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ABSTRACT

Many nhumerical algorithms presently
used for the solution of the Navier-Stokes
equations of gasdynamics rely on the

explicit addition of artificial dissipation
terms to yield non-oscillatory results in
regions containing strong flow gradients.
- In this investigation, the characteristics
;of two existing artificial dissipation
models (Jameson et al and Ni) are compared
with the characteristics of natural
dissipation incorporated in the Navier-
Stokes equations. In addition, the
characteristics of the new Physically Based

Dissipation (PBD) model are compared with
the characteristics of the natural
dissipation. Results indicate that

existing artificial dissipation models can
'yield values of dissipation that are
significantly larger in magnitude and often
of opposite sign than the natural
dissipation. The PBD model is shown to
vield values of dissipation that more

closely resemble the natural dissipation
terms, thus offering an alternative
approach to artificial dissipation
modeling.

INTRODUCTION

When the equations of gasdynamics are
solved using a central difference scheme
(e.g., a Runge-Kutta time stepping scheme
[1)), decoupling of odd and even grid
points generates oscillations in the
numerical algorithm. These oscillations
can be damped by either explicitly or
implicitly adding a certain amount of
artificial dissipation [2].

Contemporary dissipation models for
central difference schemes are
intentionally [3] devoid of physics and

represent an intuitive combination of
second and fourth order artificial (non-
physical) dissipation terms [1]. The
second order artificial terms are used to
damp oscillations in shock regions, while
the fourth order artificial terms ensure
monotonic convergence to steady state in
smooth flow regions [1]. Nevertheless,
different amounts of second and fourth
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order dissipation can produce different
numerical solutions {4,5] especially in the
case of transonic shocked separated flow
[6,7]. The objective of this work is to
compare the characteristics of the
artificial dissipation models of Jameson et
al (8] and Ni [3] with the characteristics
of natural (physical) dissipation resulting
: from the Navier-Stokes equations. In
-addition, the characteristics of the newly

developed Physically Based Dissipation
(PBD) model [9,10,11] will be compared with
the characteristics of the natural
dissipation.
- PHYSICAL DISSIPATION IN NAVIER-STOKES
i EQUATIONS

In the computational (¥,n) domain, the
two-dimensional Navier-Stokes equations in

conservation form can be represented
by:
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Here, o is the density, p the
thermodynamic pressure, u,v the Cartesian
velocity components, e, the total mass-
specific energy and h, the total mass-
specific enthalpy. R, is the Reynolds
number, while E' and F' incorporate

physical dissipation terms due to shear
viscosity, n, secondary viscosity, A, aqd
heat conduction, K. Thus, the physical
dissipation flux vectors are:
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The contravariant velocity components are:
U= (uy'l -vx,)/T ;i V= (VX -uyt)/J (ﬁ)
and the Jacobian of the transformation
matrix is:
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The shear stress terms are:
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Here, p" is the
viscosity coefficient
Also, M, is the freestream Mach number,

Pr is the Prandtl number and T is the
absolute tenmperature. Since Rankine-
Hugoniot shock jump conditions are
guaranteed only if Stokes hypothesis (N/u
~-2/3) 1s enforced [12,13), this relation
was used in actual computations.

longitudinal -
(u" 2p + AN).

PHYSICALLY BASED (ARTIFICIAL) DISSIPATION

In an effort to make the dissipation
terms nore closely resemble physical
dissipation, we introduce the concept of
Physically Based Dissipation (PBD). The
idea {9] is to wuse the right-hand side of

the Navier-Stokes equations (eq. 3) as the

basis for artificial dissipation, while
retaining slip boundary conditions when
using it in the Euler equations. In
addition, the viscosity coefficient, u,

should be allowed to vary throughout the
flowfield according to an ‘“artificial
dissipation sensor". For the purpose of
this study, the “"artificial dissipation

sensor" will be based on the first
derivative of pressure, which is explicitly

found in the equations of motion.
Nevertheless, a number of other
possibilities exist for choosing an
appropriate "artificial dissipation sensor"
{9,11].

We propose a linear combination of the
physical shear viscosity coefficient, u,
and the related artificial dissipation in
order to create a physically based
artificial dissipation model for the
Navier-Stokes equations
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This model is reminiscent of the well known

"turbulent viscosity" coefficient
formulation. Here, C is a single user
specified constant. We used C=14 in all

Notice that the PBD model
equations uses exactly

the test cases.
for Navier-Stokes

‘the same derivatives of the velocity vector

appear in the actual
the Navier-Stokes

components as
stress terms of
equations. Since Mpap is always

positive, it follows that the PBD model
should produce non-negative entropy thus
satisfying the second law of
thermodynamics. We note that using the PBD
model in both Euler and in Navier-Stokes
equations leaves the continuity equation
intact (i.e. the right-hand side equals
zero), while the conventional artificial
dissipation models alter the right hand
side of the continuity equation. In
addition, the use of the PBD model allows

they



an Euler solver to be easily converted to a
Navier-Stokes solver ([9,10].

EXISTING ARTIFICIAL DISSIPATION MODELS

central difference schemes
solutions to equation

When using
to obtain numerical

(1), the flow solution can decouple at odd
and even grid points. Consequently, some
form of artificial dissipation must be
introduced to obtain stable solutions.

Thus, the modified set of equations is
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where d(Q) is an artificial dissipative
operator.

In the
made popular by Jameson et
calculations of all the artificial
dissipation terms are done similarly. The
dissipation is defined in the computational

domain as:

artificial dissipation model
al [1], the

d(Q) = 4Q + 4.0 (13)

where Q is defined in equation (1). The
terns 4,0 and 4Q are contributions

from the two computational coordinate
directions. Then

4Q = Ay ~ Qg 40 = GQuun T Giyan (14)
The terms on the right-hand side of

equations (14) are similar. For example
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where €9, ¢9 are flow
adaptive coefficients that are defined
as:
€@ = k@ max(v,,, v,) (16)
e = max (0, (k¥ -€,,))) (17)

and the "artificial dissipation sensor" is
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where the two user specified constants are

X2 = (19)

1/4 x¥ *1/256

The artificial dissipation model suggested
by Ni is defined as:

da(Q) = py, (Qy - Q) (20)
where
_Vl 21
Q= 4[QMJ«1 +QMJ-| + Ql-uﬂ +QI-IJ—l] (21)
and
= g(At 8t 22
by = O(gx Ay) (22)
Here, ¢ 1is an artificial damping
factor. We used the value ¢ = 1.5 in all

the test cases.
COMPARISON FORMULATION

Subsonic and supersonic inlet flow
cases were investigated for flow through a
two dimensional contracting nozzle. The
sign and magnitude of the artificial
dissipation terms generated Dby each
artificial dissipation model were compared

to the dissipation generated by the
physical terms in the Navier-Stokes
equations.

The various artificial dissipation

models were compared to the Navier-Stokes
dissipation by calculating the dissipation

that they generate at cell centers. Thus,
D = Dlamesun
IAM Navier-Stokes
_ Dy
Dm DNavler-Slokes
DBrgp (23)
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For example, if one considers only the
dissipation in the x-momentum equation, and
only from the ¥ direction, then
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In the edq. 26 the viscosity
coefficient is varied according to eq. 11.
Eg. 27 was computed using the physical

values for g and the velocity derivatives
obtained from the solution of the Navier-
Stokes equations. In actual calculations,
the ratios of the dissipative terms (Eq.
23) contain components from both the ¥ and
n directions.

RESULTS

Two grids were used to discretize the
nozzle: a coarse 40x20, clustered grid
(Figure 1), and a finer 80x40, strongly
clustered grid (Figure 2). On both grids,
the top of the grid represents a solid
wall, while the bottom of the grid
represents the line of symmetry for the

nozzle. The inlet 1is at the left of the
grid, while the outlet 1is at the right of
the grid. Flow boundary conditions at
these boundaries were enforced using
Riemann invariants. A no-slip condition
was used on the upper wall and the

reflection condition was used on the lower
wall. All internal flow cases considered
were run using the same basic code for 1700
iterations on a Vax 8600 computer starting
with the identical initial guess of a
uniform flow field.

The first test case considered was for
an inlet Mach number of 0.6 and a Reynolds
number of 100,000. Figures 3-10 show the
ratios of the Jameson’s, Ni’s and PBD
dissipation, with respect to the physical
dissipation in the Navier-Stokes equations
on coarse and clustered fine grids. 1In all
figures, DA/DN is the ratio (Egq. 23) of the
value from the given artificial dissipation

model to the value from the Navier-Stokes
equations. For the x-momentum equation,
Figure 3 shows the ratios along the grid

line mid-way between the lower and upper
boundary and Figure 4 shows the ratios
along the upper wall. Jameson’s artificial
dissipation is seen to be orders of
magnitude larger <than the Navier-Stokes
dissipation. At the wupper wall, not only
are Jameson’s artificial dissipation terms
larger in magnitude, but in many locations
this dissipation also has the wrong sign

thus effectively creating a negative
entropy. Even though Jameson’s dissipation
terms may locally have the wrong sign,

global convergence is still achieved since
this formulation also produces exceedingly
large positive dissipation at other
locations. Similar results for Jameson’s
dissipation appear in the energy equation.
Results from using Ni’s dissipation show
that it is uniformly of the proper
magnitude and sign. This is expected since
Ni’s dissipation is actually a form of
residual smoothing. Results using
Physically Based Dissipation indicate that
it is of the correct sign and that it
varies monotonically.

The second test case was for an inlet
Mach number of 0.9. Figures 11-18 show the
results for x-momentum and energy equation
dissipation ratios on coarse and fine
grids. Jameson’s artificial dissipation is
often considerably larger in magnitude and
in many cases has the opposite sign of the
Navier-Stokes dissipation. Physically
Based Dissipation has the correct sign
although somewhat higher magnitude than the
Navier-Stokes dissipation. Ni‘s artificial
dissipation again seems to be closest to
the Navier-Stokes physical dissipation.

Figures 19-26 illustrate results for
the x-momentum equation dissipation ratios
on coarse and fine grids for supersonic
inlet flow with M, = 1.2. Note that
Jameson’s artificial dissipation is highly

oscillatory and generally of the wrong
magnitude and the opposite sign of the
Navier-Stokes dissipation. The supersonic



Jameson’s artificial
only second order
introduction of the

artificial dissipation
consistently caused the algorithm to
diverge. Also, the coefficient €?

had to be decreased by 50% from M, = 0.6

to M, = 1.2 test case.

results with
dissipation used
dissipation, since
fourth order

Field plots of constant pressures
obtained using the three artificial
dissipation formulations are presented in
Figures 27-29 indicating a considerably
thicker boundary layer obtained with the

Jameson’s artificial dissipation.

In order to demonstrate the
applicability of the PBD formulat:on to
Euler equations of inviscid gasdynamics, a
transonic flow (M, = 0.5) about a circle
(Fig. 30) was computed. Jameson’s
artificial dissipation caused strong
inviscid separation (Fig. 31) while PBD
scheme generated a barely noticeable (Fig.
32) trailing edge separation which is in
agreement with the TVD type artificial
dissipation schemes [6,7]. This strong
influence of artificial dissipation models
on inviscid separation is also visualized
in  Fig. 33-34 depicting the computed
streamline pattern.

CONCLUSIONS

Three artificial dissipation models
have been discussed and compared to the
natural dissipation obtained from the
Navier-Stokes equations. It was found that
the artificial dissipation of Jameson et al

has often the wrong magnitude and the
opposite sign of the physical dissipation.
The artificial dissipation of Ni |is
consistent with the signs and magnitudes of
the physical dissipation which may be due
to the fact that it is based on residual
smoothing. The Physically Based
Dissipation formulation is introduced as an
alternative to the existing artificial
dissipation schemes. It appears to be
consistent with the physical dissipation,
since it generates non-negative dissipation
although there is a room for considerable
improvements concerning the formulation of
dissipation sensors and higher order
boundary conditions for artificial
dissipation terms. The PBD formulation was
only one user specified parameter which can
be kept constant over a wide range of Mach
numbers.
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Fig.29 1Isobars for Mg=0.90; fine grid and Fig.30 Detail of the computational grid
PBD formulation for a circle: (64 x 32) grid cells

Fig.31 FEuler solver: isopa;s‘for Mge=0.5 Fig.32 Euler solver: isobars for Mg=0.5
and Jameson’s artificial dissipation and PBD formulation

Fig.33 Euler solver: streamlines for Mg=0.5 Fig,34 Euler solver: streamlines for Mg=0.5
and Jameson’s artificial dissipation and PBD formulation
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