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A Computational Design Method
for Transonic Turbomachinery
Cascades

This paper describes a systematical computational procedure to fiRd configurarion
changes necessary to modify the resulting flow past turbomact Inery cascaies,
channels and nozzles, to be shock-free ar prescribed transonic operaqring conditions.
The method is based on a finite area transonic analysis technique|dnd the fictitious
gas approach. This design scheme has two major areas of applieatfon. First, 1t can
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NASA Lewis Research Center, be used for design of supercritical cascades, with applications maip{y in compressor

Cleveland. OH blade design. Second, it provides subsonic inlet shapes including sofic surfaces with
suitable initial data for the design of supersonic (accelerated) exits, Yike nozzies .ind
turbine cascade shapes. This fast, accurate and economical methol with a proven
potential for applications to three-dimensional flows is illustratedlby some design
examples.

NOMENCLATURE X, Y Coordinates of the compytational plane
a Speed of sound 1.2 Flow angle, up- and dowrstream
. . , ! conditions
A Speed of sound, nondimensionalized )
with critical conditions 8 Cascade stagger angle (fig. 1)
B Determinant of the Jacobian: 8, Leading edge angle (Fig| 1)
3 (X, y) /30X, Y) 8, Trailing edge angle (Fild. 1)
Cascade chord length (Fig. 1); ¥ Ratio of specific heats
c Fictitious gas parameter v Prandtl-Meyer turning aplgle
D Derlls‘ity, nond}'me?nsionalized with ¢ Velocity potential
critical conditions
. . ¥ Stream function
g Gap distance between cascade airfoils
(Fig. 1) 0 Fluid density
K Characteristics coefficient N Flow angle
M Mach number £.n Characteristics
q Velocity magnitude
Q Velocity magnitude, nondimensionalized Subscripts, superscripts
with critical conditions. (Laval £ fictitious
number)
- . is i i
Ty 5 Leading and trailing edge radii isentropic
' (Fig. 1) * at critical conditions.
t Thickness at mid-chord (Fig. 1)
u,v Velocity components in physical plane
’ (x,v) Y P phy P INTRODUCTION
u,v Contrava;iant velocity components in Transonic flow in turbomachinery has become
computational plane (X,Y) a field of increasing importanc¢ since
X,y Coordinates of the flow (physical) requirements for higher engine |fhrust - to

plane

Contributed by the Gas Turbine Division of the ASME.

9
1
- weight ratio have forced the |{
conditions of compressors and {y
the regime of mixed subsonic -
flow conditions. Since transoni
usually accompanied by shock w4

efficiency due to wave drag, vi
interaction and unsteady effect
important for the design aerody

q
y
adversely effect compressor/tunH
g
4
1}

perating
rbines into

fupersonic

flows are
es which may
ine
cous
, 1t 1is
amicist to




Fig. 1

Cascade geometry.

have computational tools for transonic
airfoil-, cascade-, and channelflow analysis
at hand which provide a reliable flow field
analysis and a systematic approach to
minimize the shock effects. This is analog-
ous to the situation in aircraft design
where tools for wing definition to cbtain
shapes with minimal drag for given lift are
needed.

Following the experimental verification of
nearly shock-free airfoil flows by Whitcomb !
and Pearcey<, computational tools were
developed on the basis of analytical studies
in the hodograph plane, to provide airfoil
shapes with shock-free flow at specified
design conditions. Garabedian and Korn3
developed a numerical hodograph method for
shock-free supercritical cascades. Though
this method is mathematicallly elegant, it
is too complicated for practical use in the
turbomachinery industry.

In this paper, a method for cascade blade
Jdesign is presented, which can be used also
in an analysis mode to compute transonic
flow fields through cascades with shocks.
The design principles have been applied
already to single airfoil design including
viscous effects and three-dimensional wing
design415r Such extensions are desirable
and possible for turbomachinery applications,
too.

A short description of cascade geometry, the
numerical analysis algorithms and the in-
corporated “"fictitious gas" - concept is
given. Results for shock-free supercritical
compressor cascades are illustrated by
choice of a conventional cascade and the
first steps of a design process leading to a
useful redesign. Transition from shock-free
to choked conditions is studied and a turb-
ine cascade example is presented.
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Fig. 2 Computational 'O'-type grid.

Equation (1) can also be expressed in its
canonical operator form” as

pl-M%)o__ v o) =0, (2)

nn

where (s,n) is.the streamline aligned coor-
dinate system. Equation (2) represents a
quasi-linear, second-order partial diffe-
rential equation of mixed elliptic-hyperbolic
type that accepts isentropic discontinuities
in its solution. These isentropic shocks
satisfy mass conservation but differ from
Rankine-Hugoniot shocks. Equation (1) is
solved by using an iterative line over-
relaxation scheme where consecutive itera-
tion sweeps through the flow field are
considered as steps in an artifical time
direction.

Solution of this steady-state equation (1)
is obtained as an asymptotic solution to an
artificially unsteady equation

2, H
Jolg + o

B

p{(1-M nn

oEbgy *ndpp toe

for large times, where £,n and ¢ are con-
stants.

Superscript H in equation (3) designates
Jpstream differencing, and superscript E
designates central differencing to be used
for the evaluation of particular second
derivatives. The steady part of equation
is always evaluated by using equation (1)
supplemented by a directional numerical
viscosity in a continuously fully conserva-
tive form, thus uniquely capturing isen-
tropic shocks. Equation (2) is used only to
construct a correction to the potential
matrix.

For the purpose of a type-dependent?0,
rotated? finite difference evaluation of the
derig?tives in equation (2) and a finite
area evaluation of the first derivatives
in equation (1), the flow field and the
governing equations are transformed from the
physical (x,y) plane (Figures 2 or 3) into

a rectangular (X,Y) computational domain by
using local isoparametric bilinear mapping
functions.

(3)

Fig. 3 Computational

If the geometric transformatidy

(77T = ,

then the contravariant velocity

in the (X,Y) plane are
UI _ -1 u _ ‘-1 T{q ']
o = I {V} - (95 137 {¢;

Consequently the fully conservg
the continuity equation (eq. {1

((pUuB + 8"y + (eVB + 8") ) /E

where the artificial "viscosity
represent principal parts of a
error of equation (2). The iten
process of equation(2) is accel
a fourlevel, consecutive-grid o
cedure.

All the flow parameters are narn
with respect to the critical cg
denoted by an asterisk so that
relations used for the local £l
and the speed of sound are ’

Dig = p/o* = ((y+1)/2-(v-1)g
A% - a2/a*2 = D, 7_1,
1s 1s

with the nondimensional speed (
of the local Machnumber

0 = q/a’ = Miv+1) V2724 (y-1

SUPERCRITICAL FLOWS
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Supercritical airfoil flows.
supersonic regions with

Fig. 4 Local

a) shock on the surface,
b) shock in the flow
c) shock-free flow.

less pronounced local supersonic region
usually terminated by a recompression shock.
The shock wave forms in the flow field and
ends vertically at the curved airfoil sur-
face (Figure 4a). Viscous effects, however,
complicate the flowfield in the footpoint
region of the shock, a ramp-like thickening
of the boundary layer leads to a shock-forma-
tion within the viscous layer, associated
with a smearing of the steep pressure rise
on the surface. A similar flow structure can
occur in purely inviscid flow with a shock-
formation in the flow-field, too.

This is of significance because design proce-
dures prescribing a shock-free pressure !
iistribution on the airfoil surface cannot
.ecessarily guarantee entirely shock-free
flowl2. Resulting airfoil shapes have a con-
cave suction surface and a shock-wave

"hangs" in the flow field, (Figure 4b).
Though performance of such an airfoil does not
suffer from the negative effects of shock-
boundary layer interaction at desiqgn condi-
tions, wave drag is present and most likely
off design conditions will lead to severe
interaction problems.

Flows of practical interest exhibit not too
extensive local supersonic regions being
entirely shock-free, (Figure 4c). In the
following idea use is made of the fact that
this type of flow is qualitatively similar
to entirely subsonic flow: no discontinuities
of the flow properties disturb the  smooth
character of the flow. Subsonic (mathematic-
ally elliptic type) relations are, therefore,
used to model a flow with a sonic line as
sketched in Fig. 4dc.

FICTITIOUS GAS FLOWS

A possibility to generate flows with shock-
free local supersonic regions is - as a con-
sequence of the qualitative relationship to
subsonic flow - the method of elliptic
continuation.

t was first used in hodograph (indirect)
'esign procedures but its physical interpret-
«tion led to more practical nearly direct
design methods. A theoretical background and
examples of the method applied to transonic

4

Fig. 5
density relations.

Isentropic and fictitioup gas

airfoil design is given by Sobieczky73. The
idea is to make use of an existinly flow
analysis algorithm, which should|,| at least,

be reliable for subsonic flows. [The oniv
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The speed of sound of this fictitilous gas 1is
determined by the general continuifty

criterion




2 = - -
Af(Q) = - Dg - Q/(dD,/d0). (14)

It is observed that A_. > 1 as long as the
gradient of D, is greater than the negative
product of Df and Q. For vanishing gradient
the speed of sound goes to infinity and we
have a locally incompressible nature of the
flow. This singularity may cause difficulties
in the analysis algorithm, so we observe the
constraints

- Dg /0 < dDg/dQ < 0. (15)

This relation restricts the fictitious domain
of the diagram (Fig. 5) to the shaded area
within Dine = const. = 1 where the flow is
incompressible with critical conditions, and
Dpar = 1/Q where the gas is of parabolic
type, with the local speed of sound equal to
local velocity.

Different formulas for Df have been tested so
tar. They seem mainly equivalent if their
second derivative at sonic conditions is the
same, i.e., if the coefficient C of the
quadratic term in the near-sonic expansion

De (0 Y =1 - (Q-1) + C (Q—1)2 v (16)

1s the same. In the cascade analysis code,
formulas containing C as a free parameter
are presently examined, for example the re-
lations

(1+(2c-1) (g=1)) "1/ (2C=1)

=]
It

QU1+ (2C-1) (Q-1))

o

with 1 < C < « covering the whole shaded
range in Fig. 5. With a choice of C within
these limits the fictitious gas is defined
guantitatively and with an analysis code a
flow of this gas through a cascade can be
calculated. The code is also extended to
yield the shape of the sonic line(s) in the
field, dividing the sukcritical real
isentropic part of the flow from the super-
critical fictitious one. Also, the flow
angles at the sonic line are determined.

We realize that an isentropic flow problem
is solved locally where the speed is sub-
critical, but there are no real-flow results
for the region of local supersonic flow. The
fictitious part of the flow served to give a
suitable sonic line consistent with shock-
free flow.

CALCULATION OF THE SUPERSONIC FLOWFIEL

As previously described, the flow through a

cascade 1s calculated using the
tions when the flow is subsonif. The fiow
is isentropic up to the resultlng sonic line,
the solution is fixed and knowh there and so
are the initial values to soly¢ the hyper-
bolic equations.

correct egua-

For two-dimensional flow the mdthod of
characteristics is used in a hedograph -
like working plane in which th¢ charac-
teristics are orthogonal strajght lines. The
hodograph variables are the £1¢w. angle %

and the Prandtl-Meyer turning angle

v(M) = h -arctan ((M%-1)1/2

- arctan
m2-1)1/2 (18)
with
2 _
he = (v+1)/(y=1). (19)

In the working plane v and ¥ mdy be chosen
using arbitrary functions of tHe characte-
ristics £,n

vo= F(7)

r
(@]

+ Gi(n), {
= F{5) = G(n).

<

The velocity potential and strelam function
then satisfy

or, equivalently

Y f = + :
(d‘/d$>€,n = const. K (

(397
39

where the * signs refer to ¢,ql= const,
respectively. The coefficient | is a fune-
tion of the Mach number also, |gherefore with

v({M) a function of &Ny

K(v) = K(v(M)) = (1*‘(Y"1)Mz/2)1/(y_1).

(M- /2, (23)

Values for the velocity potentfinl 3 on the
parabolic line, and the shape pff this line
are used along with the usual rplations
between the physical coordinatek X,y and :,¥
to find ¥ on the sonic line. These initial
data are then integrated using|(22) to deter-
mine the locus “{Xx,y) = 0 whic¢h| passes
through the intersection of the| sonic line
with the airfoil shape. The valbes of y for




Fig. 6 Supersonic characteristics in the
plane of potential and stream-
function ¥.

a) Supercritical shock-free flow,

b) accelerated flow.

which ¥(x,y}) = 0 determine the new airfoil
shape. This shape will have the same slope
and, at least theoretically, the same
curvature, as the initial surface at the
sonic points.

Two different types of initial data may
occur in cascade flows: supercritical and
choked flows. A solution for a local super-
sonic domain on a supercritical cascade is
illustrated in the o,¥-plane (Figure 6a).
The grid lines drawn are the characteristics,
sonic line data are given on the arc formed
by their cusps, the solution extends into
the airfoil surface represented by the

shaded ¢-axis. An overlapped region is cobser

ved within this extended domain. If this
reaches into the flowfield above #=¥ (sur-
face), the solution along with the previous-
ly obtained subsonic part of the flow cannot
be used for design of a physically meaning-
ful shock-free flow. Initial configuration

1d/or design operating conditions have to
~e changed in order to suppress occurrence
of such "limit lines" in the physical flow
field.

6

Fig. 7
compressor cascade at

Design modifications of & given

M, = 0.75, M, = 0.476, Ag|= 24°,

1 2
g/c = 1.1, .
a) Analysis of flow past
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b) Redesign for shock-frg

In the case of choked flow the so
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Only a part of the lower surface {
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tangent in the ¢,v-plane, the flowl|has then
the character of an accelerated Laval-nozzle
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shown in Fig. 6b.
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Fig. 8 Influence of fictitious gas para-
meter C. Fictitious gas
a) near parabolic limit,

b) near elliptic limit.

COMPRESSOR CASCADE DESIGN EXAMPLE

The first steps of shock-free design of a
compressor cascade are described briefly to

aid the turbomachinery designer in under-
standing the flexibility of this technology,
Conditions for a realistic transonic opera-
tion, (here:

M, = 0.75, ay = 41°, a, = 17°)

arnd a blade geometry by fixing parameters
for the airfoil generation is chosen. Next
the analysis (original) version of the
finite area algorithm is used to determine
quality of the flow near the leading and
trailing edges.

Slight variations of the leading and
trailing edge angles to obtain smooth flow

conditions finally gives angl

g = 27.3°, I 45°, £y = 10
3ap to chord ratio and thickn
blade at midchord were chosen
t/c = 0.055.

Figure 7a shows the blade geo
lysis pressure coefficient ob
given operating conditions. T
very strong shock, viscous fl
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version of the computer code 3
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result includes a plot of the
stics in the redesigned super
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the cascade, the airfoils are
the region from 3 to 40 percen
suction surface. Maximum thigk
is less than 0.5 percent chorq
sent plot this can barely be $
oned above a value for the fid
parameter C was chosen, but a
C was examined to study its in
quality of the obtained shock+

r
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gas (C = 3). A short but high
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scressible fictitious gas (C =
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disadvantageous for the viscay
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changes (Figure 9a):
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Fig. 9

design.

b) Analysis verification of shock-
free flow at design conditions
(M, = 0.75).

c) Of% design analysis at M, =

A 1ift and increased curvature of the whole
tail area give still better Stratford-type
oressure distribution'®. Here it is intended
.0 show that subsonic design technology can
be applied to transonic flows, without major
complications usually occurring in computa-
tions of this speed regime.

Finally inviscid analysis results are shown
for the last design, Fig. 9. The code is
switched from design to analysis and the
designed cascade coordinates are used as in-
put for analysis at the same operating con-
ditions. Figure 9b shows excellent agreement
with the shock-free design pressure distri-
bution. Off design performance of this cas-
cade should be investigated including inter-—
action, too. An airfcoil analysis code was
extended by a shock-boundary layer. inter-
action computationl®, the algorithm can
easily be introduced into this code. Fig. 9c
shows inviscid off-design analysis at

My = 0.77, the shock-wave is still much
weaker than the one occurring on the origi-
nal cascade (Fig. 7a) at M.| = 0.75.

TRANSITION TO CHOKING CONDITIONS

Increasing the upstream Mach number of a
cascade flow will eventually lead to choked
conditions, where the flow has no longer
local supersonic regions but accelerates to
supersonic speeds with sonic lines extending
from one to the next airfoil. This flow
occurs in turbine cascades, it is a further
subject of our work to provide design codes
‘or such flows. Before the procedure is
illustrated, an interesting question should
be answered:

8

Improved design
a) by addition of a bump prior to

—-

+1 4

1 0.77.
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How do local supersonic shock-freg regions

merge when choking conditions ard

approached?

To answer this question an unstaggered cas-

cade of NACA 0012 airfoils with a
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Fig. 10 Supercritical shock-free flow

approaching choked conditions.

point L contains a different solution
connecting the two Laval-nozzle-type flows.
The resulting flow has a jump from positive
to equal negative acceleration at the hori-
zontal axis through L, but at other levels
velocity or pressure has a characteristic
dip which is observed already at near-
choking conditions on the airfoil.

This flow analysis has mainly academic value,
but it illustrates the transition to
accelerated flow. One can abandon the whole
symmetrical and decelerated parts of the
flow without disturbing the upstream
accelerated flow. The flow can be continued
by a supersonic exit construction method,
starting at the limiting characteristic. In
the case of the NACA cascade this means,
that the nose of the NACA 0012 airfoil

stays unchanged from 0 to about 10 percent
chord. A smooth thickness reduction starts
then until the limiting expansion charac-
teristic starts at about 24 percent and runs
into Laval point L. Downstream of 24 percent
the airfoil may be changed allowing super-
sonic expansion, e.g. for a supersonic
parallel flow exit design.

ACCELERATED CASCADE FLOWS

A Laval-nozzle type of flow usually occurs
only in cascades or channels with low tur-
ning angle with boundaries forming a throat
with walls of opposite sign curvatures.
Turbine cascade flows with high curvature
have no throat point L, transition from
supercritical flow to choked conditions
takes place without the above discribed
singularicy.
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Fig. 11 Turbine cascade test
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The present version computer codes include a
design- and analysis algorithm for super-
critical compressor cascades and a program. .
for transonic inlet design for choked channel
or cascade flows. The codes are based on the
finite volume and fictitious gas concepts
and the method of characteristics. A flexible
cascade geometry generator and automatic
multi-level boundary - conforming comput-
ational grid generation are included. In
combination with viscous flow analysis an
efficient optimization algorithm can be
aeveloped, furtuermore the method has a
potential for applications to three-dimens-
ional flows in turbomachinery and past
pronellers.
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