body to be in excellent agreement with the
analytic bodies.

5-1-3 Verification Test 3: Specified Center of Pressure

In this exercise, an initial body was optimized in
ordcr to minimize drag at zero angle of attack using
the hybrid gradient optimizer and the MNIT flow

7

solver. The initial body is a right-circular cone with a
spherical nosc. The radius of curvature of the
spherical nosc measured 0.02 meters. The radius of
the circular rear base area measured 0.1 meters. The
length from the center of curvature of the nose axially
to the rear planc measured 1.0 meter. The initial
profile of the body was linear and tangent to the
spherical nosc.

The optimization problem was to find the optimal
body that minimizes drag such that:
¢ the total Iength of the body was fixed,
» the basc arca and radius were fixed,
» the radius of curvature of the nose was fixed,
e and the acrodynamic center of pressure, X, ,. was

specified (with an equality constraint) to be a
distance of 0.572 meters from the center of
curvature of the nose along the axis of symmetry
within a tolerance of 0.01 meters.
The design variables were the radii of the 9 cross
scctions betwecn the spherical nosc and the base. The
spherical nosc was described by 10 fixed cross sections.
The optimization process converged to the body
shown in Figure 6. The analytic solution to this
problem has been previously determined’ using
Newton impact theory assumptions. The expression
for the radius as a function of the non-dimensional
axial distance (measured from the center of the
spherical nose) for the analytically optimal body is

given by
(xj (Vo ]4/3 li[rbm jm (VO jm} . 34 (28)
r —|=3| = +{== - |-
L L L L) 1L

where 7, is the specified radius of the spherical nose,
1. 1S the specified radius of the circular rear plane,
and L is the specified total body length from the center
of the spherical nosc to the rear plane. Note that this
expression is the optimal drag body for the case when
r/L=002,r [L=01,and xr_p‘//, = 0572 only.

The profiles of the initial, the optimized, and the
analytically optimal body are plotted in Figure 7. This
figure shows good agreement between the computed
and the analytically optimum bodies.

Exploratory Case 1

In case 1, an imtial body was optimized to
minimize drag at zero angle of attack using the hybrid
gradient optimizer and the MNIT flow solver. The
initial shape was a right-circular cone. The shape of
the body was optimized holding its total length and
volume fixed. The geometry was described by six cross
sectional planes with forty nodes on each plane. The
total Iength of the vehicle was 10 meters. The body
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was assumed to be traveling at Mach = 10 and at an
altitude of 18 km.

All of the surface nodes on the first cross section
move together radially and are controlled by one
design variable. On the other five planes, all of the
surface nodes have two degrees of freedom except for
the ‘seam’ points whose x-coordinate is zero (the
points on the vertical plane of symmetry). These
‘scam’ points were specified to move only vertically (in
the y-direction) in their plane.

The optimization process was exccuted until
convergence was reached. Figure 8 shows the final
optimized body. The final configuration reduced drag
by 77 percent over 75 design cycles, and called the
flow solver 60,001 times. The execution took 4,282
seconds on a Cray C-90 supercomputer. Figurc 9
displays the hybrid gradient optimizer convergence
history for this case.

The initial geometry and the final optimized
geometry were analyzed using the parabolized Navier-
Stokes (PNS) flow solver®.  The size of the
computational grid was 240 circumferential cells, by
30 radial cells, by 200 longitudinal cells. The
freestrcam temperature, density, and Mach number
were specified to be 218 K, 0.1206 kg/m®, and 10
respectively. A nonequilibrium gas model and Wilkes
mixing rule were used in the PNS flow analysis. The
total drag of the optimized body, as computed by the
PNS flow field solver, was found to be 53% lower than
the drag of the initial conical geometry.

The predominant characteristic of the optimized
geometry is the deep channels that formed along the
length of the body. It is interesting to note that star-
shaped hypersonic projectile shapes have been studicd
experimentally in the past”’™®, Russian rescarchers™
determined that star-shaped bodies to be optimal
(lowest drag) at high Mach numbers and at altitudes
below 90 km.

Another characteristic of the optimal body shown
in Figure 8 is the spiked nose. The conical shape of the
nosc was enforced because geometry of the first cross
section was specificd to be dependent upon onc design
variable: radial distance from the pole. In order to
reducc drag, the optimizer could only reduce the
inclination angle of these panels by reducing the radius
of the first cross section, and add the resulting lost
volume by increasing the size of the spikes on the aft
body. Acrodynamic bodies that have spiked or needled
noses have also been studied in the past®™®'. The fact
that the nosc was driven by the optimizer to a slender
spike rather than to a wide cone is interesting in light
of these previous studies.
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Exploratory Case 2

An initial body was optimized to maximize the
lifi-to-drag ratio at zero angle of attack using the
MNIT flow field solver. For this case, the initial shape
was specilied to be a 15-degree right-circular cone.
identical to the one in Exploratory Case 1. The shape
of the body was optimized holding its total length and
volume fixed. The geometry was described by six cross
scctional planes on which there were forty nodes each.
The total length of the vehicle was 10 meters. Every
surface node was specified to vary radially on its cross
sectional plane. There were 40 points on each of 6
cross sectional planes.

The hybrid gradient optimizer was executed until
convergence was reached. Execution terminated after
40 design iterations that spent 1,458 CPU seconds on a
Cray C-90 and required 19,961 objective function
analyses. Figure 10 shows the final optimized body.
The converged optimal lift-to-drag ratio corresponding
to this geometry was L/D=1.29. This geometry is
cambered and has ridges that have formed on its upper
surface. The optimizer cambered the body so that a
greater surface area on the underside faced the
frecstream so as to increase lift, and formed ridges on
top of the body so that downward pressure was
minimized. Yet the body still has an ogive appearance,
which helps to reduce overall drag.

At this point (after the hybrid gradient optimizer
had converged), the optimization method was changed
to the hybrid genetic optimizer. The hybrid genetic
optimizer continued to further reduce the cost function.
The execution of the hybrid genetic optimizer was
stopped after it had performed an additional 52 design
cycles that required only an additional 748 objective
function analyses. The final optimized geometry is
shown in Figure 11. This ‘optimized’ geometry is
obviously acrodynamically nonsensical, but an
important conclusion can be drawn from this exercise.
Figures 12 and 13 show the total convergence history
for this case. Figure 12 shows reduction of the
objective function plotted against design cycles. The
important fact learned from this case is that the hybrid
genetic  optimization  technique  was  able  to
significantly reduce the cost function after the morce
standard gradient method had converged and could go
no further. Not only did the hybrid genetic optimizer
reduce the cost function, but it did so while performing
fewer objective function analyses. This is clearly seen
in Figure 13, which shows the objective function
reduction plotted against the total number of objective
function analyses.

The reason why the hybrid genelic optimizer
produced such a nonsensical-looking gcometry is a
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consequence of the flow field analysis mcthod that was
used. The MNIT flow solver is extremely simple and
can yield inaccurate results for extremely complex and
undulating geometries such as the one in Figure 11.
The MNIT has no way to account for the viscous forces
or the complex shock wave interactions that would
occur in the flow field around such a geometry.
Therefore, the geometry depicted in Figure 11 is
certainly not optimal in light of a correctly modeled
flow. But it demonstrates the ability of the hybrid
genetic optimizer to significantly and rapidly improve
on a ‘converged’ solution (according to conventional
optimization  techniqucs) that holds important
implications.

Exploratory Case 3

In this case, an initial body was optimized to
maximize the lift-to-drag ratio at zero angle of attack
using the hybrid gradient optimizer and the MNIT flow
solver. The initial shape is shown in Figure 14. The
shape of the body was optimized holding its total
length and volume fixed. The geometry was described
by six cross sectional planes on which there were forty
nodes cach. The total length of the vehicle was 10
meters.

The geometry for this case was entirely described
using beta-splines. Therefore, the design variables for
this case were specified to be the locations of the beta-
spline control vertices, and the actual geometry surface
was gencrated by computing the beta-splines which
depend on the control vertices. Only one half of the
geometry was optimized, and the other half was
‘mirrored’ across the vertical plane of symmetry. The
slope of the geometry was specified to be perpendicular
to the plane of symmetry at the points ‘on the seam’
(points on the plane of symmetry).

Initially, the geometry was modeled using only one
beta-splinc on each half cross section. This modeling
required 24 design variables for the entire geometry.
The hybrid gradient optimizer was used during the
program execution until convergence was reached. At
this point (when convergence was reached) the
converged geometry was redefined using two beta-
splines on each half cross section, and the optimization
process was restarted.  This redefined geometrical
model required 48 design variables for the entire
geometry. Once again, when convergence was reached
more degrees of freedom were added to the problem.
This entire cycle was repeated twice more: first with
144 design variables, and finally with 240 design
variables for the entire geometry.

Figure 15 shows the convergence history for the
entire process. Figure 16a shows the initial geometry,
and Figures 15b through 15¢ show the converged
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geometry for each stage of the procedure. The final
lift-to-drag ratio was L/D=177, and the total
optimization process required a total of 5,288 objective
function analyses and a total of 141 CPU seconds on a
Cray C-90.

The results from this case demonstrate that the usc
of beta-splines in geometry definition can lead to an
improved design costing fewer objective function
analyses. Because fewer design variables were uscd at
first, the optimizer was able to quickly determine the
general features of the optimal design. After
progressively adding degrees of freedom to the
geometry the final solution had a comparatively high
L/D and was smooth and realistic-looking.

Exploratory Case 4

This case is exactly the same as Exploratory Casc
3 except the hybrid genetic optimizer was used for the
entire execution and the geometry was only remodeled
once. The initial shape modeled by one beta-spline on
each half cross section (24 design variables) is shown
in Figure 14. This case was exccuted for 600 design
cycles using the initial modeling (24 design variables).
The converged geometry to this point required 15,287
objective function analyses and 2,660 CPU seconds on
a Cray C-90 and is shown in Figure 17. After
convergence was reached, the geometry was remodeled
using two beta-splines on cach half cross section (48
design variables) and the optimization process was
continued. The execution was then finally stopped
after an additional 129 design cycles requiring an
additional 3,122 objective function analyses and an
additional 2,355 CPU seconds. The final optimized
geometry is shown in Figure 18. The convergence
history for this case is displayed in Figurc 19.

The final value for the lifi-to-drag ratio was L/D =
2.4527. This value for L/D is higher than that of any
other case in this study'®. Interestingly, this case is
modeled with the fewest number of geometric design
variables (48 for the entire body, using beta-splines).
This case shows again the ability of the hybrid genetic
optimizer to effectively find optimal designs. It should
be noted that the point at which more degrees of
freedom were added to the problem and the point at
which the entire exccution was stopped were chosen by
inspection of the convergence history. Unlike gradient
methods, the hybrid (or any) genetic optimization
technique does mnot generally exhibit smooth
convergence characteristics. Rather they may show
slow (or no) improvement on the design over many
design cycles; then suddenly drastic improvement may
occur. The implementation of a Nelder-Mead scarch
dircction calculation, as was done in the current hybrid
genetic method, can significantly improve convergence
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regularity. Even so there is no way to know if
convergence has actually been reached, or if a large
design improvement is only a few design cycles away,
when using most non-gradient methods.

Figure 20 displays the decrease of the cost
functions for this case and Exploratory Case 3 plotted
together against the number of objective function
analyses. This figurc shows that the hybrid gradient
optimizer initially reduces the cost function with fewer
cost function analyses; however, the hybrid genetic
optimizer quickly surpasses the gradient method and
obtains dcsigns that have a higher L/D than any design
that the gradient method ever achieves.

Conclusions

Results from this study have indicated that hybrid
non-gradient methods can be effectively applied to
difficult enginecring problems. A hybrid genetic
algorithm that has been shown to achieve convergence
rates comparable with more standard gradient
techniques was developed. Furthermore, the hybrid
genetic  algorithm was able to explore design
configurations that gradient methods would not. The
hybrid genetic algorithm presented in this study was
also able to simultaneously adhere to inequality and
equality constraints.

When the hybrid genetic algorithm is applied to
shape optimization in which the objective function
depends on aerodynamic properties computed from a
flow analysis, it is advantageous to describe the
variable geometry using local control spline
techniques. The use of beta-splines was shown to
effectively lead to optimized geometry configurations
when either technique was used.

Both the MNIT and the PNS flow field analysis
methods can be used with either of the optimization
techniques. It was found, however, that thc PNS flow
solver could be used in the optimization cycle only in
restricted cases. During the course of the optimization
procedure, intermediate design geometries that may
cause areas of recirculation in the flow field need to be
analyzed. The PNS flow solver will become unstable
and fail during the flow analysis for such geometries.
Thercfore, additional geometrical constraints might be
required to keep intermediate designs adequately
smooth so that flow analyses will maintain stability.
Alternatively, the PNS flow field solver can be used to
simply verify the final results that are obtained using
the MNIT flow analysis method, as was done in this
study.

The MNIT flow solver was used extensively in this
study. However, because of its simplicity the MNIT
does not account for some of the important physical
phenomena that actually occur in the flow field. As a
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result the optimizer may arrive at a design that in fact
would be nonsensical if all of the physical phenomena
were taken into consideration. The optimizer is not
dependent on the flow solver that is utilized, but will
scarch for an optimal design regardless of the accuracy
of the procedures used to compute the objective
function. For this reason it would be desirable to use a
flow solver that accounts for the true physical
phenomena in the flow field, such as a full Navier-
Stokes flow field solver, with an optimizer that
requires the fewest number of objective function
analyses.

From the results in this study, it can be scen that
the internal design update logic of the hybrid genetic
optimization method is much morc expensive in CPU
time than that in the hybrid gradient method.
However, the hybrid genetic algorithm evaluates the
objective function many fewer times. Therefore if a
very expensive flow solver, such as a full Navier-
Stokes flow solver, were utilized then the hybrid
genctic method might be superior as far as CPU
expensc is concerned. It has been scen that the hybrid
genctic method can also arrive at designs that the
gradient method can not, because the genetic algorithm
is very cffective at avoiding local minima. For these
reasons hybrid genetic optimization techniques, such
as the one presented in this study, may become widely
used to solve difficult modern engincering problems.

Acknowledgements

This work was supported in part by the NASA
Ames-University Consortium Agreement NCA2-769.
The authors would like to express their appreciation for
the advice and help provided by Dr. Isaiah Blankson of
NASA HQ and Drs. Gordon Blom and Gregory Molvik
of Boeing Co., and for the computing time on NASA
Ames NAS Cray-C90 computer.

References

1. Strand, T., “Design of Missle Bodies for Minimum
Drag at Very High Speeds - Thickness Ratio, Lift,
and Center of Pressure Given,” Journal of the
Aero/Space Sciences, September 1959, pp. 568-
570.

Shipilin, A.V., Optimal Shapes of Bodies with
Attached Shock Waves,” Meckhanika Zhidkosti i
Gaza, Vol. 1, No. 5, 1966, pp 9-13.

3. Brown, L B., “Axisymmetric Bodies of Minimum
Drag in Hypersonic Flow,” University of Texas at
Austin Report U-Tex-EMRL-TR-1016, July 1967.
Huang, H.Y., “Variational Approach to Conical
Bodies Having Maximum Lift-to-Drag Ratio at
Hypersonic  Speeds,” Journal of Optimization

American Institute of Acronautics and Astronautics



Theory and Applications, Vol.2, No. 5, September,
1968, pp. 348-362.

5. Dulikravich, G.S., Buss, R.N., Strang, E.J. and Lee,
S.,  “Aecrodynamic Shape Optimization of
Hypersonic  Missiles,” AIAA Paper 90-3073,
Proceedings  of the AIAA  Sth Applied
Aerodynamics Conference, Portland, OR, August
20-22, 1990.

6. Lewis, MJ. and McRonald, AD., “Design of
Hypersonic Waveriders for Acroassisted
Interplanetary Trajectories,” Journal of Spacecraft
and Rockets, Vol. 29, No. 5, September-October
1992, pp. 653-659.

7. Dulikravich, G.S. and Sheffer, S.G., “Aerodynamic
Shape Optimization of Arbitrary Hypersonic
Vehicles”, Proc. of 3rd International Conference on
Inverse Design Concepts and Optimization in
Engineering Sciences (ICIDES-IIT), Editor: G.S.
Dulikravich, Washington, D.C., Oct. 23-25, 1991,
pp. 347-358.

8. Dulikravich, G.S. and Sheffer, S.G., “Aerodynamic
Shape Optimization of Hypersonic Configurations
Including Viscous Effects”, AIAA 92-2635, AIAA
10th Applied Aerodynamics Conference, Palo Alto,
CA, June 22-24, 1992.

9. Sheffer, S.G. and Dulikravich, G.S., “Constrained
Optimization of Three-Dimensional Hypersonic
Vehicle Configurations”, AIAA Paper 93-0039,
Thirty-first Acrospace Sciences Meeting and
Exhibit, Reno, NV, January 11-14, 1993.

10.Large, E., “Nose Shapc for Minimum Drag in
Hypersonic Flow,” Journal of Aerospace Sciences,
January 1962, p. 98.

11. Maestrello, L. and Ting, L., “Optimum Shape of a
Blunt Forebody in Hypersonic Flow,” ICASE
Report No. 89-51, NASA CR-181995, December
1989.

12. Thompson, R.A. and Hull, D.G., “Hypersonic
Airfoils of Maximum Lift-to-Drag  Ratio,”
University of Texas at Austin Report U-Tex-
AMRL-TR-1009, September 1969.

13. Wilhite, A.W., “Optimum Wing Sizing of a Single-
Stage-to-Orbit  Vehicle,” Journal of Spacecrafi,
Vol. 20, No. 2, March-April 1983, pp. 115-121.

14.O'Neill, MXK. and Lewis, M.J., “Optimized
Scramjet Integration on a Waverider,” Journal of
Aircraft, Vol. 29, No. 6, November-December
1992, pp. 1114-1121.

15. Haftka, R.T. and Giirdal, Z., Elements of Structural

Optimization, 3rd ed., Kluwer Academic

Publishers, Boston, MA 1992.

Foster, N.F., “Shape Optimization Using

Constrained Genetic Evolution and Gradient

Scarch Algorithms,” M.Sc. Thesis, Dept. of

16.

&

11

17.

18

19.

20.

2L

22

23.

24.

25.

26.

=)

27.

28.

29.

Aecrospace Engincering, The Pennsylvania State
University, University Park, PA, August 1995.
Misegades, K.P., “Optimization of Multi-Element
Airfoils,” Von Karmon Institute for Fluid
Dynamics, Belgium, Project Report 1980-5. Junc
1980.

.Goldberg, D.E., Genetic Algorithms in Search,

Optimization and Machine Iearning, Addison-
Wesley, 1989

Dulikravich, G.S., “Aecrodynamic Shape Design
and Optimization: Status and Trends”, 4744
Journal of Aircrafi, Vol. 29, No. 5, Nov./Dec.
1992, pp. 1020-1026.

Dulikravich, G.S., “Shape Inverse Design and
Optimization for Three-Dimensional
Acrodynamics”, AIAA invited paper 95-0695,
AIAA Acrospace Sciences Meeting, Reno, NV.
January 9-12, 1995,

Crispin, Y., “Aircraft Conceptual Optimization
Using Simulated Evolution”, AIAA paper 94-0092,
Reno, NV, January 10-13, 1994,

Nelder, J.A. and Mead, R., A Simplex Method for
Function Minimization,” Computer Journal, Vol.
7, 1965, pp. 308-313.

Barsky, B.A., Computer Graphics and Geometric
Modeling Using Beta-Splines Springer-Verlag,
Berlin, Germany, 1988.

Geiger, RE., “Experimental Lift and Drag of a
Serics of Glide Configurations at Mach Numbers
126 and 17.5” Journal of Aerospace and
Sciences, April 1962, pp.410-419.

Ashley, H. and Landahl, M., Aerodynamics of
Wings and Bodies, Addison-Wesley Publishing
Company Inc., MA, 1965.

Molvik, G.A., “A Computational Model for the
Prediction of Hypersonic, Reacting Flows”, A
Doctorial Thesis in Mechanical Engineering, The
Pennsylvania State University, 1989.

Vedernikov, Yu.A., Gonor, A.L., Zubin, M.A_, and
Ostapenko, N.A., “Aerodynamic Characteristics of
Star-Shaped Bodies at M= 3-5.” Izv. Akad. Nauk
SSSR, Mekh. Zhidk. Gaza, No. 4, 1981, pg. 88.
Gusarov, A.A., Dvoretskii, V.M., Ivanov, M.Ya,
Levin, V.A., and Chernyl, G.G., “Theoretical and
Experimental Investigation of the Acrodynamic
Characteristics of Three-Dimensional Bodies,” Izv.
Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 3,
1979, pg. 97.

Bunimovich, Al, and Kuz’menko, V.,
“Aerodynamic and Thermodynamic Characteristics
of Three-Dimensional Bodics in a Rarefied Gas,”
TIzv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 4,
July-August, 1982, pp. 181-183.

Amcrican Institute of Aeronautics and Astronautics






