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This paper investigates a new drag model for the simulation of the fluidization of fluid catalytic cracking (FCC)
particles with air in a fluidized bed using the two-fluidmodel (TFM)within theMultiphase Flowwith Interphase
Exchanges (MFIX) code. A cohesion index parameter based on the interparticle cohesive forces has been imple-
mented in theMFIX-TFM code. This index is used as a switching criterion between a particle resolved dragmodel
developed by Tenneti et al. (2011), and some of the dragmodels available in theMFIX for homogeneous particles,
namely the Gidaspow, Syam–O'brien, and Wen–Yu models. The proposed drag correlation in this paper imple-
ments an indirect method of introducing interparticle cohesive forces to our TFM simulations. Significant im-
provement in the solid volume fraction profile along the riser was obtained for all of the drag law
combinations, depending on the conditions set in the switching procedures. In the best case, the utilization of
the Gidaspow and TGS models resulted in a 60% improvement in maximum deviation of numerical results
from the available experimental data. The proposed model can be used in simulations of fluidized beds, where
standard models fail to produce accurate results even on extremely refined computational grid, especially for
Geldart A type particles that may exhibit strong clustering behavior.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

The TFM approach, developed by van Deemter and van der Laan
[42], is known as an economic way of simulating multiphase flows in
large-scale fluidized bed risers [30]. Formulating the solid and gas as
continuous phases is the principle of the TFMmethod. This leads to sig-
nificant reduction of memory and computational costs as compared to
other widely exploited methods, such as the Particle-Resolved Direct
Numerical Simulation [16,29], Discrete Element Method [27,41], and
structure-based methods, such as the Discrete Bubble Model [5], and
the Discrete Cluster Model [23,57]. One notable drawback of the TFM
in MFIX is the absence of cohesive inter-particular forces, such as elec-
trostatic and van der Waals forces between particles. These forces play
a major role in fluidization of strongly cohesive particles in Geldart A
and C groups by creating heterogeneous structures, called clusters.
According to Li et al. [21], clusters affect the flow significantly by chang-
ing the mass and momentum transfers between the gas and solid
phases. Many researchers, such as Andrews et al. [1], Agrawal et al.
[58], Zhang and Vanderheyden [56], McKeen and Pugsley [26], Yang
et al. [55], Ye et al. [51–53], Qi et al. [31], Wang et al. [46], Wang and
Li [48],Wang [47], Lu et al. [6,24], Igci et al. [17], and Li et al. [21], believe
that clusters are responsible for significant reduction of the interfacial
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drag forces between the gas and solid phases. Therefore, dependency
of the drag forces on the nature of the attractive interparticle forces
plays as important role as the dependency on two other parameters,
i.e., the Reynolds number of the flow around particles and the volume
fraction of the solid phase in each computational cell. There have been
several attempts to improve the performance of the MFIX-TFM code
by introducing more complex drag laws, which can consider the effect
of subgrid-scale heterogeneous structures in TFM simulations, such as
the filtered models of Igci et al. [17] and Milioli et al. [28] and Andrews
et al. [1] according to van der Hoef et al. [43] andWang et al. [47]. How-
ever, the constitutivemodels used in these filteredmodels were obtain-
ed from highly resolved simulations of kinetic theory-based TFM
simulations in the absence of the cohesive interparticle forces. This
gap can be filled by inclusion of cohesive interparticle forces in the
MFIX-TFM code, similar to the inclusion of van der Waals in the MFIX-
DEM code (MFIX-2013 Release Notes). In addition, no study has been
found in the literature that has implemented the inclusion of the van
der Waals forces in the drag laws within the MFIX-TFM code.

DNS has been widely used in high resolution simulation of gas–
particle flows in suspension and fluidized beds by researchers such as
Ma et al. [25], Cho et al. [7], Xiong et al. [49], and Yin and Sundaresan
[54], Garg et al. [11] andSharmaandPatankar [34].Maet al. [25] acknowl-
edged the diversity and structural dependence of the drag force on each
particle, rather than relying on the entire control volume performed in
methods such as TFM. Their analysis, akin to DNS analysis of Xiong et al.
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[49], proved that the drag force is significantly different on particles in di-
lute regions compared to grouped particles.

One useful approach in DNSmodeling is the analysis of the flow over
fixed assemblies of particles, as practiced by Hill et al. [13,14], van
der Hoef et al. [44], Beetstra et al. [2], Yin and Sundaresan [54], and
Tenneti and Subramaniam [39]. This approach increases the accuracy
and relevance of the information collected. For example, information
about field variables, such as the coefficient of drag, and gas and particle
velocities can be obtained. Additionally, various different cluster config-
urations could be analyzed. Cluster differences include: shape, compact-
ness, orientation of the cluster relative to thefluid, spinning speed of the
cluster, and variousflow-solid relative velocities. A combined particle or
cluster resolved DNS analysis coupled with the TFM analysis of the flow
could contribute to the improvement of the TFM modeling of the clus-
tering multiphase flow systems. There is also an opportunity for a
simulation of the flow on the industrial-scale, using the information ob-
tained in particle or cluster-scale.

Presently, MFIX is a widely known, reliable, and professionally
established package for simulation of heat and mass transfer. MFIX
accommodates a variety of drag models that can be used in TFM simu-
lation of gas–solid particulate flows. Yet, the direct or indirect addition
of models for particle-to-particle, attractive and repulsive forces to the
transport equations solved in TFM, or to the available drag laws, is miss-
ing. According to Ye et al. [51,52] and Seville et al. [33], these forces

could be formulated as F
!

i j
ðcÞ ¼ ðAR=6di j

2Þn!i j; where Fij(c) is the cohe-
sive inter-particular force and A is the Hamaker constant (≈10−19 J)
[18], R is the radius of the monodispersed particles, d is the surface to
surface distance between particles and n! is the normal vector pointing
from the center of particles i to the center of the particle j. Further, they

defined a scaling factor,φ ¼ jUmin j
KBT

¼ AR
6z0

� 1
KBΘS

;which is the ratio between
the interparticle cohesive and destabilizing forces for d ≤ 100 μm. In this
definition, KB is the Boltzmann constant (KB ≈ 1, [51]), Z0 is the thresh-
old for particles to be considered as clustered (Z0 ≈ 4 nm, [33]) and d
and Θs are the diameter and granular temperature of the solid particles.
The derivation of equations governing the particlemotion can produce a
similar quantifying scaling factor, which can indicate the onset of cluster
formation. In this analysis, as compared to the cohesion models avail-
able in the MFIX-DEM, the scaling factor is an additional factor to be
considered for cluster formation, (in addition to the surface to surface
particle distances).

Destabilizing forces in theparticle–gas systems aremainly due to the
particle-to-particle and particle-to-gas interactions. These interactions
significantly influence the analysis of particle–gas flows, which has
attracted the attention of many researchers, such as Dombrowski
and Johns [9], Gidaspow [12], Ding and Gidaspow [12], Cho et al. [7],
Benyahiah [4], Karimipour and Pugsley [20], and Syamlal et al. [38]. Spe-
cial attention has been paid to this parameter in the work of Yet et al.
[51]. The granular temperature is a measure of the particle fluctuating
energy and could be used as a critical parameter to predict the coales-
cence of particles and break-up of clusters in numerical simulations.
MFIX-TFM can solve the transport equation or the algebraic equation,
in order to obtain the granular temperature.

In this study, we introduce a cohesive index into theMFIX-TFM code
and implement it as a criterion for switching between a Particle-
Resolved Direct Numerical-Simulation model, the TGS model, and
three existing drag models available in the MFIX code. The rest of the
paper is organized as follows. First, the model formulation is presented
where the governing equations for the TFM model, the governing
equations related to the model of motion of particles leading to our
cohesive index and the governing equations of the Gidaspow, Syam–
O'Brien, Wen–Yu and TGS drag models are presented. Later, the meth-
odologies for implementing the cohesive index, error calculations
and switching between the TGS and other models is presented and
followed by the examination of the proposed models in numerical
simulations for flow in a fluidized bed. Finally, a conclusion is
drawn on the effectiveness of the proposed model and the authors'
perspective of the future work.

2. Numerical model

In the TFM, both the gas and the particulate phases are considered as
interpenetrating continuous mediums. Complete derivations of the
equations governing the two-fluid model can be found in the work of
Gidaspow [12]. Here, the equations of the TFM model for flow without
phase change and chemical reactions are given by [35] as

∂ ρkεkð Þ
∂t

þ ∇ � ρkεk u
!

k
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¼ 0; ð1Þ
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Eqs. (1) to (3) show the equations for continuity, momentum
balance, and the stress tensor for the phases in TFM, respectively. In
these equations, ρ, u!, ε, g,τk, β, p, λ and μ represent the density, velocity
vector, volume fraction, acceleration of gravity, shear stress tensor, mo-
mentum exchange coefficient, thermodynamic pressure, second coeffi-
cient of viscosity (or bulk viscosity), and the dynamic viscosity of the
phases. In addition, k and l serve as identifiers for gas and solid phases.
However, in Eq. (2), identifiers are phase specific, where if k refers to
one of the phases (e.g., fluid), then l can only refer to the solid, and
vice versa. In this work, the second coefficient of viscosity for the gas
phase is set to zero, as suggested by Lu et al. [6,24].

The pressure term for the solid phase, ps, is obtained by grouping the
gas pressure and the solid phase pressure together, as displayed by
Eq. (4).

ps ¼ pg þ Ps: ð4Þ

The solid phase pressure is obtained from the granular kineticmodel
of Ding andGidaspow [8], asPs ¼ Θs½1þ 2ð1þ essÞεsg0ss �.Where,Θs and
ess represent the granular temperature of the solid phase and particle–
particle restitution coefficient, respectively. Here, the ess is set to 0.9 ac-
cording to Jenkins and Zhang [19] and Benyahia [4]. In addition, the
solid bulk viscosity, solid shear viscosity, and radial distribution function
are given by Samuelsberg and Hjertager [35] as

λs ¼ ρsdp ess þ 1ð Þ4εs
2
ffiffiffiffiffiffiffiffiffiffi
Θsg0

p
3
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π

p ; ð5Þ
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5
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πΘsð Þρsdp

p
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p
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π
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5

1−
εs

εsmax
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; ð7Þ

respectively. The transport equation for the granular energy is originally
derived byDing andGidaspow [8]. However, amore complete version is
given by Lu et al. [6,24] as

3
2

∂
∂t

ρsεSΘSð Þ þ ∇ � ρSεS v
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Table 3
Drag model combinations tested in this study.

Version of the model Switching procedure Criteria for switching

AGDSM1 Use TGS Ha N Ha_threshold
Use Syam–O'Brien Ha ≤ Ha_threshold

AGDSM2 Use TGS Ha N Ha_threshold
Use Wen–Yu Ha ≤ Ha_threshold

AGDSM3 Use TGS Ha N Ha_threshold
Use Gidaspow Ha ≤ Ha_threshold

Table 1
Proposed drag model scheme using the cohesive index for MFIX-TFM
simulations.

New drag model Criteria

Use TGS Ha N Ha_threshold
Use an existing model Ha ≤ Ha_threshold
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The diffusion coefficient of the granular temperature and the collision-
al energy dissipation are defined by Eq. (9) and Eq. (10), respectively [35].

kθS ¼
150 ρSdS

ffiffiffiffiffiffiffiffiffiffiffiffi
Θsπð Þp

384 1þ eSSð Þg0
1þ 6

5
εSg0 1þ eSSð Þ

� �2
þ 2ρSεS
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π
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; ð9Þ
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p
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π

p −∇ � u!S

 !
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According to Ye et al. [52], the translational state of the particulate
phase is described by the Newtonian equations of motion (Eq. (11))
for each individual particle in the system.

mi
d2 x!i

dt2
¼ F

!
c;i þ F

!
vdw;i þ F

!
drag;i−Vi∇pþmi g

! ð11Þ

The terms on the RHS of this equation are the contact force, the van
der Waals force, the gas–particle drag force, the force due to pressure
gradient in the fluid, and the gravitational force, respectively. In these
terms, m is themass of the particle, V is the particle volume, x! is the po-
sition vector pointing from the center of the particle j to the center of the
particle i, and g! is the vector of acceleration of gravity. Eq. (11) can be
rewritten for particle j with exactly the same properties as the particle
i where, the surfaces of the two particles, i and j, are assumed to be in
small separation distance from each other. In our approach, since parti-

cles are not in a contact, the collisional force term, F
!

c;i , vanishes from
our equation. Later, by considering the small size and separation dis-
tance of the particles, with a good estimate, we assume that particles
are affected equally by the gas flow and the gravity field variables.
Hence, the third, fourth, and the fifth terms on the RHS are assumed
equal in magnitude and direction. However, particles i and j exchange
equal van der Waals forces in opposite directions. Here, we use the
Table 2
Governing equations for the existing drag models used for switching procedure.

O'Brien–Syamlal drag model [36–38]

β ¼ 3εgεsρg
4Vrs

2dp
Cd0ðRepVrs

ÞjVg−Vsj Eq. (20-a)

Vrs ¼ 0:5ðA−0:06Rep þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð0:06RepÞ2 þ 0:12Repð2B−AÞ þ A2

q
Eq. (20-b)

A ¼ εg4:14 Eq. (20-c)

B ¼ 0:8 εg1:28 for εg ≤ 0:85
εg2:65 for εgN0:85

�
Eq. (20-d)

Cd0 ¼ ð0:63
ffiffiffiffiffiffi
Rep
Vrs

q
þ 4:8Þ

2
� Vrs

Rep

Eq. (20-e)

Gidaspow drag model [12]

β ¼ 50 εs2μg

dp
2εg

þ 1:75εs
ρg
dp
jVg−Vs j for εg ≤0:8

0:75 Cd0
εsεgρg

dp
jVg−Vsjεg−2:65 for εgN0:8

8<:
Eq. (21-a)

Cd0 ¼ 0:44 for Re≥1000
24
Rep

ð1þ 0:15Rep0:687Þ for Reb1000

�
Eq. (21-b)

Wen–Yu drag model [45 and 50]

β ¼ 0:75Cd0
εsεgρg

dp
jVg −Vsjεg−2:65 Eq. (22-a)

Cd0 ¼ 0:44 for Re ≥1000
24
Rep

ð1þ 0:15 Rep0:687Þ for Re b1000

�
Eq. (22-b)
expression of Ye et al. [51] for the van der Waals force between two
identical spherical particles and obtain a simplified form for the relative
equation of translational motion for particles, as follows

meff
d2 x!i j

dt2
þ ARs

6d2 ¼ 0: ð12Þ

Where, x!i j is the vector of instantaneous relative position of the
particle i with respect to the particle j, meff is the effective mass defined
as meff =mi mj / (mi +mj), and A, Rs and, d are the Hamaker constant,
radius of the particle, and the separation distance between the two par-
ticles, respectively. Complete derivation of the governing equations is
available in Appendix A.

Later, definition of the granular temperature, Θ = 1/3
〈particle velocity fluctuation2〉 [12,59], and a short range separa-
tion distance within which attractive forces are dominant [51], d0,
are used to create dimensionless parameters, such as ~t ¼ t

ffiffiffiffiffiffi
Θs

p
=d0

and ~x
!

i j ¼ x!i j =d0; respectively. By defining the vector of relative

velocity as V
!ði jÞ ¼ d x!ði jÞ

=dt, we obtain

Ha−1 d0
dp

� �2 d ~V
!

i j

d~t
þ 1 ¼ 0; ð13Þ

where,
e
V
!ðiÞ

¼ V
!ðiÞ

=
ffiffiffiffiffiffi
Θs

p
and the Ha parameter is defined as

Ha ¼ A

πρdp
2 d0ΘS

: ð14Þ

In this expression, ρ is the density of the solid particle, dp is the
particle diameter, d0 is the surface to surface cut-off distance, and Θ is
the granular temperature. The Ha parameter is the ratio of interparticle
cohesive force to the destabilizing force, kinetic energy, acting on each
particle in the computational domain. In our TFM simulations, the Ha
parameter can be obtained for each computational node for the
Table 4
Set up parameters for MFIX_TFM simulations.

Property Symbol Value Unit

Material Air and FCC
Particle diameter dp 54 μm
Particle density Ros 930 kg/m3

Air viscosity μg 1.887 ∗ 10−5 Pa·s
Superficial gas velocity Ug 1.52 m/s
Solids mass flux Gs 14.3 kg/(m2 s)
Single particle terminal velocity ut 0.077 m/s
Minimum fluidization voidage εmf 0.4 –
Packing limit ε_smax 0.63 –
Particle–particle coefficient restitution es 0.9 –
Particle-wall coefficient restitution ew 0.99 –
Specularity coefficient φ 0.0001 –
Initial solids concentration ε_sinit 0.106 –
Riser diameter Dt 0.09 m
Riser height h 10.5 m
Overall simulation time T_stop 20 s
Grid size, radial × axial 20 × 150, 40 × 300, 60 × 450



Table 5
Thresholds for solid volume fraction and granular temperature to prevent switching from
the standard model to the TGS model.

Assignment Condition (thresholding)

Ha = 0 For εs b ɛs_THS
Ha = 0 For Theta_m ≤ Θ_THS
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continuous representation of the solid phase. In fact, an increase of this
parameter increases the chance of clustering in the domain. This hetero-
geneity discourages the use of the standardmodels which are appropri-
ate for non-clustered particles. Therefore, it is appropriate to switch to a
DNS-based drag model that can resolve the flow around small-scale
structures, such as clusters of particles, more robustly for large values
of Ha. Thus, we use this cohesive index as a criterion for switching be-
tween the TGS and other standard dragmodels. This idea is conceptual-
ized in a new drag model, as illustrated in Table 1 below.

The TGS drag model was developed by Tenneti et al. [39] based on
their immersed boundary method of the flow around fixed assemblies
of particles (Tenneti and Subramaniam [40]). TGS model with its im-
proved correlation for the gas–solid drag force generates more accurate
results for the same ranges of the flow Reynolds number and solid vol-
ume fraction compared to its succeeding particle resolved-DNS models.
Moreover, TGSmodel extends the accuracy in DNSmodeling of the gas–
solid flows to include wider ranges of εs and Rem. Theoretically, The
TGS model, displayed by Eq. (15), adds two modifications to the sin-
gle particle-based drag law of Schiller and Naumann [32], which is
Fig. 1. Computational domain and boundary conditions used for MFIX-TFM
displayed by Eq. (16). These terms, defined as Fεs and Fεs ;Rep , include
the pure effect of the solid volume fraction (Eq. 17), and, the com-
bined effect of the Reynolds number and solid volume fraction
(Eq. 18), respectively. The outcome from this model is the exchange
coefficient defined by Eq. (19).

F εS;Rep
	 
 ¼ Fisol Rep

	 

1−εSð Þ3

þ FεS εSð Þ þ FεS ;Rep εS;Rep
	 


; ð15Þ

Fisol Rep
	 
 ¼ 1þ 0:15Rep0:687; ð16Þ

FεS εSð Þ ¼ 5:81εS
1−εSð Þ3

þ 0:48
εS1=3

1−εSð Þ4
; ð17Þ

FεS ;Rep εS;Rep
	 
 ¼ εS3Rep 0:95þ 0:61εs1=3

1−εSð Þ2
 !

; ð18Þ

β ¼ 18 μgεgεS
F εS;Rep
	 

dp

2 : ð19Þ

Table 2 shows different versions of the exchange coefficient (β) in
Eqs. (2) and (8), which are used in the existing drag models in MFIX.
In addition, Table 3 shows the description of different versions of the
dragmodel scheme labeled as AGDSM1, AGDSM2, and AGDSM3, as pro-
posed in this work.
fluidized bed flow simulations, (a) 20 × 150, (b) 40 × 300, (c) 60 × 450.



Table 6
Error in numerical simulation compared to available experimental data of [22] for compu-
tational grid size of 20 × 150.

Simulation case Max. error Avg. error (%)

Hong et al. (date) 0.0773 166
Syam–O'Brien 0.0954 106
Gidaspow 0.0959 93
Wen–Yu 0.0545 77
TGS 0.0918 143

Fig. 2. Profile of solid volume fraction along the riser of the fluidized bed, MFIX-TFM results with TGS and existing drag models on three computational grid sizes.
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3. Simulation methodology

The performance of each individual drag model was evaluated ini-
tially for a 20-second simulation of the flow in a circulating fluidized
bed. We obtained permission from Li and Kwauk [22] and Hong et al.
[15] to use their experimental and numerical data in our analysis, re-
spectively. Hong et al. [15] showed that utilization of the homogenous
drag model, the correlation of Gidaspow [12], fails to produce accurate
grid-independent results. Similar failure was reported by Lu et al. [6,
24] and Benyahia [3,4] with the Ergun/Wen and Yu drag correlation
[10,45]. In the present study, similar to the work of Hong et al. [15],
we used the laminar flow assumption for the air and the transport equa-
tion of the granular temperature for fluctuations of the solid phase.
However, in order to improve the accuracy in all simulation cases, we
assigned the equation of the state for calculation of the air density. Set-
tings are displayed in Table 4.

Additionally, computational results obtained in the last 100 time
steps were time and space-averaged on each cross section along the
riser of the fluidized bed. The profile of the solid volume fraction was
plotted against the available experimental data points. A computer
script was used to interpolate the numerical results for specific heights
of the riser, where data points from the experiment of Li and Kwauk [22]
were available. Then, the maximum of the deviation of the numerical
data points from the corresponding experimental data pointswas calcu-
lated by Eq. (23). Further, for each drag model used in this study, an
absolute average percentage deviation (AAPD) value, as shown by
Eq. (24) was calculated.

Errmax ¼ Max f exp: λð Þ−fsim: λð Þ�� ��	 
 ð23Þ

AAPD ¼ Erravg: %ð Þ ¼ 100
N

�
XN
λ¼1

f exp: λð Þ− fsim: λð Þ�� ��	 

= f exp: λð Þ ð24Þ

The equations given above, fsim and fexp are numerical and experi-
mental data point values at locations along the riser of the experimental
facility, respectively. The parameter λ shows the index of the locations
and AAPD-9 refers to the label used for the AAPD value calculated
using a total of nine (i.e., N = 9) data points in our initial error calcula-
tions. In addition, a polynomial function was fitted to the nine experi-
mental data points in order to create a profile with significantly more
number of points for the error analysis. Thus, the target parameters,
such as the correlation values between the numerical and experimental
profiles, i.e., R2, and the AAPD, are calculated for 150 points along the
riser. Eq. (25) shows the expression used for calculation of the R2

value for each constituent and hybrid model.

R2
� �

model
¼ 1−

XN

i¼1
Yi;εs−

1
N

XN

i¼1
Yi;εs

� �2

XN

i¼1
Yi;εs−f i;εs
	 
2 : ð25Þ

This criterion was used for the overall comparison between the sim-
ulation results and the experimental data. In this definition N, Yi,εs and
fi,εs indicate the total number of data points, values of εs on the polyno-
mialfit, and the values of εs on the numerical profile of each dragmodel,
respectively.

The improvement to each constituentmodelwas calculated by com-
paring the Errmax, R2 and AAPD values before and after using the model
in our hybrid schemes. Eqs. (26)–(31) show the expressions used for
calculation of these improvements. For brevity, the subscript notations
used in Eqs. (29) and (30), i.e., constituent and hybrid, follow the
same indexing pattern as used in Eqs. (26) to (29)

imp:Errmaxð ÞGidaspow ¼ 100�
Errmaxð ÞGidaspow− Errmaxð ÞAGDSM3

��� ����
Errmaxð ÞGidaspow

ð26Þ

imp:Errmaxð ÞSY O0B ¼ 100� Errmaxð ÞSY O0B− Errmaxð ÞAGDSM1

�� ��

Errmaxð ÞSY O0B

ð27Þ



Table 7
Variation of the thresholds in the AGDSM models.

Mode-1 Mode-2

Parameter Threshold value Parameter Threshold value

ɛs_THS 0.02 ɛs_THS 1 × 10−3

Θ_THS 0.0008 (cm2/s2) Θ_THS 1 × 10−16 (cm2/s2)
Ha_THS [ 1 × 10−5 − 1] Ha_THS [1 × 10−10 − 0.1]
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imp:Errmaxð ÞWen Yu ¼ 100�
Errmaxð Þ

Wen Yu
− Errmaxð ÞAGDSM2

��� ����
Errmaxð ÞWen Yu

ð28Þ

imp:Errmaxð ÞTGS ¼ 100� Errmaxð ÞTGS− Errmaxð ÞAGDSM3

�� ��

Errmaxð ÞTGS

ð29Þ

imp:AAPDð Þconstituent ¼ 100�
AAPDð Þconstituent − AAPDð Þhybrid
��� ���

AAPDð Þconstituent
ð30Þ

imp R2
� �

constituent
¼ 100�

R2
� �

constituent
− R2
� �

hybrid

���� �����
R2
� �

constituent

ð31Þ
Fig. 3. Switching effects in the three versions of the AGDSM model on time and area-averag
Thresholding constitutes an important feature of all proposed ver-
sions of the AGDSM model. Table 5 illustrates two extra threshold
values, εs_THS and Θ_THS, that must be assigned, in addition to the
threshold for the Ha parameter. This strategy eliminated the possibility
of singularity in Ha calculations in very dilute regions of the domain,
where granular temperature was extremely small. Moreover, for cells
with extremely small values of granular temperature, no switching
operations were executed in the program.

The optimum values for the variables listed in Table 5 are obtained
by best practices. Initially, relatively small values were assigned to
threshold values, which resulted in a limited variation in numerical sim-
ulation. Later, extremely small values were selected for these variables,
which resulted in a significant change in results and in some cases, a sig-
nificant improvement in numerical results were obtained. The Ha_THS
parameterwas examined in awide range for all three proposed versions
of the drag model in order to find the optimum value.

4. Simulation results

Fig. 2 illustrates the results obtained with the TGS drag model and
the other existing drag models on three different computational grids
(See Fig. 1). Fig. 2(a) illustrates the grid independency study with the
TGS drag model where the computational grid (40 × 300) was found
to be optimum. It was observed that when the existing drag models or
the TGS model were used alone, the solid volume fraction profile in
ed profile of the solid volume fraction along the riser against variation of the Ha_THS.
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the riser showed significant deviation from the experimental data given
by Li and Kwauk [22]. Fig. 2(d) shows that all models produce very sim-
ilar results with the increase of the computational grid size, and these
results are in good agreement with the simulation results obtained by
Hong et al. [15], where they used theGidaspowdragmodel in their sim-
ulation of the same flow.

Table 6 shows the maximum and relative errors in the simulation
results for the computational grid size of 20 × 150. The maximum and
minimum values for errors were observed in the cases with the TGS
Fig. 4. εs profile from MFIX_TFM simulations for various values of Ha_THS; (a to c) repre
and Wen–Yu correlations, respectively. The results are comparable to
the simulation results obtained by Hong et al. [15] for the same geome-
try and boundary conditions. Further, in order to evaluate the sensitivity
of theAGDSMversions to the threshold values, εs_THS andΘ_THS, these
parameters were varied according to the modes given in Table 7.

Fig. 3 shows the effect of switching operations on simulation results
under the constraints of the first mode, as explained in Table 7. In this
figure, the immediate observation from Fig. 3(a–b) is that, for various
values of the Ha_THS parameter and the fixed values of ɛs_THS and
sent AGDSM1, (d to f) represent the AGDSM2, and (g to i) represent the AGDSM3.



Fig. 5. Error in TFM simulation for three versions of the proposed drag model, maximum of error on the left and averaged relative error on the right.
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Θ_THS, a significant alteration in the solid volume fraction profile oc-
curred.However, identical resultswere obtained for theHa_THS param-
eter in a broad range of variation (e.g., [1 × 10−5 to 1]). In addition,
improvement of the numerical results, in terms of deviation from the
experimental data, was limited to only small portions of the computa-
tional domain in high and low sections of the riser.

Further, Fig. 3(c–f) show that the effect of filtration by the model
constraints is more pronounced for AGDSM2 and AGDSM3 versions of
the proposed model. According to Fig. 3(c–d) and (e–f) for the
AGDSM2 and AGDSM3models, respectively, no alteration of the results
was observed in a significantly wider range of the Ha_THS parameter
(e.g., [1 × 10−5 to 1 × 104]). In fact, the extremely conservative nature
of the filtration procedure, Table 5, accounts for the unnecessary elimi-
nation of switching operations in the regions where relatively large
values of Ha were detected. This observation helps to understand that
although the onset of the changes in the simulation results of the
AGDSM1 model, occurred at large values of the threshold (Ha_THS =
0.05), the loss of the sensitivity to smaller values of the Ha_THS in our
modeling could be overcome by significant reduction of the values for
the Θ_THS and εs_THS parameters (Mode 2 in Table 7). Here we refer
to this treatment as simulation with relaxed constrains and we have
shown that this treatment was effective for all versions of the proposed
drag model.

4.1. Simulation results with relaxed constrains

Simulation results with relaxed constrains, introduced as mode 2 in
Table 7, are displayed in Fig. 4 for the AGDSM1, AGDSM2 and AGDSM3
Fig. 6. Optimal MFIX-TFM simulations by versions of the AGDSMmodel, (a) to (c) are versions of
versions and the profile of [15].
versions. For the AGDSM1 model, Fig. 4(a) shows an identical εs profile
for 0.1 ≤Ha_THS b 0.0001. According to Fig. 4(b–c), the onset of the on-
going changes occurred at Ha_THS=1× 10−4 and significant improve-
ments were observed for Ha_THS=1× 10−5, Ha_THS=1 × 10−9, and
Ha_THS = 1 × 10−10. However, remarkably large deviations from the
experimental profile are observed for 1 × 10−6 ≤ Ha_THS ≤ 1 × 10−8,
where the ASDSM1 version almost regenerated the εs profile of the
TGS model at Ha_THS = 1 × 10−6.

The AGDSM2 model, as shown in Fig. 4(d), reproduced the orig-
inal εs profile of the Wen–Yu model for 0.5 ≤ Ha_THS b 0.0001.
Here, unlike the AGDSM1 model, the onset of the changes occurred
at Ha_THS = 1 × 10−4 and we observed a dynamic variation of re-
sults after this threshold value. Here, consecutive increase and de-
crease of the deviations from the experimental results are observed
with the reduction of the Ha_THS. In addition, the AGDSM2 version
almost regenerated the εs profile of the TGS model at two threshold
values, e.g., Ha_THS = 1 × 10−6 and Ha_THS = 1 × 10−8. However,
significant improvements in the agreement with the experimental
values were obtained for the Ha_THS = 1 × 10−9 and Ha_THS =
1 × 10−10.

TheAGDSM3model, as shown in Fig. 4(g), reproduced the original εs
profile of the Gidaspowmodel for 0.1 ≤ Ha_THS b 0.0001. Similar to the
AGDSM2 version, we observed a dynamic variation of results after the
Ha_THS = 1 × 10−4. Further, Fig. 4(g–i) shows consecutive increase
and decrease of the deviations of the numerical results from the exper-
imental results and the model almost reproduced the original εs profile
of the TGS model for the intermediate value of the threshold
(e.g., Ha_THS = 1 × 10−6). However, significantly better agreements
the AGDSMmodel versus corresponding standard models, (d): best result from AGDSM1-3



Fig. 7. Fourth-order fit to the experimental data of [22] used for the calculation of R2 and
AAPD values.

Table 8
Error calculations and best improvements for different versions of the AGDSM model.

Simulation case Err. max AAPD-9a (%) AAPD-fitb (%) R2 imp. Errmax (%) imp_AAPD (%) imp_R2 (%)

[15] 0.0773 166.1 138.5 0.557 – – –
Syam–O'Brien 0.0954 106.2 100.7 0.789 44.5 32.0 23.2
Gidaspow 0.0959 93.5 87.9 0.735 58.4 26.4 30.1
Wen–Yu 0.0545 77.4 71.0 0.956 12.9 10.5 1.12
TGS 0.0918 143.1 132.4 0.410 56.5 51.14 133.3
AGDSM1c 0.0531 74.5 68.4 0.973 – – –
AGDSM2d 0.0474 71.6 63.6 0.966 – – –
AGDSM3e 0.0399 67.2 64.7 0.956 – – –

a 9-point absolute average percent deviation.
b Absolute average percent deviation using the 4th order polynomial fit.
c Ha_THS = 1 × 10−10.
d Ha_THS = 1 × 10−10.
e Ha_THS = 1 × 10−5.
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with the experimental values were obtained for the Ha_THS= 1 × 10−5

and Ha_THS = 1 × 10−7.
Further, to improve our error analysis, we plotted the profiles of the

maximum and relative errors as displayed in Fig. 5(a) and (b), respec-
tively. Here, we noticed a similarity between the profiles of the maxi-
mum and the relative errors for each version of the proposed drag
model. Fig. 5(a) shows that the maximum improvements for the
AGDSM1, AGDSM2, and AGDSM3 happened at Ha_THS = 1 × 10−10,
Ha_THS=1×10−10, andHa_THS=1×10−5, respectively. In addition,
Fig. 5(a–b) shows that no consistent trend of reduction or escalation of
error against values of theHa-THS parameter could be traced for all pro-
posed versions of the AGDSMmodel. Moreover, the models did not de-
velop similar patterns of variation for the profiles of Errmax and Erravg
errors. Our observation is that perturbations on the error profiles start
at Ha_THS = 1 × 10−3 for all AGDSM versions and all models
approached the Errmax value of the TGS model at Ha_THS = 1 × 10−6

(Fig. 5(a)).
Another observation from Fig. 5(a–b) is that the level of error asso-

ciated with the AGDSM3 model is significantly lower than the other
two models for 1 × 10−8 ≤ Ha_THS b 1 × 10−4. In other words,
switching between the TGS and the Gidaspow dragmodels could excel-
lently serve the objective of the present research, which is to improve
the performance of the existing standard drag modes through a combi-
nation with a DNS-based drag model.

Fig. 6 illustrates a thorough comparison between the best results ob-
tained by our proposed hybrid models and their corresponding constit-
uent standard drag model. We first demonstrated in Fig. 6(a–c) that all
hybridmodels significantly outperformed their corresponding constitu-
ent standard drag model. According to Fig. 6(c), the most effective
switch operations were performed by the AGDSM3 model.

The error values shown in the Table 8 show that the smallest values
of 9-point maximum error and AAPD values calculated using Eqs. (23)
and (24) were obtained for the AGDSM3 model under optimal condi-
tions. However, in our analysis with a 4th order polynomial fit with a
high fit quality of R2 ≈ 0.98 to the experimental data points, as shown
in Fig. 7, a slightly smaller values of AAPD was observed for the
AGDSM2 model version. In a similar fashion, the largest 9-point R2

values was obtained for the AGDSM3 model version, while this model
version possessed the second largest R2 values after the AGDSM2
model version for the polynomial fit. For brevity, the 9-point R2 values
are not shown in the Table 8.

Table 8 also shows the results of our error and R2-improvement
analysis. Accordingly, all hybridmodels used in this study demonstrated
high correlation values (R2 ≥ 0.95) with the experimental profile. In the
case of standard dragmodels used in this study, the best improvements
in terms of maximum-error (%58.4) and R2-value (%30.1) were obtain-
ed for the Gidaspow drag model. In addition, we were able to improve
the results of the Syam–O'Brien drag model in terms of AAPD criterion
for the largest improvement value of 32%. This accomplishment is
significant since this improvement was obtained without activating
the cluster-related correction parts of the Syam–O'Brien drag subrou-
tine in the MFIX.

In addition, it is possible to make qualitative comparisons between
profiles of solid volume fraction in Fig. 6(d) and quantitative comparison
between the error and R2 values on the first and the last three rows of the
Table 8. These comparisons reveal the improved performance of all pro-
posed AGDSM model versions in optimal conditions over the results re-
ported by Hong et al. [15] where the Gidaspow model was used on a
significantly finer computational grid (60 × 450). The purpose of this
comparison is to show that significantly better computational results
could be obtained by only combining the non-structured based drag
models with the particle resolved-DNS TGS drag model, and without a
need for refining the computational grid size.



Fig. A-1. Representation of the van der Waals force, the gas-particle drag force, the force
due to pressure gradient in the fluid, and the gravitational force acting on two spherical
particles with equal radius.

Fig. 8. Frequency of switch operations. (a) Constituent drag models, (b) proposed AGDSM model versions in optimal cases.
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4.2. Switching frequency and improvements in AGDSM model versions

Results shown earlier in Fig. 5 indicates an unrecognizable relation
between the variation of error and the value of the Ha-THS parameter.
The switching mechanism between constituent drag models, as
explained earlier in Table 1, is controlled by two parameters, Ha and
Ha-THS. Therefore, the results listed in Table 8 encouraged us to explore
the relation between the improvements for the proposed versions of the
AGDSMmodel and the switching frequencies occurred in the simulations.

For this purpose, we first calculated the number of the computation-
al cells which met the criteria of switching for all proposed hybrid drag
versions. In this method, the frequency of switching operations for
AGDSM3 under the best condition (i.e., Ha-THS = 1 × 10−5) was the
number of cells that met the condition of Ha N 1 × 10−5 and similar def-
inition was used for the AGDSM2 and AGDSM3 versions with Ha-
THS=1×10−10. For the constituentmodels,we calculated the number
of the computational cells which could potentially meet the switching
criterion of Ha N 1 × 10−10. The importance of investigation about
these criteria was to evaluate the potential of further modification to
both the constituent and hybrid drag models based on the relative
strangeness of cohesive forces, i.e., cluster formation.

Fig. 8 shows the potential of further modification to all drag models
used in this study. These results show significant differences between
the constituent models, presented in Fig. 8(a), and the proposed hybrid
model versions, presented in Fig. 8(b). Surprisingly, there is a direct re-
lation between the improvement to the AAPD values listed in the
Table 8 and the potential modifications shown in Fig. 8(a). In better
words, the TGS model with the highest AAPD values, i.e., %132.4, re-
quired the most number of switching operation, i.e., 2774, and pos-
sessed the highest level of overall modification (imp-AAPD), i.e., %
51.14. In a similar fashion, theWen–Yumodelwith the lowest AAPD, re-
quired the smallest number of operations and possessed the least level
of AAPD improvements. Based on these observations, significant modi-
fications shown in Fig. 6 and Table 8 can be explained by the significant
changes which occurred to the constituent models through switching
operations between the standard models and the TGS model; however,
the relation between the large number of switching operations required
for the Wen–Yu model and the level of modification to this model, as
described by Table 8, necessitates more attention to be given to the ef-
fectiveness of switching operations for different models. Therefore fur-
ther research is necessary to investigate about the relation between
cohesive index and field variables, such as granular temperature of the
solid phase and drag force coefficients. (See Fig. A-1.)

5. Conclusions

In this paper, we have demonstrated that TFM simulations of the
air-FCC flow could not produce accurate results using the original
form of three existing standard drag models in the MFIX package
(i.e., Syam–O'Brien, Gidaspow and Wen–Yu models) and the TGS
model, as a particle resolved DNS drag model. On the other hand, com-
bining a standard drag model with the TGS model, under optimized
conditions and based on a switching mechanism, was proved to be a
useful method to significantly improve the accuracy of the numerical
results. In this approach, the switching mechanism proved to be excep-
tionally sensitive to the variation of the threshold values of the cohesive
index, Ha-THS. A direct relation between the error improvements and
the frequency of switch operations in the proposed models is recog-
nized. Consequently, models with more numerical error demanded
more switching operations and experienced more modifications. How-
ever, improvements to the constituent models must be considered
together with the quality of the switch operations. This can lead to es-
tablishment of an accurate relation between the drag force and the co-
hesive index, hence a more comprehensive drag force model wherein
the cohesive index is explicitly incorporated into its formulation. In con-
clusion, the proposed approachwas observed to be successful for all the
three dragmodel versions under optimal conditions, where amaximum
of almost 60% improvement in accuracy of simulation results was ob-
tained for the Gidaspow model. Therefore, a direct or indirect imple-
mentation of particle clustering and ensuing modifications in the TFM
approach is necessary to be practiced for gas–solid flows under the in-
fluence of cohesive interparticle forces.
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Appendix A. Relative equation of motion of particles

For particle i:

mi
d2 x!i

dt2
¼ F

!
c;i þ F

!
vdw;i þ F

!
drag;i−Vi∇pþmi g

! ðA:1Þ

For particle j:

mj
d2 x!j

dt2
¼ F

!
c; j þ F

!
vdw; j þ F

!
drag; j−Vj∇pþmj g

! ðA:2Þ

F
!

c;i ¼ F
!

c; j ¼ 0 ðA:3Þ

and

F
!

drag;i ¼ F
!

drag; j ðA:4Þ

Vi∇p ¼ Vj∇p ðA:5Þ

mi g
!¼ mi g! ðA:6Þ

F
!

vdw;i ¼ − F
!

vdw; j ðA:7Þ

Fig. A-1 shows the schematic of the particles with small separation
distance from each other under the effect of the van der Waals force,
the gas–particle drag force, the pressure gradient in the fluid, and the
gravitational force. Subtraction of Eq. (A.2) fromEq. (A.1) results in can-
celation of some of the terms and the following expression is obtained:

d2 X
!

i−X
!

j

� �
dt2

¼ 1
mi

F
!

vdw;i−
1
mj

F
!

vdw; j

� �
ðA:8Þ

where for the cohesive inter-particle force, we adopt the Hamaker
expression [60] for two spheres, given by the following equation:

F
!

vdw;i j dð Þ
��� ��� ¼ A

3
2RiR j dþ Ri þ Rj

	 

d dþ 2Ri þ 2Rj
	 

 �2

� d dþ 2Ri þ 2R j
	 


dþ 2Ri þ 2Rj
	 
2− Ri−Rj

	 
2 −1

" #2
: ðA:9Þ

In this equation, A is theHamaker constant, R is the radius of the par-
ticle and d is the surface-to-surface distance between the two particles, i

and j. This expression simplifies to F
!

vdw,ij(d) = (AR / 6dij2) n
!

ij for two
sphere of the same diameter. Later, by placing the frame of reference
on the particle j, and replacing the dij with the distance d, in Fig. (A-1),
Eq. (A.8) can be reformatted as

mimj

mi þmj

� �
dV
!

rel:
ið Þ

dt
þ AR

6d2 ¼ 0: ðA:10Þ
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