G. S. Dulikravich

B. Kosovic

Department of Aerospace Engineering,
The Pennsylvania State University,
University Park, PA 16802

S. Lee

Agency for Defense Development,
Taejon, Republic of Korea

Magnetized Fiber Orientation
Control in Solidifying Composites:
Numerical Simulation

This work deals with the development of a numerical algorithm for the prediction
of magnetic force lines inside a flowing solidifying melt with the ultimate purpose
of simulating and controlling alignment of short nickel-coated fibers during the
curing process in composites. A complete mathematical model and an accompanying
computer program have been developed for the simulation of a steady laminar flow
of an incompressible fluid with strong heat transfer (involving solidification) and a
strong superimposed magnetic field. An extended form of the Boussinesq approx-
imation allowing for temperature-dependent physical properties of the fluid and the
solid including latent heat of phase change was incorporated. This formulation
simultaneously predicts detailed velocity, pressure, and temperature fields in the
moving fluid while capturing the forming solid phase by using a single computer
code. The same code can simulate the reverse process of thawing or melting of the
solid phase. The computed sample configurations involve a two-dimensional closed
container, a straight and a U-shaped channel, and a passage of an arbitrary shape.
It was found that the presence of an external steady magnetic field: (a) diminishes
flow field vorticity, (b) causes higher velocity gradients within the boundary layers,
(c) is able to orient magnetized fibers along the lines of local magnetic lines of

Sforces.

Introduction

It is well known that the defects in short fiber composites
that are mainly due to uncontrolled fiber orientation during
composites manufacturing can reduce the strength of the com-
posite (Cranston and Reitz, 1980; Hatta and Yamashita, 1988).
Thus, it would be very desirable to perform a solidification of
the resin where the local concentration and orientation of the
fibers are fully controlled. The objective of this paper is to
elaborate on a mathematical model and an accompanying nu-
merical algorithm that are capable of simulating fully three-
dimensional ferromagnetic fluid flow (representing the resin
and the suspended nickel-coated fibers) and solidification un-
der the influence of an arbitrarily distributed and oriented
external magnetic field. The basic idea is that the coated fibers
will align with the local magnetic lines of force, which are
different from streamlines. The pattern of these lines depends
on the flow field and the variation of the externally applied
magnetic field.

During a controlled solidification process (Dulikravich and
Hayes, 1988), it is very important to understand fully the
process of solid phase formation. The accumulated solid phase
effectively reduces and deforms the cross-sectional area of the
passages and causes significant local variations in pressure and
flow field shear stresses. During the solidification or melting
process, secondary flows are generated due to strong thermal
buoyancy forces. These processes can be controlled in the case
of strong heat transfer if influenced by a global body force.

One such body force is the general electromagnetic Lorentz
force, which is created in any electrically conducting fluid when
either a magnetic field or an electric potential field is applied.
It has been shown (Lee and Dulikravich, 1991a, 1991b; Lee
et al., 1991a; Dulikravich et al., 1991a, 1991b; Kosovic et al.,
1991; Dulikravich and Kosovic, 1992) that the magnetic field
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can eliminate vorticity from the flow field, while the electric
field can enhance it (Lee et al., 1991b). During the curing
process in composites manufacturing, we usually work with
weakly electrically conducting resins. Although very poorly,
they do conduct electricity because of the presence of iron
atoms, salts, or acids. At the same time, if fibers are coated
with a thin layer of a ferromagnetic material, the fibers will
respond to the applied electromagnetic fields by rotating and
translating in the melt until they become aligned with the mag-
netic lines of force. This principle was demonstrated experi-
mentally (Yamashita et al., 1989; Gandhi et al., 1989) and
proven for a short nickel-coated carbon fiber analytically (Hatta
and Yamashita, 1988). Thus, if a relatively strong magnetic
field is applied, the flow field will respond (Heiser, 1964; leviev
and Levin, 1989; Ozoe and Okada, 1989) and the solid/liquid
front shape and the velocity field could be manipulated (Vives,
1989; Dulikravich et al., 1991b; Dulikravich and Kosovic,
1992). In this work we have formulated the entire problem as
time dependent and three dimensional although our compu-
tational results will be for steady two-dimensional situations
only.

In this first attempt at numerically simulating the process,
we have assumed that the fluid is of a Newtonian type. In
reality, local orientation of the short fibers and their volumetric
concentration in the resin will make physical properties of the
resin-fiber mixture (viscosity, heat conductivity, specific heat,
electrical conductivity, magnetic permeability, etc.) tensor
quantities. Moreover, due to the magnetic field imposed, the
fibers will exert higher hydrodynamic resistance to the flowing
resin. These physical effects have not been incorporated in the
present study since they require development of a new complex
mathematical model involving mixture theory and a complete
electro-magneto-hydrodynamic formulation.

Analytical Model

From Maxwell’s equations and a relationship between an
induced electric current, J;, an electric field, £;, and an ex-
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ternally applied magnetic field, H;, in a moving medium given
by Ohm’s law

Ji=0(E;+ pe; v Hy) (D
where o, 11, and v; are the coefficient of electric conductivity,
coefficient of magnetic permeability, and fluid velocity vector,
respectively, we can derive the magnetic field transport equa-
tion (Chandrasekhar, 1961; Pai, 1962; Stuetzer, 1962; Jeffrey,
1966; Lee and Dulikravich, 1991a) as

H;, - (UjHi"‘viHj),j=LHiJj. )
no

Subscripts after the comma designate partial differentiation
with respect to the variable or variables that follow the comma.
The entire set of Navier-Stokes partial differential equations
for the fluid flow and a set of the partial differential equations
for magnetic field transport can be nondimensionalized by
introducing the relations
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where T, is the temperature of the cold wall and T, is the
temperature of the hot wall, so that AT = T — T, and AT,
= T, — T.. Here, subscript zero designates reference values,
while asterisk designates nondimensional variables.

In this work only incompressible Newtonian fluid flow will
be considered, while accounting for thermal buoyancy via an
extended Boussinesq approximation in the form that is valid
even when fluid properties vary as a function of temperature
(Gray and Giorgini, 1976). Fluid density and coefficients of
specific heat, viscosity, and heat conduction can be expressed
as general functions of temperature (Gray and Giorgini, 1976)

p=pop’(6)  Cp=CpoCpo(0) %)

n=n0"(0) k=kk’'(8) )

where the primed values denote arbitrary functions of non-
dimensional temperature, 6. Here, p, 3, ¢, and k are fluid
density, coefficient of viscosity, coefficient of specific heat at
constant pressure, and coefficient of thermal conductivity,
respectively. The nondimensional density o’ can be expanded
in a Taylor series while retaining only the first-order term
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._M_ATMO dp’ AT, dp
90 AT, 98~ 5, a1 AT ®

It can be assumed that the coefficient of thermal expansion,
«, is constant in the range of temperatures that are of interest
in a particular case. When the term (AT,«) << 1, equations
more general than what is known as Boussinesq approximation
can be derived for the fluid with nonconstant properties (Gray
and Giorgini, 1976). For incompressible flows ¢, = ¢,. Thus,
it follows that de = ¢, dT = c,dT. In the case of a liquid/
solid mixture the enthalpy per unit mass of the mushy region
becomes

dh=c,dT+ LdS )]
where L is the latent heat (enthalpy of solid/liquid phase change)
and S is the volumetric fraction of the solid phase. Then

U,‘h,,‘=CpU,'T_,'—LU,'S','= (CP—LS_T)UiT_,' (10)

Let ¢,e = ¢, — LS r be an equivalent specific heat so that
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where S could be an arbitrary function of 6 and ¢, is the
nondimensional equivalent specific heat. This approach is called
the ‘‘enthalpy method’’ (Poirier and Salcudean, 1986). With
the following nondimensional groups:

Nomenclature
¢, = specific heat at constant Pm = magnetic Prandtl number
* pressure, J kg ' K~! Pr = Prandtl number 4 = magnetic permeability, H
¢, = specific heat at constant Re = hydrodynamic Reynolds m-!
volume, J kg™ ' K~ number £, 7, ¢ = nonorthogonal grid-follow-
E = electric field, Vm™' Rm = RePm= magnetic Reynolds ing coordinates
Ec = Eckert number number p = density, kgm™}
Fr = Froude number S = volume fraction of the solid o = electrical conductivity, Q!
g = gravity force per unit vol- phase m~
ume, m s~ ? t = time, s ¢ = nondimensional gravity po-
Gr = Grashof number T = absolute temperature, K tential
H = magnetic field, Am™' AT, = T, — T. = temperature dif- & = viscous dissipation function,
Ht = Hartmann number ference, K kgm™'s”
J = electric current density, A v = (u, v, w) = velocity vec-
m? tor, m s~ Subscripts
k = heat conductivity coeffi- x, y, z = Cartesian coordinates, m ¢ = cold wall
cient, Wm™' K~} a = thermal expansion coeffi- h = hot wall
! = length, m cient, K™! o = reference values
L = latent heat of liquid/solid B8 = artificial compressibility .
phase change, J kg™ coefficient Superscripts
Mm = magnetic Mach number; n = coefficient of shear viscos- * = nondimensional values
Mm? = ReRm/Ht? ity, kgm™'s™! " = function of nondimensional
p = pressure, kgm™'s7? # = nondimensional temperature temperature
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the conservation laws in nondimensional form become
v;,i=0 (13)
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It should be pointed out that the viscous dissipation can be
neglected from an order of magnitude analysis since

LT
PoCrpe at Re
W=E‘E >>> 1
The combination of nondimensional hydrodynamic, hydro-
static, and magnetic pressures is

an

¢
p= p+F2+M = H,H; (18)
where ¢ is the nondimensional gravity potential defined as g;

= ¢,

Numerical Algorithm

Equations (13)-(16) represent a global system of coupled
nonlinear partial differential equations. The global system has
been split in two subsystems in order to simplify programming.
The Navier-Stokes equations, Eqs. (13)-(15), constitute the
first substystem and the magnetic field transport equations,
Eq. (16), constitute the second subsystem. To integrate each
subsystem, the explicit Runge-Kutta time stepping method
(Jameson et al., 1981) was used in an alternating manner (Lee
and Dulikravich, 1991a).

The general form of each subsystem is the same. The non-
dimensional three-dimensional Navier-Stokes equations for
incompressible flows in conservative form expressed in gen-
eralized curvilinear nonorthogonal coordinates are
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where @ is the solution vector and E, F, and G are the flux
vectors. The transformed source vector is denoted by §. Def-
initions of these vectors will be given for both systems of
equations (Navier-Stokes and magnetic transport) separately.
For the Navier-Stokes equations, the generalized vectors are
defined as

=D*+ (19)
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where J = d(&, 9, $)/8(x, y, 2) is the Jacobian determination
of the geometric transformation from physical Cartesian co-
ordinates x, y, z into £, , { computational space.

The system of equations given by Eqgs. (13)-(16) is not hy-
perbolic since there is no physical time derivative term in the
mass conservation equation. Consequently, the system cannot
be integrated simultaneously. In order to integrate the system
simultaneously and obtain a steady-state solution, an artificial
compressibility (Chorin, 1967) term, 8/3t(p/3J), has been
added to the mass conservation equation, Eq. (13). Here, 8 is
an artificial compressibility coefficient, a user-specified pa-
rameter that depends on the problem geometry, grid, flow
parameters, etc. (Lee and Dulikravich, 1991c). In the steady-
state limit the artificial compressibility term tends to zero.
Thus, it does not influence the steady-state solution.

The source vector S contains the influence of the ponder-
omotive force due to the magnetic field and the thermal buoy-
ancy force. Its components are given as

;_ Bt (8 (HHN\ 8 (HH\ 3 (HH\\ Grf
%= RmRe<a£< 7 >+an< J >+a;< J >>+Re213"
@n
. __H® (3 (HH\ 3 (HH\ o (HH, Gr
o= RmRe<6£< 7 >+an( J >+EE< J )>+@g’
22)
H (8 (A.H)\ 8 (HH)\ o (HH, Gré
de= RmRe(&E( 7 >+an< J >+'a—;< 7 )>+ieTJg‘
(23
5 1 EHCJ( o = =
ds= Cpe RmRe <P P2+P3> (24)

where H,, H,, H, are the components of the magnetic field
vector in Cartesian coordinates, g,, gy, g are components of
the unit vector in the direction of gravity force, and

5 by~ yg,z _‘?__ Hpy—Hun, i H(,—Hy,
Pi= as( J >+an< 7 >+a;< J )

(25)

5 _i HE —HE, Han . —Hm., i H.{.—H,
Pz‘az( 7 >+an< 7 >+ac< 7 )

(26)
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Table 1 Nondimensional numbers

Passage Closed Straight U-shaped Arbitrary
Melt (silicon) (undefined) J(undefined) | (saline)
Gr 56.769x106 0.0 0.0 0.0
Re 8300 100 20 234.44
Ec 7.869x10-8
] ! 6.46 x 10-8
Pr
0.0116 7.9 1.9 36.9
P -6
m 4.44x10 1 1 2.68 x 10-3
Ht 209.3Bgor | Sor 5 or 0.0 or
2093 B, 10 10 0.5027 Bo

a yE,x“’ng
Py= as( J

V)]
The diffusion term in general curvilinear coordinates is
D -
D= (7 8 (JQ)J> (28)
The metric tensor is defined as
ax, ax,
. 29
8= 9%, %, 29)

where X; is the Cartesian coordinate vector and X; is the cur-
vilinear coordinate vector:

_ T - T

xi=(x, 5, 2) %= 190 (30)

Here, the superscript T represents a transpose. The contra-
variant components U, V, W of the velocity vector are related
to the velocity components u, v, w in the Cartesian system as
follows:

U Ex &y &
Vi=lax ny Mz v
w e $y $of| W

(3D

Similarly, the contravariant components H;, H,, H; of the
magnetic field vector are defined as

I:IE E.x E,y E,z H,
1'{1, =1 0x My Mz Hy
H; $x §y $2 H,

(32)

For the subsystem containing the magnetic field transport
equations, the solution vector Q, the flux vectors E, F, G, and
the source vector S are

1| H ) H.U-uH,; ) H.\V-uH,
Q=} Hy E=; H,U—vHE i=-j HyV—vI-?,,
H, H.U-wH, H.,V-wH,
1 HXW—uﬁ( 1
G=-| Hw-vAH,| §=0 D=—1 (33)
J| ) Rm
HZW—WH(-

In the case of three-dimensional magnetohydrodynamics,
the system of eight partial differential equations needs to be
solved by integrating intermittently a subsystem of five fluid
flow equations and a subsystem of three magnetic field trans-
port equations and transferring the information through the
sourcelike terms (Lee, 1990; Lee and Dulikravich, 1991a). The
explicit Runge-Kutta time-stepping algorithm and finite dif-
ference scheme with artificial compressibility (Chorin, 1967)
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J>+_a_<Hy”x—Hﬂ¢>+1<H.v§'x_Hx3’J>
9 J 4 7 Fig. 1

Fig. 1(a) Velocity vector field

Fig. 1{b) Magnetic lines of force
Closed container with a weak constant magnetic tield

were used in the general nonorthogonal curvilinear boundary
conforming coordinate system. The pressure boundary con-
dition at the solid walls of the passages was enforced using a
normal momentum equation, instead of the boundary layer
approximation that the normal pressure gradient at the solid
boundary is zero. Inlet and exit boundary conditions were
treated using the method of characteristics (Lee and Duli-
kravich, 1991a). The explicit time integration scheme was used
because it can be efficiently vectorized and because additional
equations can be easily added to the system. The rate of con-
vergence of explicit schemes is generally much lower than for
implicit schemes, but when fully vectorized, these schemes need
less central processor unit time to reach convergence than im-
plicit schemes. This advantage of explicit schemes is more
pronounced when three-dimensional problems with complex
geometries are studied.

Computational Results

A computer code written in Fortran was developed for sim-
ulation of two-dimensional solidification processes under the
influence of a steady externally applied magnetic field. Four
configurations were tested numerically: a closed container
cooled uniformly from above, a straight channel flow with
nonuniformly cooled top and bottom walls, a U-shaped chan-
nel with nonuniformly cooled inner and outer walls, and an
arbitrarily shaped channel nonuniformly cooled from top and
the bottom. Nondimensional parameters used in the calcula-
tions are summarized in Table 1.

Closed Container. Mathematical and numerical models for
solidification of a fluid flow were first tested in the case of a
closed rectangular container of aspect ratio 3:1. It was dis-
cretized with 60 % 60 grid cells that were clustered toward the
four walls. Vertical walls were thermally insulated, while the
top wall had a uniform undercooling nondimensional tem-
perature of = —10. At the same time, the bottom wall had
a uniform nondimensional temperature of 6 = 1. A uniform
magnetic field of Ht = 209.3 B, was applied vertically down-
ward. We have specified B, = 1 Tesla. The resulting velocity
vector field (Fig. 1a) indicates strong recirculation of the melt
due to thermal buoyancy. The solid accrued is visible toward
the top wall. The resulting magnetic force lines (lines that are
locally tangent to the magnetic force vector) are depicted in
Fig. 1(b), indicating that the fluid motion has distorted the
magnetic force lines. Notice that the magnetic force lines along
which the short fibers would align have an entirely different
pattern from the flow field streamlines.

When a stronger magnetic field (Ht = 2093 B, ) was applied,
the thermal buoyancy flow was significantly suppressed (Fig.
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Fig. 2(a) Velocity vector field

Fig. 2(b) Magnetic lines of force
Fig. 2 Closed container with a strong constant magnetic field
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Fig. 3(a) Streamlines
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Fig. 3(b) Magnetic lines of force
Fig. 3 Straight channel with a weak constant magnetic field

2a) and the magnetic force lines straightened somewhat (Fig.
2b). The amount of solid accrued at the top wall is smaller
than with Ht = 209.3 B,,.

Straight Channel. The second configuration studied was a
straight two-dimensional channel of aspect ratio 3:1 with the
flow direction from left to right (Fig. 3a@). A uniform nondi-
mensional temperature §# = 1 was imposed at the inlet. Along
the walls a smoothly varying cooling was specified as § = 1
— 11 sin (x x/3). Both velocity components were specified at
the inlet, while a combination of hydrostatic, hydromagnetic
and hydrodynamic pressure was specified at the exit. Properties
of the fluid flow were defined by the nondimensional numbers,
which are given in Table 1. All physical properties were as-
sumed not to vary with temperature. The flow field was dis-
cretized with 60 X 60 nonclustered grid cells.

The first test case represents a solidifying flow field with an
imposed uniform magnetic field of Ht = 5 acting vertically
downward. The computed streamlines (Fig. 3a) clearly outline
the solidified zones attached to the channel walls. Computed
lines of magnetic force are given in Fig. 3(b), indicating that
they have been strongly affected by the flow field. Notice how
different the two patterns are. Magnetized fibers will align
themselves according to the pattern in Fig. 3(b).

To test the influence of a stronger magnetic field on so-
lidification, a test run was performed with the viscosity varying
linearly in the mushy region and a vertically downward pointing
constant magnetic field of Ht = 10. The computed velocity
vector field (Fig. 4a) and the magnetic lines of force (Fig. 4b)
demonstrate that the magnetic field is affected even further
by the flow field. The presence of a magnetic field in an already
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Fig. 4a) Velocity vector field

Fig. 4b) Magnetic lines of force
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Fig. 4 Straight channel with a strong constant magnetic field

Fig. 5(a) Velocity vector field

(e«

Fig. 5(b) Magnetic lines of force
Fig. 5 U-shaped channel with a weak constant magnetic field

existing mean flow inhibits the growth of the solid layers be-
cause of the higher speed of the fluid next to the solid/fluid
interface. This is typical for magnetohydrodynamics.

U-Shaped Channel. The next test configuration repre-
sented a solidifying flow in a U-shaped channel of constant
width where the fluid enters at the upper end and exits at the
lower end. The same type of boundary condition was imposed
on inlet temperature and velocity as in the case of a straight
channel. Along the straight parts of the walls the temperature
was kept constant (§ = 1). Along the curved parts of the walls
the nondimensional temperature varied accordingto § = 1 —
11 sin (7/2-w) where w is the angle between the wall point and
the horizontal. The computational grid had 264 x 60 cells that
were clustered toward the walls. Nondimensional numbers used
with the U-shaped channel are given in Table 1.

In the first test case a uniform magnetic field (Ht = 5) was
applied perpendicular to the walls of the entire U-shaped chan-
nel. The computed velocity vector field (Fig. 5a) demonstrates
that the magnetic field effectively eliminates flow recirculation
regions. The predicted magnetic force lines (Fig. 5b) are sig-
nificantly distorted from the straight-line pattern that would
connect inner and outer walls if there would be no flow through
the channel.

In the second test case a stronger magnetic field (Ht = 10)

FEBRUARY 1993, Vol. 115/ 259



Velocity vector field

C

Fig. 6(b) Magnetic lines of force
Fig. 6 U-shaped channel with a strong constant magnetic field
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Fig. 7(a) Velocity vector field
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Fig. 7(b) Magnetic lines of force

Fig. 7 U-shaped channel with a variable magnetic field
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was applied in the same manner, resulting in a dramatic change
in the flow pattern (Fig. 6a). Plots of the magnetic lines of
force (Fig. 6b) demonstrate their complex pattern that could
be exploited to position and orient short ferromagnetically
coated fibers in the flow field and, consequently, in the solid-
ified layers.

In the case that the externally applied magnetic field is not
uniform, but instead varies along the curved parts of the chan-
nel walls according to Ht = 10 — 5 sin (x/2-w), the flow field
pattern (Fig. 7a) and the magnetic lines of force (Fig. 7b) will
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Fig. 8(b) Isotherms
Fig. 8 Arbitrary passage without magnetic field

be considerably different. This clearly demonstrates the con-
ceptual feasibility of controlling not only the orientation, but
also the concentration of the fibers in the resin during the
curing process.

Arbitrary Channel. Finally, the mathematical model and
the computer code were tested using a set of physical flow
parameters corresponding to a saline solution flow in an ar-
bitrary shaped channel with undercooled walls. As in the case
of channel flow, the temperature of the walls from inlet to
exit was varying according to a sinusoidal distribution § = 1
— 11 sin (i / imax) where i is the grid cell index in the x
direction (1 < i < imax). Fluid temperature at the inlet was
a uniform T = 283 K corresponding to § = 1 since T, = 283
K and T, = 273 K so that AT, = T, — T, = 10 K. This made
the coldest point on the wall have a temperature of — 100°C.
In the case when a steady uniform magnetic field was applied,
it acted vertically downward between the inlet and 80 percent
of the channel length, while no magnetic field was applied over
the remaining 20 percent of the channel length. The charac-
teristic quantities that were used for nondimensionalization
are: Cpo = Cpoligr Ko = Kotigs lo = 0.01m, v, = 0.1 m/s. Since
the value for the magnetic permeability could not be found in
the open literature, we have arbitrarily assumed it to be p =
50 p,, where p, = 4 71 X 1077 is the magnetic permeability
for vacuum. If By = p, Hy, the remaining terms in the equation
for Ht can be grouped so that Ht is directly proportional to
B,, which is measured in Teslas. For example, if Ht = 0.5 By
and the value for By is 10, this means that the Hartmann
number Ht = 5 can be achieved with the magnetic field of 10
T.

The nonorthogonal boundary-conforming computational
grid consisted of 100 x 58 grid cells that were clustered toward
the inlet and the passage top and bottom walls. The grid was
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Fig. 9(b) Isotherms
Fig. 9 Arbitrary passage with a constant magnetic field

generated using our grid optimization algorithm (Kennon and
Dulikravich, 1986).

A comparison of the computational results with and without
an external magnetic field shows that the velocity profiles
change under the influence of the magnetic field due to the
ponderomotive force (Figs. 8a and 9a). More importantly, the
solidified layers in the case where no external magnetic field
was applied are thicker and differently shaped compared to
the freezing with the magnetic field as indicated by the iso-
therms in the solid phase without (Fig. 85) and with (Fig. 9b)
the magnetic field. A very complex pattern of magnetic lines
of force (Fig. 10a) clearly indicates that the coated short fibers
could be manipulated using appropriately distributed magnetic
field strength along the boundaries of the domain. It should
be pointed out that it is the higher speed of the fluid close to
the solid/liquid interface that decreases the residence time of
the fluid particles in the mushy region, thus decreasing the rate
of solid accretion. This increase in the fluid speed in the bound-
ary layer regions is caused by the presence of the magnetic
field. On the other hand, Joule heating (Fig. 10b) would have
a profound influence on the solidification rate in the case of
a lower electrical conductivity of the fluid and in flows gen-
erated purely by thermal buoyancy.

Conclusions

An analytical and a numerical formulation have been de-
veloped for the theoretical prediction of solidification proc-
esses in fluid flows inside undercooled passages with and
without the influence of an externally applied steady magnetic
field. Computational results confirm that the magnetic field
has a profound influence on the solidifying flow field since it
eliminates flow recirculation regions and causes distorted ve-
locity profiles having pronounced overshoots close to the solid
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Fig. 10(a) Magnetic lines of force

Fig. 10(b) Joule heating contours

Fig. 10 Arbitrary passage with a constant magnetic field

boundaries. The temperature field also changes under the in-
fluence of the external magnetic field. This change influences
heat transfer through the boundaries and consequently the
amount of the solid phase accrued on undercooled walls. Spe-
cifically, the influence of the ponderomotive force and, to a
much lesser extent, Joule heating are such that they tend to
reduce the amount of the accrued solid phase. Combined with
the predicted complex patterns of the magnetic field force lines,
this indicates a possibility for the development of a compu-
tational inverse design/optimization algorithm capable of
achieving desired configurations of the solidified layers and
desired distribution and orientation of magnetized short fibers
within the solidified layers.
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