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A new method for generating solution-adaptive computational grids is presented that builds on the
requirement that the adapted grid retains maximum possible smoothness and local orthogonality. The
approach taken is one of nonlinear optimization, where an objective function combining measures of
gnd smoothness, local orthogonality, and cell volume control is minimized using a fast iterative
scheme. The method is multidimensional by construction, and accepts any arbitrary grid as input, even
a grid that is initially overlapped. Several applications to published test problems aliow comparisons
with some of the existing adaptive grid generation methods. An example of dynamic adaptation to the
solution of finite difference equations is also given that demonstrates the error reduction capabilities of

the new adaptive grid generation and optimization method, and suggests further applications to
practical engineering problems.

1. Introduction

The generation of solution-adaptive computational grids for finite difference or finite
element computation is a research topic currently receiving a great deal of interest [1-3]. The
accuracy of a numerical scheme can be greatly improved when a fixed number of grid points
are dynamically redistributed so as to better resolve the regions where large variations occur in
the solution. Alternatively, the benefits of grid adaptation may be understood in terms of
increased computational efficiency when using a single solution-adaptive grid as opposed to
straightforward static grid refinement. Since the stability of most numerical schemes depends
on the grid quality—smoothness in particular—the conclusion is that the grid adaptation
process should not result in excessive and uncontrolled distortion of the initial computational
grid.

Solution-adaptive grid generation methods fall into two broad categories, according to the
principle underlying the grid point motion algorithm: equidistribution of some error measure
over the domain on one hand, and explicit use of variational principles on the other hand.
Methods belonging to the first category are often based on one-dimensional point motion
algorithms [4-6]. Methods taking the variational approach are not subject to this constraint
and therefore seem most promising for multidimensional solution-adaptive grid generation.
They are based on the minimization of a volume-weighted measure of the variations of some
solution quantity or of its numerical error over the computational domain [7-10].

The method described in this paper takes the latter approach with the goal of achieving
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~"ective control over the conflicting requirements of grid smoothness, local orthogonality, and
- .aptation. In this sense, good quality solution-adaptive grids are sought that avoid pitfalls
such as: (a) excessive skewness of the adapted grid; (b) lack of convergence of the point
motion algorithm that frequently results in oscillatory behavior of the adapting grid; (c)
excessive clustering that leads to collapsing of grid lines in regions of large solution variations;
(d) excessive depletion of points in regions of small solution variations. Such drawbacks have
been reported in the past [2, 3] for certain adaptive grid methods applied to two-dimensional
problems, thus raising serious questions about the reliability of solution-adaptive grid gener-
atton.

2. Background

The present method is a natural extension of a recently published static grid generation and
optimization concept that has been successfully applied in two and three dimensions [11, 12].
The variational method of Brackbill and Saltzman [7] gave the impetus for its development,
and analogies between the method of Kennon and Dulikravich and the method of Brackbill
and Saltzman will be outlined first. The following discussions address two-dimensional
problems, but all the concepts presented here are easy to formulate in three dimensions.
Brackbill and Saltzman achieved control of grid quality and grid adaptation by quantifying the
mapping (Fig. 1) between the physical space (x, y) and the uniformly discretized computa-
tional space (¢, n) by the following integrals:

I = f f [(V€)’ + (Vn)’] dé dn  (smoothness) ,
I =H[V§-Vn12d§ dn
I =ff w(€,m)J* d¢ dn

(orthogonality) , (D

(volume control) .

Here, J is the determinant of the local Jacobian transformation matrix
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Fig. 1. Physical plane and computational plane.
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and V is the gradient operator in physical coordinates. The integrals above are transformed in
the computational space and a linear combination, I, of the transformed integrals is minim-

ized. This variational problem is solved by applying the Euler-Lagrange equations of
variational calculus to the integrand of

I=L+A0 +A1,, A, A =0. 2)
A system of coupled second-order partial differential equations results that is solved by

standard Gauss-Jacobi iteration after discretization by central differences in the computa-
tional space.

3. Analysis

In order to improve computational efficiency and reliability of this solution-adaptive grid
generation method. a more heuristic formulation is adopted here by considering local optimal
adaptation problems for a given arbitrary computational grid. This approach is discussed in
detail elsewhere [13]. We will limit ourselves here to a brief description of the principles and
unique features of our method.

Consider that a computational grid is given by the set of the physical coordinates of all its
vertices. A master cell is centered at the grid point P, = P(x,, y;). Each master cell is made
up of the four neighboring grid cells that share point P, (Fig. 2). The grid points are assumed
to be connected by straight line segments. Four position vectors connecting P, to its
immediate neighbors are defined as:

riaw;,= (xi+1.j - x.’,,’)éx + (y.'+1_,’ - yi,j)éy ,
ri,j-*l = (xa_j-?] - xz,j)éx + (yi,j+l - .)‘l,j)é)' ’
riov, = (xi—l,j —x,;)é + (Yic1,; — Yi e,

rj.1 = (xl,j—l - xi,j)éx + (yi,j—l - yi,j)éy ,

(3)

47
/

Fig. 2. Two-dimensional master cell.
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w eé, and é, are unit vectors in the Cartesian coordinate directions x and y, respectively,
The master cell is smooth if it has minimal change in cell area from one elementary cell to the
next. Therefore, a quantitative measure of the departure from smoothness of each master cell
can be formulated as:

SM,=(A, - A2)2 +(A, - As)z +(A; - A4)2 +(A, - Ax)z ) (4a)
where the A, are approximate area measures for the areas of the elementary cells, e.g.,

. A1=“(ri+l.jxri.j+l)" . (4b)

The master cell is orthogonal if the curvilinear coordinate lines £ = i = const and 7 = j = const
intersect at P, at right angles (Fig. 2). Hence, a quantitative measure of the departure from
local orthogonality of the master cell is:

2 2 2 2
ORT.‘jz(’.'n‘j”i’jn) +("i,,'—1"i+1,j) +(rx—l‘j.ri,j—1) +(’f,;+1"i—1,;) . (5)

At the same time, a cell volume control functional for the master cell is sought in the general
form

VOC, = A, X W, (6)

Here, A, is the area of the master cell (or volume in three dimensions) and W, ,is the value of
: itably chosen positive weight function evaluated at P,. This weight function will be
discussed later. It is easily seen from (6) that minimizing the sum over all the master cells of
the volume control functionals will cause the master cells to shrink where W is large and
expand where W is small. A simplified, nonexact, but computationally more efficient
formulation for VOC, is obtained, for example, by considering the master cell as a system of
tension springs connecting the grid points and the adaptation procedure as the minimization of
the energy of this system. It reads:

VOCij = wl”’i+l‘j”2 + wz”"i.;nHz + “’3”".'—1,,'”2 + w4“’i,,‘—x”2 > ™
where the ‘spring constants’ are

wlz%(wi,]-’-wi-&l,j)? Wz=%(W.-,j+W';+1)’

I,

Wy = %(“/i,j+“li-l,j)’ We= %(M.1+W',i-l)'

1

This simple formulation presents some significant advantages. Notice that only functiod
values of the weight function at the grid points are needed in our method, thus avoiding the
numerical computation of its derivatives that are required by most adaptive grid methods.
higher-order derivatives are employed, this computation may yield very ‘noisy’ data, causing
the adapted grid to oscillate [14]. Notice also that the simple averaging of function values 10
the definition of the spring stiffness constants strongly couples adjacent grid points withif :
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master cell, effectively preventing the grid points from responding excessively to abrupt
variations of W. Consequently, severe distortion of the adapted grid is avoided. The fact that
the volume control functional is perfectly symmetric with respect to P, justifies the expectation
that effective volume control should be obtained regardless of the direction of VW with
respect to the curvilinear coordinate directions of the initial grid. This tension springs analogy
for the volume control functional has also been used for the adaptive refinement of triangular
finite elements [15]. Nevertheless, it has been done without grid quality control, and the point
motion algorithm rests on a static equilibrium statement rather than on minimizing the energy
of the analog system as done here.

The global objective function, F, is obtained by forming a weighted linear combination of

the local grid quality measures and the local volume control functional for each master cell
and summing them up over all the master cells:

F=23 Y [aORT, +(1-a)SM, + B VOC,] . (8)

where o is a scalar weight parameter enabling a trade-off between grid smoothness and local
orthogonality to be achieved in the static optimization (8 = 0) or optimal solution-adaptation
procedure (B8 # 0). The ranges of variation for these parameters are:

0sB=<1. (9)

However, the adaptation procedure has been shown to converge successfully, even for
B ~ O(10) (see Example 4.2).

The global objective function is then rewritten as a function of the vector V containing the
physical coordinates of all the grid points in a natural ordering:

Vz{(x.jvyij):1Si$]’1sj$1}- (10)

Unconstrained minimization of the function F of 2 X I X J variables is performed next, using
the Fletcher—Reeves conjugate gradient method [16]. The minimization of F reduces to a
succession of one-dimensional minimization problems in the variable w, (11), called the line
search parameter. This iterative procedure yields corrections to the physical coordinates of the
grid points,

Vii=VT+ 08V, (11)
where

83V =-VF(V"), 8V"=-VFV")+B3sV"",

B, = IVFVHITIVF(V" |7
At the nth iteration level, this one-dimensional problem can therefore be formulated as:
Minimize ¢(w,)=F(V" )= FV"+ 0 8V"). (12)

From (4), (5), (7), (8), and (12) it follows that ¢ is a fourth-order polynomial in w,. Hence,



284 R. Carcaillet et al., Generation of solution-adaptive grids

each iteration consists in finding and testing the three roots of
oY/dw, =0 (13)

and selecting the real root w, that minimizes . The line searching part of the algorithm is
exact and inexpensive to compute. The iterative procedure is halted when the optimal grid,
given by V*_ is found, that satisfies

IVF(vH)l <e. (14)

Here ¢ is the user-specified convergence criterion.

The gradients of the three functionals in the global objective function are normalized, in
order to properly account for smoothness, local orthogonality, and volume control in the
iterative procedure [16]. In addition, these gradients are volume weighted, that is,

VG, 1, (15)

is used, where G = SM, ORT, VOC, respectively, and where J, 1s the Jacobian of the master
cell centered at P,. It follows that the smaller grid cells are emphasized in the optimal
adaptation procedure. This is consistent with the fact that grid distortion due to volume
control is more likely to appear in regions of large solution variations, that is in regions where
the cells are small. Tighter grid quality control is required there. Moreover, this prevents
regions where the solution variations are negligible to become devoid of points.

has been shown [17] that, when grid points can be added to the original grid, the most
efncient way to improve numerical accuracy is to add the points only in regions of strong
gradients. Otherwise, more numerical diffusion must be added to prevent nonlinear instability
when solution gradients are insufficiently resolved [18]. Finally, it has been proved in the
one-dimensional case [7] that increased resolution of gradients does reduce the numerical
error. Therefore, choosing for W a measure of the gradient of some dependent variable Q1s
appropriate, in the form:

W, =[|vQ/Qll} . (16)

For compressible flow problems with shocks, O may be the density p, the pressure p, of the
Mach number M. Alternatively, W, may reflect the variations over the grid of the current
residual in iterative time-asymptotic solutions. Improved resolution in regions of large local
residuals would improve the iterative convergence rate of the solution or, alternatively, yield
the same rate of convergence with fewer grid points. For finite element applications, it has
been recently shown [9] that for proper choice of W in terms of error norms, the variational
adaptation procedure [7] will minimize an approximation to the local interpolation error.

Some control over the range of variations of the weight function is desirable. The minimum
cell size determines the allowable time step for explicit methods, and the cells cannot be
allowed to become too large. The scaling procedure proposed by Brackbill and Saltzman 15
suitable. It is formulated here in a slightly different manner. Define
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o = min(o,, max W/min W) , (17)

where max W and min W are the maximum and minimum values of W, over the grid and o, is
a user-supplied parameter (o, >1). The weight function is scaled by setting

w,,=[(6* - 1)W,_ /o max W]+ 1/o . (18)
The range of vanation of W follows from (18):

OsminW=1, if o, <max Wmin W . (19a)

min W=1, if o,Zmax W/min W . (19b)

In both cases, max W= ¢o.

For a given value of o,. it follows that, when the range of variation of W is wide. cells will
expand in regions where W is small, thus allowing for stronger clustering in the regions where
W is large (see (19a)).

Additionally, smoothing the scaled weight function w may be necessary in the case of
abrupt, localized variations of W or in the case of nonsmooth numerical data supplied by the

evolving numerical solution being done on the grid [13]. The volume control functional is then
calculated using W.

4. Results

The first applications of this method have shown the optimal adaptation procedure to be
very fast. All the adapted grids presented next have been obtained in ten or twenty iterations.
In an initial phase, grid points are redistributed to minimize the energy of the spring system,
by closely following the variations of W. This takes three iterations at most. Subsequent
iterations significantly improve the smoothness and local orthogonality of the adapted grid.

In all the test cases but one, the maximum corrections to the grid point coordinates dropped
by six orders of magnitude in less than twenty iterations. In practice. ten iterations suffice to
obtain a nearly optimal adapted grid. In all the test cases, orthogonality at the boundaries has
been enforced by allowing the boundary points to ‘float” on their respective boundaries.

A sequence of applications is performed in which a given uniform Cartesian grid on a
square domain is made to adapt to a weight function that is given analytically. This allows
examination of the behavior of the grid according to the sole influence of the point motion
algorithm, without interference from a particular field problem or numerical scheme. All
examples but the first one are taken from the literature on adaptive grids, inviting comparison
with the grids obtained by some other adaptation methods.

EXAMPLE 4.1. On the unit square (0<x=<1,0=<y=1), the weight function is defined as:
W= Aexp(—Br),

where r 1s the radial distance of a point measured from the center of the square.
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Fig. 3. Adapted grid, W= 1000 exp (—20(x* + v?)), Fig. 4. Same example as Fig. 3 without scaling of W.
a=0.5, =05, o,= 1000

Forr=0at (x, y)= (3. ). A = 1000, and B = 20, the grid is optimally adapted for a = 0.5,
B =0.5, and o, = 1000 (Fig. 3). Setting B = 1 results, as expected, in smaller cells at the center
of the square. The effect of not scaling W (see (18)) is shown in Fig. 4: the smallest grid cells
are highly distorted.

EAAMPLE 4.2. A grid on the unit square is made to adapt to the variations of sinusoidal
functions. This example demonstrates that the volume control capability does not depend on
the direction of VW relative to the x- and y-coordinate directions. The input parameters are:
a=10.5, 8=0.5, and o, =100, unless otherwise noted.

W=sin(2nx) +1+ 1/0, . (20a)
The cells vary only in the x-coordinate direction (Fig. 5).

W=sin(2mx) X sin(2my) + 1 + 1/a, . (20b)
Satisfactory volume control is achieved: where W is large ((x, y) = (4. 1)) the cells are small:
where W is small ((x, y) = (3. 1)) the cells are large (Fig. 6). For B = 16, the procedure still
results in a fully converged, stable adapted grid (Fig. 7). The variational method [7] failed t0

converge on this same example for such high values of B (or A, as defined in (2)).

W=sinfdn(x + y)] + 1+ 1/a, . (20¢)

W varies along the diagonal of the grid, and so do the cells (Fig. 8). The grid obtained fof
B =1 shows that the increased grid clustering does not cause excessive skewness of the largest
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Fig. 5. Adapted grid. W= sin(2wx) + 1+ lio,. a =05, B =05, o, = 100.
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Fig. 6. Adapted grid, W= sin(2mx) x sin(2my) + 1+
Vo,.a=0.5 =05, o, = 100,

Fig. 7. Same example as Fig. 6 for B =16.

maxima and minima of W (Fig. 10). In the original example [7£, volume control is not as
accurate and the largest cells are highly skewed., Minimizing E,. j YOC, alone results in a
highly skewed grid (Fig. 11): it is seen that optimizing the adapted grid in terms of smoothness
and orthogonality is an essential part of this method. The convergence history of the iterative
procedure for 8 =1 is illustrated in Fig. 12, for optimal adaptation (Fig. 9) as well as for
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wnile greatly reducing the jaggedness and skewness of the adapted grid. The latter are
quantified by

SMG =2 2 SM,, (22)

/

ORTG = 2 2 ORT, .

t

(23)

EXAMPLE 4.3 [10]. A grid on the square domain [-2, 2] X [-2, 2] is made to adapt to the
gradient of the hyperbolic tangent function T defined by
T=r(x"+y’ - 1)+7(y—x), (24)
where
1(r) = A tanh(D X r).

Disturbances on the unit circle and on the diagonal of the grid are thus created, in the form of
a jump at r = 0 from — A to + A with a jumping rate increasing with D. A and D were set to 1
and 3, respectively, as in the original example [10]. The input parameters are a = 0.5, 8 =0.5,
and g, = 100. The optimally adapted grid is perfectly symmetrical with respect to the diagonal
y = x and exhibits a high quality [10] (Fig. 13).

The reduction in numerical error allowed by an optimally adapted grid is investigated on a

ple test case, which has been studied by Brackbill and Saltzman [7]. It deals with the
stationary solution of the convection-diffusion equation

astBRRN .

Fig. 13. Adapted grid, W=V[T(x* + y —1)+ T(y — x)], T = hyperbolic tangent function, a =0.5, B = 0.5.
o, = 100.
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¢ +V (dU)- kV-Vp=0. (25)

where U = U(r)rns given, and '« is a positive scalar constant, Here, r = (x* +y*)** and r = 7.
The first integral of (25) on an infinite domain is simply

U= V¢ =0. (26)

“

When « is small. V¢ /¢ will be very large where U is finite. Choosing for U(r) a function
which is nonzero only in a narrow annulus at r = r, will result in the formation of a singularity

on the circle of radius r,. Considering the unit square with r =0 at its center and r, = }, U is
taken [7] as

U(ry=—rujh h_Ix ,
where (27)

h.=1/[1+exp(uyr—r,)/x)].

Using k =0.08 and u, =6 results in the contour plot of ¢ shown in Fig. 14. An analvtic
expression for ¢ is then obtained from (25). (26) as

&(r) = &(0) expluyrh /k — x In(h_/h_(r = 0)) Tuy] . (28)
The departure from cylindrical symmetry noticeable in Fig. 14 is simply due to the interpol-

ation of ¢-values performed by the contour routine on the 48 X 48 Cartesian grid. The
numerical error ¢ is defined as
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e=max, [[|[U - «Vo /o] (29)
The weight function is taken as

W=||Vo/d] . (30)

Fig. 15 shows a contour plot of W on the same grid. The outermost contours correspond to
W =20, and W exhibits a very steep variation on the annulus centered at r = r.

The numerical experiments are performed as follows. For o, =100. successive optimal
adaptation cycles consisting of ten iterations each are carried out for different values of a and
B. Function ¢ and the weight function W are recaiculated on the gnd resulting from each
adaptation cycle. Due to the extreme singular character of W, the convergence of the iterative
procedure is not as good as in the static adaptation examples, the corrections to the grid point
coordinates dropping by two orders of magnitude only after ten cycles. One cycle performed
for a =0 and B =1 yields a numerical error ¢ that is 68.8% smaller than on the initial uniform
grid. A second cycle brings a total error reduction of 87.3%. At this point, the grid is
optimally adapted. Further cycles show that the numerical error ¢ starts increasing again.
although very slowly (after three additional cycles e is 8% greater than after the first two
cycles). The influence of @ on the attainable error reduction is investigated by repeating the
above experiment for a = 0.5. The results are summarized in Table 1. Clearly, the minimiz-
ation of the volume control functional competes with that of the orthogonality measure. A

Fig. 15. Contours of W prior 1o scaling on 48 x 48 Cartesian gnd.
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Table 1
Influence of a on error reduction (8 = 1)
a=0 a=05
e(%) % reduction £ (%) % reduction
mﬁal grid 45.31 — 45.31 —
Adapted grid (10 it.) 14.13 68.8 28.27 376
Adapted grid (10+ 10it.) 5.64 87.6 28.16 37.8

similar observation was made when using the variational method [7]. Note that for « = 0.5,
the adaptation procedure does converge as well as in the static grid adaptation examples. The
conclusion based on the numerical experimentation is that to maximize the error reduction,
the adaptive grid should be optimized in terms of smoothness rather than local orthogonality.
The grids resulting from the first two adaptation cycles (Figs. 16, 17) are noticeably smoother
than in the original example using the variational method [7]. Specifically, cells away from the
singularity are nearly undisturbed, and reasonable cell aspect ratios are maintained throughout
the adapted grid.

The influence of B on the adaptation procedure is illustrated in Fig. 18. It is seen that the
decrease in & as B increases from O to 1 is significantly greater than when B is further
increased. Finally, optimal grid adaptation is compared to straightforward grid refinement.
The numerical error £ decreases in both cases as the number of cells increases from 12 X 12 to
9% x 96 (Fig. 19). The error on the adapted grid is consistently one-sixth to one-eighth the
error on the corresponding uniform grid. As for computer time requirements, an adaptation

cycle of ten iterations on the initial 48 x 48 grid required one minute of CPU time on a Harris
800-11 computer.
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Fig. 16. Adapted grid after one cycle (10 iterations). Fig. 17. Adapted grid after two cycles (10 + 10 itera-

tions).







