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Refrigeration is used everywhere
Cryogenics, medicine and health products, air conditioning, food industry, etc.   

Background

Examples of health benefits:

• Mortality during hot days decreased in U.S. by 80 %  (MIT study).

• Refrigeration and improved hygiene have reduced stomach cancer in U.S. by 90 % 

since 1930 (WHO study).

Use of refrigeration will increase (developing countries)

Refrigeration is implicated in the climate change

Phase-down of refrigerants with high GWP is imminent

• North American proposal to Montreal Protocol calls for 85 % phase-down by 2035

• Current refrigerants (HFCs) are greenhouse gases; need for low-GWP refrigerants

• Emissions of CO2 from fossil fuel power plants; need for high efficiency
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 Performance; COP, capacity
- thermodynamic properties

- transport properties

 Environmental
- global warming potential (GWP)

- ozone depletion potential (ODP)

 Safety
- toxicity (acute and chronic)

- flammability

 Materials
- stability (hydrolysis, polymerization, etc.) 

- compatibility with metals, seals, etc.

- lubricant

 Cost

 

What properties are important?
Refrigerant selection criteria
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Effect of molar heat capacity
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Historic application of refrigerants

Calm, J., 2012. Refrigerant Transitions … Again, 

2012 ASHRAE/NIST Refrigerants Conference, 

October 29, 30, 2012, Gaithersburg, MD.

1st generation
1830 – 1930
whatever worked

ethers, CO2, NH3, 
SO2, HCOOCH3, 
HCs, H2O …

2nd generation

1931 – 1990s
safety and durability

CFCs, HCFCs, 
HFCs, NH3, H2O …

3rd generation

1990 – 2010s
ozone protection

(HCFCs), HFCs, NH3, 

CO2, HCs, H2O … …

4th generation

2012s –
global warming;
Low GWP, zero/low ODP 

HFOs, NH3, CO2, 

HCs, H2O …

1st 2nd 3rd 4th ?
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2nd generation

1931 – 1990s
safety and durability

NBP (C)
R-11 23.7
R-12                 -29.8
R-22                 -40.8

3rd generation

1990 – 2010s
ozone protection

NBP (C)

R-123  (HCFC)              27.8

R-134a               -26.1

R-407C              -43.6
(R32/125/134a)

R-410A            -51.4
(R-32/125 -51.7/-48.1)

3th generation
GWPs

1300  

1600
677/3170/1300

1900
677/3170

H2O    100.0         R-600a   -11.7 NH3 -33.3 

CO2       -78.4         R-290     - 42.1

air     -194.2 R-1270   - 47.7

Fluorinated fluids

“Natural” fluids

Fluids for air conditioning and 

domestic refrigeration
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2nd generation

1931 – 1990s
safety and durability

NBP (C)
R-11 23.7
R-12                 -29.8
R-22                 -40.8

4th generation

2012s –
global warming

NBP (C)

R-1336mzz     33.4

R-1233zd(E)   18.3

R-1234ze(E)  -19.0

R-1234yf        -29.5

H2O    100.0         R-600a   -11.7 NH3 -33.3 

CO2       -78.4         R-290     - 42.1

air     -194.2 R-1270   - 47.7

Fluorinated fluids

“Natural” fluids

Fluids for air conditioning and 

domestic refrigeration

3rd generation

1990 – 2010s
ozone protection

NBP (C)

R-123  (HCFC)              27.8

R-134a               -26.1

R-407C              -43.6
(R32/125/134a)

R-410A            -51.4
(R-32/125 -51.7/-48.1)
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Low-pressure refrigerants
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R-12

Cp,v = 76.2

R-134a

Cp,v = 91.6

Class: 1

R-600a

Cp,v = 94.1

Class: 3

R-152a

Cp,v = 72.2

Class: 2

R-1234yf

Cp,v = 105.6

Class: 2L

Cp,v – molar heat capacity of saturated 

vapor at 0 ° C  (kJ/(kmol.K)

Flammability Class: 1
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Proposed low-GWP HFOs have 

at least 3 carbons

Large molecules: 

• Tend to be of low volatility

• Tend to have high molar heat capacity

• Are expensive to synthesize

• Tend to be unstable (long chains)
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Fluids studied in Low-GWP AREP (I)
*

Nine R22 and R407C replacements:
• R-717 (ASHRAE B2L)

• R-1270 (A3)

• R-290 (A3)

• Six mixtures of R-744, R-32, R-125, R-134a, R-152a, R-1234ze(E), R-1234yf

(3 A1 fluids, 3 A2L fluids) 

Ten R410A replacements:
• R-744  (A1)

• R-32

• Six mixtures of R-744, R-32, R-125, R-134a, R-152a, R-1234ze(E), R-1234yf (A2L fluids)    

Mixture development involves a trade-off between GWP, flammability, COP, 

volumetric capacity, and glide.

* Johnson, P.A., Wang, X., Amrane, K., 2012. AHRI Low-GWP Alternative Refrigerant Evaluation Program., 

2012 ASHRAE/NIST Refrigerants Conference
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Objective: To identify molecules that might be good refrigerants

for AC and refrigeration applications

Perform refrigerant screening using                      

comprehensive database (over 100 million entries)

Approach: 

Important properties/filters: 

• Performance: COP,  volumetric capacity (Qvol)

• Environmental: ODP, GWP

• Safety: toxicity, flammability 

• Materials: stability, compatibility (lubricant, seals, metals, etc.)

• Cost

NIST Refrigerant Screening Study:

Thermodynamic Analysis of Refrigerants
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• What are thermodynamic limits of performance?
COP  &  Qvol 

Questions:

• Which refrigerant thermodynamic parameters are 

the most important?
What are their optimal values?

T

s

Tcrit

Exploration of thermodynamic space 

by cycle analysis
*

* Domanski, P.A., Brown, J.S., Heo, J., Wojtusiak, J., McLinden, M.O., 2014. A Thermodynamic Analysis  of Refrigerants: Performance Limits of

the Vapor Compression Cycle, Int. J. Refrigeration, 38:71-79.
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o Vapor compression cycle model

o Vary values for each ECS parameter in search of the 

best performance

o Extended Corresponding States (ECS) model for 

representation of refrigerant properties;  9 parameters

Search for refrigerants with best

COP and Q
vol
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Parameter Units Range Granularity

Tcrit K 305 ~ 650 0.5

pcrit MPa 2.0 ~ 12.0 0.05

ω – 0.0 ~ +0.6 0.005

α1 – –0.3 ~ +0.3 0.01

α2 – –0.8 ~ 0.0 0.1

β1 – –1.0 ~ +1.0 0.01

β2 – –0.8 ~ +0.8 0.1

Cp˚(300 K) J·mol–1·K–1 20.8 ~ 300 0.2

γ K–1 0.0 ~ 0.0025 0.0001

Critical 

parameters

Acentric factor

Shape factors

Vapor heat

capacity

Refrigerant parameters for Extended 

Corresponding States model
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parameters

Parameter 

Selection 

Module

Cycle   

Simulator

Refrigerant 

(ECS parameters)

COP and Qvol

Search for optimal refrigerants

Population size: 100

Number of populations: 200

Number of runs: 5

T

s

Tcrit

α1 α2 β1

β2 Cp γ

Tcrit pcrit ω

• Bi-objective optimization: COP & Qvol

• Evolutionary approach:

;  Pareto optimality 



19

Commercial Refrigeration
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Refrigerant parameters along 

Pareto front – basic cycle
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Use PubChem database; 

over 100 million compounds

First screening filters*

• Component atoms: C, H, N, O, S, F, Cl, Br  

• Max. number of atoms in the molecule 

• Global Warming Potential (GWP)    

• Toxicity

• Flammability

• Critical temperature (Tcrit) 

• Stability E.g., peroxides (O-O), 3-member rings 

NIST estimation method (Kazakov, et al., 2010)

NIST estimation method (Kazakov, et al., 2012)

Markers/groups (Lagorce, et al., 2008)

NIST estimation method (Kazakov, et al., 2012)

PubChem

PubChem

Fluid screening

* McLinden, M.O., Kazakov, A.F., Brown, J.S., Domanski, P.A., 2014. A Thermodynamic Analysis of Refrigerants: Possibilities and Tradeoffs for Low-

GWP Refrigerants, Int. J. Refrigeration, 38:80-92
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First screening filters  

• PubChem database                                                             100 000 000

• GWP100 < 200 52265

• Toxicity 30135

• Critical temperature:  300 K < Tcrit < 550 K    (80 °F - 530 °F) 1728 

• Flammability: Lover flammability limit LFL > 0.1 kg/m3 20277 

• Stability: screen out problematic groups 1234

• Component atoms: only C, H, N, O, S, F, Cl, Br 

Maximum number of atoms: 15                                                     
56203

• Critical temperature:  300 K < Tcrit < 400 K    (80 °F - 260 °F)             62

Compound

Count
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• 39 halogenated olefins (e.g., R1234yf, R1234ze(E))
23 HFOs; 8 FOs (fully fluorinated)

7 HCFOs (Cl-containing); 1 HBFO (Br-containing)

7 2-carbon; 20 3-carbon; 10 4-carbon; 2 5-carbon

• 11 halogenated ethers (C-O-C)
all contain a C-C double bond

2 cyclic ethers

• 4 halogenated amines
+ ammonia, Tcrit = 405 K

• 3 sulfur-containing compounds
2 thioethers;1 thiol

• 3 halogenated alkynes (C-C triple bond)

• CO2

• 1 halogenated alkane (HFC-152a) 

62 compounds passed

Results of first screening  

300 K ≤ Tcrit ≤ 400 K   (majority of equipment)
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RMS deviation:  

factor of 3 

Estimation of GWP 

Concern: Some fluids may have been passed over due to overly                                                                          

restrictive screens 

Decision: Repeat the screening with modified screens
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• PubChem database                                                             100 000 000

• GWP100 < 1000 172 000

• Toxicity: evaluated manually (MSDS, REL, TLV, =CF2)    

• Critical temperature:  320 K < Tcrit < 420 K    144 

• Flammability: dropped                                       

• Stability: evaluated manually

• Component atoms: only C, H, N, O, S, F, Cl, Br 

Maximum number of atoms: 18                                                     
184 000

Compound

count

20 new additional fluids were we found in the 320 K < Tcrit < 385 K range 

Second screening with modified

filters
*

* McLinden, M.O., Brown, J.S., Kazakov, A., Domanski, P.A., 2015. Hitting the Bounds of Chemistry: Limits and Tradeoffs       

for Low-GWP Refrigerants. Keynote, 24th IIR International Congress of Refrigeration, 16-22 August, Yokohama, Japan

21

• Cycle performance / Volumetric capacity: > 2.4 MJ·m-3
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Cycle simulations – basic cycle 

 Most low-GWP refrigerants have low Qvol

AC application, ideal cycle

(100 % compressor 

efficiency,

zero pressure drop)

R32

R410A

R717

R22

R134a
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AC application.

Effects of compressor 

efficiency and

pressure drop included

with compressor and heat exchanger irreversibilities

Cycle simulations – basic cycle 
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Hydrocarbons and Dimethylether

propene (propylene) CH2=CH-CH3 R-1270 1      0.037       364.2 0.548      4.61

propane CH3-CH2-CH3       R-290 9      0.038       369.9 0.549      3.85

methoxymethane (dimethylether) CH3-O-CH3 R-E170 0.3      0.064       400.4 0.571      2.80

Halogenated Alkanes (HFCs)

fluoromethane CH3F R-41 116      0.099       317.3 0.397    11.18  

difluoromethane CH2F2 R-32 677      0.307       351.3 0.538      7.29

fluoroethane CH2F-CH3 R-161 4      0.062       375.3 0.562      4.13

1,1-difluoroethane CHF2-CH3 R-152a 138      0.130       386.4 0.562      2.84

Halogenated Alkenes (HFOs)

fluoroethene CHF=CH2 R-1141 <1     0.064        327.1 0.535      4.50

1,1,2-trifluoroethene CF2=CHF R-1123 3      0.214       343.0 0.500      5.59

2,3,3,3-tetrafluoroprop-1-ene CH2=CF-CF3 R-1234yf <1      0.289       367.9 0.525      2.82

(E)-1,2-difluoroethene CHF=CHF R-1132(E)        1      0.124       370.5 0.543      2.75

3,3,3-trifluoroprop-1-ene CH2=CH-CF3 R-1243zf 1      0.185       376.9 0.543      2.59

1,2-difluoroprop-1-ene CHF=CF-CH3 R-1252ye 2      0.093       380.7 0.552      2.50

1-fluoroprop-1-ene CHF=CH-CH3        R-1261ze 1      0.212       390.7 0.564      2.54

(Z)-1,2-difluoroethene CHF=CHF               R-1132(Z)        1      0.124       405.8 0.547      2.46

Halogenated Oxygenates 

trifluoro(methoxy)methane CF3-O-CH3 R-E143a 523      0.350       377.9 0.541      2.55

2,2,4,5-tetrafluoro-1,3-dioxole                  -CF2-O-CF=CF-O- n.a. 1      0.515       400.0 0.543      2.40

Halogenated Nitrogen and Sulfur Compounds

N,N,1,1-tetrafluormethaneamine CHF2-NF2                    n.a. 20      0.383       341.6 0.503      5.27

difluoromethanethiol CHF2-SH n.a. 1      0.250       373.0 0.557      4.03

trifluoromethanethiol CF3-SH n.a. 1      0.517       376.2 0.551      2.92

Inorganic Compounds

carbon dioxide CO2 R-744 1.00       n.a.       304.1

ammonia NH3 R-717 <1     0.105       405.4 0.571      5.27

GWP
(kg/m3)

Tcrit

(K)

QvolCOPLFL

Best 22 candidate fluids

Qvol ≥ 2.4 MJ/m-3, AC applications

(MJ/m3)
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• 8 halogenated olefins (e.g., R1234ze(E), R1234yf) 
4 2-carbon; 4 3-carbon

• 4 halogenated alkane (HFCs) 

• 3 halogenated nitrogen and sulfur compounds

• 2 hydrocarbons and dimethylether

• 2 halogenated oxygenates (C-O-C)

• 2 inorganic compounds  (ammonia & CO2)

22 compounds passed

Results of second screening  

(includes performance screening, Qvol ≥ 2.4 MJ/m-3 )

Except CO2, all fluids are at least mildly flammable
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• Single-component refrigerants 

- NH3 (ammonia);  GWP < 1, mildly flammable (2L), toxic 

- HFOs; GWP ≈ 1, mildly flammable (2L), low Qvol

- hydrocarbons: R-290, R-1270;  GWP = 20, flammable (3)

- R-32;  GWP = 675; mildly flammable (2L) 

- R-152a;  GWP = 140; flammable (2), low Qvol

R-22

R-32

R-290

So what are low-GWP AC options?
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So what are low-GWP AC options?

- Not fully characterized

- Do not offer improved performance above the known fluids

• New fluids

• Mixtures

- R-32 and HFOs    
mildly flammable (2L), GWP << 675

- R-32 and HFCs (and HFOs) 

non-flammable, GWP > 675
or
mildly flammable (2L),  GWP < 675

- ??
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Concluding remarks 

(AC applications)

 New low-GWP fluids (HFO) have markedly lower pressure 

than R-22 and R-410A and are mildly flammable.

 Viable refrigerants are restricted to small molecules. The 

prospects of discovering new refrigerants that would offer 

better performance over the known fluids is minimal.

 R-32 is a dominant component in most mixtures proposed 

as a replacement of R-22 and R-410A.  

 There is a tradeoff between GWP and flammability of low-

GWP mixtures. The lower-GWP mixtures have a higher 

flame velocity.

 The choices are limited. Tradeoffs are inevitable.
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