
Chapter 2
Hybrid Optimization Algorithms and Hybrid
Response Surfaces

George S. Dulikravich and Marcelo J. Colaço

Abstract In this paper we will present some hybrid methodologies applied to
optimization of complex systems. The paper is divided in two parts. The first
part presents several automatic switching concepts among constituent optimizers
in hybrid optimization, where different heuristic and deterministic techniques are
combined to speed up the optimization task. In the second part, several high dimen-
sional response surface generation algorithms are presented, where some very basic
hybridization concepts are introduced.
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2.1 Introduction

Design of complex nonlinear engineering systems usually requires a large computa-
tional effort in the case of simulation, or a large amount of human and experimental
resources in the case of experiments. Multi-dimensional topology of the objective
function space of such problems has multiple local minima and large domains of pos-
sible variations of the design variables search space. A typical approach to finding
the global minimum is to start with a large search space utilizing an entire population
of initial guesses and advancing them simultaneously using any of the evolutionary
optimization algorithms. Once the search space has narrowed sufficiently, the search
process is switched to a fast and accurate gradient-based search algorithm to con-
verge on the minimum. However, this simplistic semi-manual approach to sequential
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hybrid optimization is not reliable since it utilizes only one evolutionary optimizer
and one gradient-based optimizer, each of which has its own intrinsic deficiencies.
A more robust and faster hybrid optimization approach utilizes a collection of sev-
eral evolutionary optimizers and several gradient-based optimizers and automatically
switches among them. This chapter will focus on these types of hybrid optimizers.

When systems having large number of design variables, objective functions and
constraints need to be optimized, this implies the evaluation of thousands and even
millions of candidate solutions, which can make this task impossible from a very
practical point of view, especially if each such high fidelity evaluation of the objective
function is time-consuming or expensive. Thus, it is important to develop surrogate
models, also called metamodels, which approximate the response of the original
problem, but using a much simpler mathematical formulation. The objective of this
chapter is to present several common response surface models existing in the liter-
ature, and some hybridization among them. Some hybrid optimizers are also pre-
sented, based on heuristic and deterministic methods, which take advantage of these
hybrid response surface models to improve the efficiency of the optimization task of
complex engineering systems.

2.2 Hybrid Optimization Algorithm Concepts

It is well known that each optimization algorithm provides a unique approach to
optimization with varying degrees of convergence, reliability, and robustness at dif-
ferent stages during the iterative process. The “no free lunch theorem” states [1] that
no individual optimization algorithm is better than all the other optimization algo-
rithms for all classes of optimization problems (Fig. 2.1). A natural response to this
problem is to use hybrid optimization algorithms that combine individual constituent
optimization algorithms in a sequential or parallel manner so that resulting software
can utilize the specific advantages of each constituent algorithm. That is, a variety
of individual constituent optimization algorithms that rely on different principles of
operation are combined in a hybrid optimization algorithm as subroutines where a set
of specified heuristic measures of the iterative convergence process is used to perform
automatic switching among the constituent algorithms. This allows for automatic use
of the most appropriate constituent optimization algorithm at each step of the global
iterative optimization process. The automatic back-and-forth switching [2] among
the constituent optimization algorithms can also be viewed as an automatic backup
strategy so that, if one optimization algorithm fails, another optimization algorithm
can automatically take over.

The key to the success of this hybrid optimization concept is the automatic
switching strategy [2, 3] among the constituent optimization algorithms. One of the
early single-objective hybrid optimization algorithms [4, 5] had three gradient-based
(Davidon-Fletcher-Powell algorithm, Sequential Quadratic Programming and quasi-
Newton algorithm of Pshenichny-Danilin) and three non-gradient-based
(Genetic Algorithm, Nelder-Mead simplex algorithm, and Differential Evolution
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Fig. 2.1 Convergence histories for Griewank’s test function no. 8 using (from left to right) individ-
ual: BFGS algorithm, differential evolution, simulated annealing, particle swarm, and our hybrid
optimizer [27]. The last figure illustrates the convergence history of one hybrid optimizer using
automatic switching process [5]

algorithm) constituent optimization algorithms that were automatically switching
back-and-forth each time when a particular heuristic prescribed convergence mea-
sure was reached [5].

This hybrid single-objective optimizer only restarts with a single design (the
“best” from the “previous” iteration). In other words, when switching from one of the
population-based constituent optimizers to a gradient-based constituent optimizer,
only the best design from that population, and not the entire population, is used as
the initial guess for the gradient-based constituent algorithm.

For population-based constituent optimizers used in this hybrid optimizer, the
population matrix was updated every iteration with new designs and ranked according
to the value of the objective function. The optimization problem was completed
when: (1) the maximum number of iterations or objective function evaluations was
exceeded, or (2) the best design in the population was equivalent to a target design,
or (3) the optimization program tried all four algorithms, but failed to produce a
decrease in the objective function.

Another hybrid single-objective optimization algorithm was developed by com-
bining three of the fastest gradient-based and evolutionary optimization algorithms
[5], namely: the Broyden-Fletcher-Goldfarb-Shanno quasi-Newton algorithm, the
Differential Evolution algorithm, and the Particle Swarm algorithm. It was found
that the most often automatically used constituent optimization module is the Particle
Swarm algorithm. When a certain percentage of the particles find a minimum, the
algorithm switches automatically to the Differential Evolution algorithm and the
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particles are forced to breed. If there is an improvement in the objective function,
the algorithm returns to the Particle Swarm method, meaning that some other region
is more likely to have a global minimum. If there is no improvement in the objec-
tive function value, this can indicate that this region already contains the global
value expected and the algorithm automatically switches to the Broyden-Fletcher-
Goldfarb-Shanno algorithm in order to quickly and accurately find the location of
the minimum.

One of the most recent switching algorithms is the Search Vector-based Hybrid
(SVH) [2] which automatically changes search directions during the optimization
process. During each iteration, the SVH will generate the SVs based on a predeter-
mined formula or quality. Some examples of the SVs include:

1. Global Best vector (GB) which is the fittest design vector currently in the popu-
lation.

2. Population Weighted Average vector (PWA): The population is ranked from best
to worst, with the best receiving a rank equal to the population size, and the
worst having a rank of one. The ranks are then used as weights, and the standard
weighted arithmetic mean procedure is used to create this SV.

After the SVs have been evaluated, the fittest SV is selected as the SV for that
iteration. Once the SV has been selected, the constituent algorithm selection process
begins. First, each constituent algorithm is executed so that it generates a temporary
small population. This temporary population will not be evaluated. Instead, it will be
used as an indication of the behavior of the constituent algorithm for a given topology.
For example, suppose the SVH has two constituent algorithms called CA1 and CA2
where CA1 will use the current population to generate a temporary population which
will be situated in one part of the space of design variables, while CA2 will create
a temporary population shifted to another part of the space of design variables. In
order to select the most appropriate constituent optimization algorithm, the Euclidean
distance between the endpoint of each centroid vector of the temporary populations
and the selected SV is calculated and stored. Then, each centroid is evaluated. The
constituent algorithms are then ranked using the Pareto dominance scheme based
on two objectives: (1) minimize distance between the centroid and the SV, and (2)
minimum objective function value of the centroid. The constituent algorithm to be
used is randomly selected from the Pareto front. In order for the centroids of the
temporary populations for the constituent algorithms to be statistically meaningful,
the constituent algorithms are executed 10× each iteration. Once a constituent algo-
rithm has been selected, it is then executed one last time. This time, the population is
permanently changed, and the objective function for each design vector is evaluated.
This completes one full iteration of the SVH. This strategy [2] differs from any other
known work in that it uses a collection of different search directions, each with its
own unique formulation, and chooses among them. The method presented by Ahrari
et al. [6], like most other hybrid algorithms, generates the search direction and keeps
it fixed throughout the entire optimization process.

In multi-objective optimization it would be onerous to use a single value and
compare the quality of one Pareto approximation to another [7]. Instead, multiple
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attributes of two successive Pareto approximations should be considered to determine
if a multi-objective optimizer is converging on non-dominated set. Since “no free
lunch theorem” applies to multi-objective optimizers as well as single-objective opti-
mizers, hybrid optimization is highly advisable in the multi-objective optimization
problems. Such hybridization can be implemented by using a suite of multi-objective
optimization algorithms in the form of either High-level Relay Hybrid (HRH) algo-
rithms where each of the constitutive algorithms run on its own in a sequential
non-parallelized scheme, or as High-level Teamwork Hybrid (HTH) metaheuristic
algorithms [8] where constitutive optimization algorithms run in parallel and con-
tribute a portion of each new generation’s population. The portion that each search
contributes to the new generation is dependent on the success of the algorithm to
provide past useful solutions to the search. One such HTH algorithm is AMALGAM
[9], which utilizes NSGA-II [7] and outperforms NSGA-II.

A robust and accurate HRH type concept is Multi-Objective Hybrid Optimizer
(MOHO) [10] which currently uses three multi-objective optimization algorithms:
Strength Pareto Evolutionary Algorithm (SPEA-2), a multi-objective implementa-
tion of the single objective Particle Swarm, and a Non-Sorting Differential Evolu-
tion (NSDE) algorithm which is a low level hybrid metaheuristic search combining
NSGA-II [7] and Differential Evolution. MOHO starts by creating the population
that will be used for the optimization run. The population contains the decision vector
and the objective vector for all population points and stores the Pareto approximation
and clustering routine. Clustering is performed by the population on the object vec-
tors of the Pareto approximation. The decision vectors of all population points are
evenly distributed over the decision space using Sobol’s pseudo random sequence
generator [11]. The software then passes the population from optimization routine to
optimization routine as the switching criteria dictates. The constitutive algorithm that
is selected at each generation makes a new generation using any or all of the informa-
tion provided to it: the last generation’s population and the latest non-dominated set.
Then MOHO combines the new generation and the latest non-dominated set to create
a new non-dominated set. The switching algorithm compares the non-dominated set
from the current generation to the non-dominated set of the previous generation. The
comparison process consists of looking at five desired improvements to the Pareto
approximation [10]. The improvements are actually gains in five performance crite-
ria (quality factors). If the particular search algorithm can achieve at least two of any
of the five specified improvements [10], this algorithm is allowed to create the next
generation. The five criteria (aspects) are:

1. The new population changes the number of points in the Pareto set. When this
happens, either points are being added to the approximation, or, more importantly,
a new point is found that causes points to be deleted from the Pareto set.

2. The new population has at least one point that dominates a point, or points, in the
current Pareto approximation. This means that the Pareto approximation is being
improved.

3. The hyper volume of the dominated space changes. When the optimization soft-
ware starts, it picks a worst case objective vector from its initial population guess.
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At each constituent optimization algorithm iteration, hyper cubes are created,
with one vertex of the diagonal being a point on Pareto approximation and the
other vertex of the diagonal being the worst case objective vector. Then the vol-
ume of the union of all the hyper cubes is calculated. The union is defined as the
Boolean union of the cubes; in the same sense as this operation is performed in
Constructive Solid Geometry for CAD applications. When this occurs, the Pareto
approximation is changing geometry.

4. The new population generation causes the average distance of Pareto approxi-
mation from the objective space origin to change. This also denotes a change on
the Pareto approximation geometry. This is a backup to criterion (3) where two
approximations may have the same volume, but different average distances.

5. The new population causes the maximum spread of the Pareto approximation to
increase. The formula for calculating the spread developed by Zitzler is shown
by Deb [7].

At the end of each iteration, the population of design vectors assigns itself a grade
point for each of the above criteria that its new generation meets. If the new population
earns a grade of 2 or more, the current optimization routine is allowed to continue
running. When the grade falls below 2, the software switches to the next optimizer
in its repository. If the grade is 0 or 1, the reason to switch to another constituent
optimizer is because the currently used constituent algorithm is not contributing to
improving the Pareto approximation. As an example, the population gives itself
a grade of 1 because it meets criterion 4. This change could be caused just by
clustering of the previous Pareto approximation and the new population. While this
type of change in the Pareto approximation has its uses, it has been found that the
multi-objective routines used here can cause these kind of changes to the Pareto
approximation ad infinitum, when the Pareto approximation is very near the actual
non-dominated set of the objective space. It has been found that by enforcing at least
2 of the criteria, these situations are avoided.

The other limiting factor on how many consecutive iterations a given optimization
routine can run is the sub-iteration limit. Although a routine may be able to score a
grade of at least 2 indefinitely, for each new generation, there may be an optimization
method available that can do a better job. For this reason, each constituent optimizer
is limited to a user defined maximum sub-iteration limit. This limit gives all the
constituent optimizers a chance to run.

2.3 Hybrid Response Surface Generation Concepts

Optimization of systems with a large number of design variables where the objective
function is given in a pointwise fashion requires creation of a hypersurface that
fits through the given values of the objective function in a multi-dimensional space
where dimensionality corresponds to the number of the design variables. It is well
known that the locations of the training points are crucial for the proper construction
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of the response surface. When we are given a freedom to choose the locations of
the support points of a multi-dimensional response surface, a typical approach is to
use Design of Experiments (DoE) for this purpose. For high dimensional problems,
strategies such as Latin Hypercube Sampling [11], Sobol quasi-random sequences
of numbers [12], and a variety of de facto random number generators are most often
used. However, when we do not have freedom to choose the number and the locations
of the support points for generation of a response surface, all existing methods for
generating response surfaces have serious problems with accuracy and robustness.
This is mainly because arbitrary data sets provide inadequate uniformity of coverage
of space of the design variables and clustering of the support points that leads to
spurious oscillations of the response surfaces.

2.3.1 Polynomial Regression

The use of polynomial regression is one of the earliest attempts to generate response
surface models [13, 14]. The idea is to approximate an unknown function f(x) by an
approximation s(x) in the following general form

f (x) ≈ s(x) = a0 +
n∑

i=1
aixi +

n∑

i=1

n∑

j≤i
aijxixj

+
n∑

i=1

n∑

j≤i

n∑

k≤j
aijkxixjxk + · · ·

(2.1)

where n is the number of dimensions of the problem. Notice that we can write
Eq. (2.1) as

f = Xa + ε (2.2)

where ε is an approximation error with zero mean and variance, σ 2. If the functions
are given at certain known locations, the unknowns a can be found by least squares

a =
(

XT X
)−1

XT f (2.3)

It is well known that the locations of the training points are crucial for the proper
construction of the response surface. Such choice is known in the literature as Design
of Experiments (DoE). For low dimension problems, the classical method of choice
was the factorial design [13], which is not practical for high dimensional problems.
Other strategies for high dimensions include the Latin Hypercube Sampling [11],
Sobol quasi-random numbers [12], etc.

Although the polynomial regression technique seems very attractive in view of its
simplicity, it is not practical when the number of dimensions of the problem becomes
very high. In this case, there are other relatively recent techniques more appropriate.



26 G.S. Dulikravich and M.J. Colaço

Among those techniques, the most used are Kriging [15], Radial Basis Functions
[16], and Neural Networks [17], among others.

2.3.2 Self Organizing Algorithms [19, 20]

Self-organizing algorithms come from the field of cybernetics [18]. The idea is that
the program “learns” the black box model as it is trying to mimic and makes the
response surface as complex as is required. By allowing the program to gradually
complicate the final model, the construction and evaluation time of the surrogate
model is automatically optimized for a given task. The black box model is the test
function being used to evaluate the RSM method.

The self-organizing algorithm presented here [19], is the multilayer algorithm
where the design variables are permutated, in pairs, to form nodes. At each node
a least squares regression is performed using the two variables input to the nodes.
These are variable vectors that are the size of the sample population. Thus, the output
of the node is a vector of the predicted values from the regression. The polynomial
used for the regression is a first order or second order polynomial. For instance, a
second order basis polynomial would be:

yk,n
i,j = ak,n

0 + a1
k,nxk,n

i + a2
k,nxk,n

j + a3
k,nxk,n

i xk,n
j

+ a4
k,nxk,n

i xk,n
i + a5

k,nxk,n
j xk,n

j i �= j (2.4)

where i, j = 1, 2, . . . , number of inputs to a given layer, k is the current layer, and
n is the node number at current layer. Equation (2.4) would then be a row in the
Vander Monde matrix for a regression using a second order basis polynomial of two
variables. The output of the node is the vector of predicted y values for the given
input. The output of a node in layer k − 1 becomes the input (provides an xi vector)
for layer k.

The notation in Eq. (2.4) is designed to inform the reader that the functions and
polynomial coefficients pertain to a particular layer and particular node in the layer.
The notation should also give the reader a feel for the computational resources needed
to create and maintain a multilayer self-organizing model.

Figure 2.2 shows a possible multilayer surrogate model for a three variable engi-
neering model. In the bottom layer (the zero layer) actual design variables are the
nodes in the layer. These become the x inputs to layer 1. The nodes for layer 1 are
created by permuting the input variables and performing a least squares fit using
Eq. (2.4), and the actual responses from the actual function (that is, objective func-
tion, engineering simulation, etc.). Once layer 1 is made, layer 2 is created, but now
the nodes of layer 1 provide the x’s to make the new nodes using Eq. (2.4). When
layer 3 is to be created, the 3rd node of layer 2 is not included. For now, we will just
say that the results of that regression were not good enough to be used to make the
3rd layer. Since only two nodes from layer 2 were used to make layer 3, only one
node can be created in layer 3 and the model making process ends there.
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Fig. 2.2 Sample multilayer
model for self-organizing
response surface creation [19]

The third node in layer 2 is not used to make nodes in layer 3 in Fig. 2.2. A
selection criterion is used to determine if the information in a node gets passed on
to the next layer. Madalaand and Ivakhnenko [18] suggest that using the following
equation is an appropriate means for checking the quality of a node and can be a
selection criterion

�2(B) =
∑

p∈NB
(y − �

y )2
p

∑
p∈NB

(yp − ȳ)2 (2.5)

where yp are the desired values,
�
y are the predicted values and ȳ are the mean of

the desired values. In the multilayer algorithm a threshold is set for the maximum
acceptable value of Eq. (2.5). Nodes that are within the threshold are passed on to the
next layer. For each new layer the threshold is made smaller. This serves to minimize
the amount of nodes in each layer to only the information that is needed to improve
the network. This trimming of nodes is crucial to keeping the method compact and
efficient [19]. The reader is urged to follow the example in Fig. 2.2, but first setting
the number of input variables to 4. The rate of the growth of layers can be very large.

The building of the multilayer network can be terminated in two ways (in practice):
A) Build a predetermined number of layers and chose the node in the last layer with
the best value of Eq. (2.5) to be the model output. B) Build layers until all nodes
are unable to meet the threshold value, chose the best-valued node as the output of
the model. Once the output node is chosen, the polynomial coefficients pertaining
to all the nodes used to create the output node are stored for evaluation of the model
(extraction of a predicted value).



28 G.S. Dulikravich and M.J. Colaço

2.3.3 Kriging

The Kriging technique was named after the initial work of the South African mining
engineer Krige [20]. Details of this technique can be found in the classical papers of
Sacks et al. [21, 22] and Matheron [15]. It is worth mentioning also the excellent work
of Jones et al. [23] where they proposed an efficient method to global optimization.
Later, Huang et al. [24] extended Jones et al. work to deal with model uncertainties.
Following procedure described in the works of Jones et al. [23] and Sacks et al. [21,
22], the Kriging method starts by constructing a stochastic process model for the
function as

f
(

xi
)

=
m∑

j=1

ajgj

(
xi

)
+ εi (2.6)

where the superscript i is used to denote the ith point in the space of design variables
x. In Eq. (2.6), gj is a set of m linear or non-linear functions and ε is an approximation
error with zero mean and variance, σ 2. In the classical Kriging model, the approxi-
mation error is supposed to be function of the design variables, such that εi = ε(xi).
Some recent works [24] also include a measurement error in Eq. (2.6), but this will
not be discussed here. A usual hypothesis in this model is that if two points xi and
xj are close, then their approximation errors ε(xi) and ε(xj) are also close, meaning
that ε(xi) and ε(xj) are correlated. The correlation function between those two errors
can be given as a function of the weighted distance between then [21, 22].

d
(

xi, xj
)

=
n∑

k=1

θk

∣
∣
∣xi

k − xj
k

∣
∣
∣
Pk

θk ≥ 0, Pk ∈ [1, 2] (2.7)

where n is the number of dimensions of the problem. The correlation is given as

Corr
[
ε
(

xi
)

, ε
(

xj
)]

= exp
[
−d

(
xi, xj

)]
(2.8)

According to Jones et al. [23], such model is so powerful that we can rewrite
Eq. (2.6) in terms of the mean of the stochastic process μ, such that

f
(

xi
)

= μ + ε
(

xi
)

(2.9)

Following Jones et al. [23] we can then obtain the approximate function for a new
point x* as

f
(
x∗) = μ̂ + rT R−1 (

f − 1μ̂
)

(2.10)

where 1 is vector of ones, Ri,j = Corr[ε(xi), ε(xj)], ri = Corr[ε(x∗), ε(xi)], f is the
vector of functions at the known locations, and
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μ̂ = 1R−1f
1T R−11

(2.11)

Kriging also predicts the mean squared error of the estimates [21–23] and this
has been used as a predictor to locations where to add points in the response surface
model. Locations of the domain where the mean squared error of the estimates are
large, usually require the addition of extra points to increase the local accuracy.

2.3.4 Radial Basis Functions

The use of Radial Basis Functions (RBFs), initially proposed in the work of Hardy
[25] on multivariate approximation, is now becoming an established approach. RBFs
may be classified into two main groups:

• The globally supported ones namely the multiquadrics (MQ,
√(

x − xj
)2 + c2

j ,
where cj is a shape parameter), the inverse multiquadrics, thin plate splines, Gaus-
sians, etc;

• The compactly supported ones such as the Wendland [26] family (for example,
(1 − r)n+ + p (r) where p(r) is a polynomial and (1 − r)n+ is 0 for r greater than
the support).

Let us suppose that we have a function of L variables xi, i = 1, . . ., L. One possible
RBF approximation [27] can be written as

f (x) ≈ s (x) =
N∑

j=1

αjφ
(∣
∣x − xj

∣
∣
) +

M∑

k=1

L∑

i=1

βi,kpk (xi) + β0 (2.12)

where x={x1,…, xi, …, xL} and f(x) is known for a series of points x . Here, pk(xi)

is one of the M terms of a given basis of polynomials [28]. This approximation is
solved for the αj and βi,k unknowns from the system of N linear equations, subject
to the conditions (for the sake of uniqueness)

N∑

j=1
αjpk (xi) = 0

...
N∑

j=1
αjpk (xL) = 0

(2.13)

N∑

j=1

αj = 0 (2.14)

One of the possible RBFs are the multiquadrics radial functions
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φ
(∣
∣xi − xj

∣
∣
) =

√(
xi − xj

)2 + c2
j (2.15)

where the shape parameter cj must be adjusted. According to Baxter [29], usually
large values of cj provide the best approximations.

2.3.5 Wavelet Based Neural Networks [31, 32]

Wavelets occur in the family of functions generated from a mother wavelet ψ(x).
Each wavelet in it is defined by dilatation vector, ai, which controls the scaling, and
translation vector, ti, which controls the position. Given a training set, the overall
response of a WNN can be arithmetically written as

s (x) = W0 +
Np∑

i=1

Wiψi

(
x̄ − t̄

ā

)

(2.16)

where NP is the number of wavelet nodes in the hidden layer and wi is the synaptic
weight for each hidden node in the WNN. The dilatation and translation vectors have
size equal to the number of variables in the estimated function. Such a network can
be used to approximate any function

f (x) = s (x) + ε (2.17)

where s is a regression function and the error term ε is a zero-mean random variable
of disturbance.

One of the well known approaches for constructing WNN [30] requires the gen-
eration of a wavelet library, W. This library is composed of discretely dilatated and
translated versions of mother wavelet function, ψ (x). The next step is selecting the
best wavelets based on the training data from this library to build the regression. This
approach for building WNN becomes prohibitively computationally expensive when
the estimated function has a large number of variables. This is due to exponential
increase of the size of the wavelet library W with the dimension of the estimated
function. Searching such a huge library one-by-one is computationally redundant.
Therefore, a stochastic approach should be used for searching the best wavelets for
the WNN hidden nodes [31].

2.4 Hybrid Methods for Response Surfaces

In this section we will present some hybrid response surface methods. The accuracy of
these methods, along with their comparison against other strategies, will be presented
in the next section.
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2.4.1 Fittest Polynomial Radial Basis Function (FP-RBF) [28]

The FP-RBF hybrid method [27] consists of choosing the best possible combination
of RBF, polynomial order, variable scaling, and shape parameter for a given problem.

In the work of Colaço et al. [27], the polynomial part of Eq. (2.12) was taken as

pk (xi) = xk
i (2.18)

and the radial basis functions were selected among the following

Multiquadrics: φ
(∣
∣xi − xj

∣
∣
) =

√(
xi − xj

)2 + c2
j (2.19)

Gaussian: φ
(∣
∣xi − xj

∣
∣
) = exp

[
−c2

j

(
xi − xj

)2
]

(2.20)

Squared multiquadrics: φ
(∣
∣xi − xj

∣
∣
) = (

xi − xj
)2 + c2

j (2.21)

Cubical multiquadrics: φ
(∣
∣xi − xj

∣
∣
) =

[√(
xi − xj

)2 + c2
j

]3

(2.22)

Some tests were made using the cross-product polynomials (xixjxk…), but the
improvements on the results were found out to be irrelevant [27]. Also, other types
of RBFs were previously considered by the authors [27], but no improvement in the
accuracy of the interpolation was observed.

Therefore, a polynomial of order M is added to the radial basis function. After
inspecting Eqs. (2.12)– (2.14), (2.18), one can easily check that the final linear system
has [(N+M*L)+1] equations that can be solved by any traditional technique.

In the technique presented by Colaco et al. [27], initially all variables have to be
normalized. Then, the initial guess for the shape parameter c is set as the minimum
distance between two points in the training set of variables. Shape parameter, c,
is then increased until the best solution is obtained. Also, different scaling of the
variables are tried to give the best fit for the function. The choice of which polynomial
order, which shape parameter and scaling of the variables, and which RBF are the
best for fitting a specific data set was made based on a cross-validation procedure.
Let us suppose that we have PTR training points, which are the locations in the
multidimensional space where the values of the function are known. Such set of
training points is equally subdivided into two subsets of points, named PTR1 and
PTR2. The Eqs. (2.12)– (2.14) are solved for a polynomial of order zero and for one
of the RBF expression given by Eqs. (2.19)– (2.22) using the subset PTR1. Then, the
value of the interpolated function is checked against the known values of the function
that are in the subset PTR2. The error is recorded as

RMSPTR1,M=0,RBF1 =
PTR2∑

i=1

[
s(xi) − f (xi)

]2 (2.23)
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Then, the same procedure is repeated by using the subset PTR2 to solve the
equations and the subset PTR1 to calculate the error as

RMSPTR2,M=0,RBF1 =
PTR1∑

i=1

[
s(xi) − f (xi)

]2 (2.24)

Finally, the total error for the polynomial of order zero using one of the RBF
expressions given by Eqs. (2.19)– (2.22) is obtained as

RMSM=0,RBF1 = √
RMSPTR1,m=0,RBF1 + RMSPTR2,m=0,RBF1 (2.25)

This procedure is repeated for all polynomial orders, up to M = 10 and for each
one of the RBF expressions given by Eqs. (2.19)– (2.22). The best combination is the
one that returns the lowest value of the RMS error. Although this cross-validation
procedure is quite simple, it worked very well for practical test cases including opti-
mization of chemical compositions of alloys [32, 33] ,maghnetohydrodynamic flow
in cavities [34], energy/exergy optimization [35, 36] and Bayesian inverse problems
in heat transfer [37].

2.4.2 Kriging Approximation with Fittest Polynomial Radial
Basis Function (KRG-FP-RBF)

A new method is proposed in this paper, which combines the very high accuracy of
the FP-RBF approximation with the stochastic appealing of the Kriging method. The
idea is conceptually simple, although the computational implementation requires
some effort. Results presented in this paper are still preliminary and need further
investigation.

Referring to Jones et al. [23], the Kriging approximation given by Eq. (2.6) is
so powerful that the base function g(x) can be written as the mean of the stochastic
process, μ. However, we propose to extend even more such accuracy by using the FP-
RBF approximation as a base function for the Kriging process. In other words, once
the FP-RBF method has been adjusted and fitted to a particular set of data, we use this
approximation as the g(x) function in the Kriging model given by Eq. (2.6). Inserting
the FP-RBF definition given by Eq. (2.12) into the Kriging model of Eq. (2.6), we
have the following stochastic process model for the function as

f
(

xi
)

= a s
(

xi
)

+ εi (2.26)

Notice that s(x) has to be built using the FP-RBF model explained earlier. By
doing this, we are assuming that ε is the FP-RBF approximation error, which has
(by hypothesis) zero mean and variance σ 2. Once the approximation was built by
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the FP-RBF method, the Kriging approximation is used to model such error in a
stochastic way. Then, following Sacks et al. [21, 22] derivations, adapted to our
nomenclature, we can obtain the best linear unbiased predictor at a new point x*
as (mathematical details are omitted for lack of space, but the interested readers are
urged to read publications by Sacks et al. [21, 22] for all details of this derivation)

s̃
(
x∗) = a s

(
x∗) + rT (

x∗) R−1 [F − a S] (2.27)

where F is the vector of the exact function evaluated at the training points locations
and S is vector of FP-RBF approximation at these same locations. Notice that if
a = 1, and F=S, then the Kriging model reduces to the FP-RBF model. Thus, the
second term gives some measure of the error between the real data and the FP-RBF
approximation. In this equation, R is the full correlation matrix between the training
points, given by Eq. (2.8) and r is the correlation vector between the evaluation point
x* and the training points, also given by Eq. (2.8). The parameters θ and P, appearing
in Eq. (2.7) can be obtained by minimizing [(detR)1/mσ 2] where m is the number
of training points [21, 22]. In this paper, such minimization was performed by the
Particle Swarm method. The other parameters appearing in these equations are given
as [21, 22]

σ 2 = 1

m
(F − a S)T R−1 (F − a S) (2.28)

a =
(

ST R−1S
)−1

ST R−1F (2.29)

where Eq. (2.28) gives the maximum likelihood estimation of the variance and
Eq. (2.29) is the generalized least-squares estimate [21, 22] of a. Thus, this pro-
cedure uses the Kriging method to model the approximation error of the FP-RBF
approximation.

2.4.3 Hybrid Self Organizing Model With RBF [20]

The best known application of self-organizing method is in the commercial software
IOSO [38] which uses quadratic local fitting polynomials. A more general idea is
to use the self-organizing method given by Eq. (2.4) to choose the best local fitting
functions (linear, quadratic, cubic or quadratic) to generate a response surface thus
capturing the major topology of the response multi-dimensional hyper-surface. How-
ever, this metamodel does not force the hyper-surface to pass exactly through the
provided support points. The difference between the actual values of the objective
function at the support points and the fitted values at the support points represents a
much less challenging topology which it then fitted using RBF method [19]. Such a
combined response surface fitting method is much more robust and accurate (Figs. 2.3
and 2.4) than either of the separate methods used in this hybrid [19]. This hybrid
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Fig. 2.3 Self-organizing method using quadratic local polynomials applied to a medium size data
set; model accuracy [19]

method is simple to implement, although computationally costly, where computing
cost is mainly due to the self-organizing method. This suggests a need for research
into reducing the computing cost of the self-organizing method by using more effi-
cient pruning algorithms to eliminate those branches in the genetic tree that are
terminating.

2.4.4 Genetic Algorithm Based Wavelet Neural Network
(HYBWNN) [31, 32]

Another hybrid method used for fitting high dimensional functions is the Genetic
Algorithm Wavelet Based Neural Network (WNN) model presented by Sahoo and
Dulikravich [31] with 5 neural subnets. Typically, the mother wavelet used in the
WNN is Mexican Hat wavelet given by

ψ (x) =
(

2√
3
π−1/4

)(
1 − x2

)
exp

(−x2

2

)

(2.30)

Gaussian wavelets were also used along with this mother wavelet to construct
the WNN [31]. For each node of the WNN, genetic algorithm was used to search
the best Mexican Hat wavelet and the best Gaussian wavelet. The one having a
lower norm of residue after performing multiple linear regression was selected and
used in the WNN architecture. The concept of binary genetic algorithm was used to
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Fig. 2.4 Self-organizing method followed by RBF used on residuals applied to a medium size data
set; model accuracy [19]

t1 a1 t2 a2

1 0 1 1 1 1 1 1 1 1 0 1 0 0 0 1 

Fig. 2.5 Binary string representation of a 2-D wavelet

search for the wavelets required for the hidden nodes in the WNN. The dilatation
and translation factors (binary representation) in Eq. (2.16) for each dimension of
the wavelet were concatenated to form the chromosomes in the GA population. A
typical representation of a wavelet in 2-D function estimation is shown in Fig. 2.5.

It has two dilatation factors specifying the scaling and two translation factors
specifying the position of the wavelet in each dimension. The variables space is
normalized so the translation factors can vary within [−1, 1] and the dilatation factors
can vary within [0.1, 0.8]. The fitness for selecting the wavelet was defined as the
norm of the residue obtained by doing multiple linear regression of the values given
by the wavelet transform of the training data versus the real function values. The
GA was run for a sufficient number of generations to select a wavelet. Subsequent
wavelets were searched by the GA based on the residue obtained in former step set
as target values. This approach was unable to search for proper wavelets when the
number of variables in the estimated function went beyond ten. The chromosome
length for such functions was huge and the binary GA became inefficient. Therefore,
a real numbers GA search was proposed where the wavelet is represented as a string
of real number instead of a binary string. The range for searching for the values of
dilation factors was relaxed to [0.005, 5.00]. This gave more flexibility to the GA for
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a1 t1 a2 t2 a3 t3 a4 t4

2.8424 0.25483 2.4672 0.000922 1.7407 0.98521 2.5848 -0.61214

Fig. 2.6 Real string representation of a 4-D wavelet

searching appropriate wavelets [31]. A typical example of a wavelet representation
in 4-D function estimation is shown in Fig. 2.6.

The fitness assignment was similar to the previous method. In addition, whole
arithmetic crossover and floating point mutation operators were used. Separate GAs
were run serially [36] for finding the activation function in each node of the WNN
architecture.

2.5 Comparison Among Different Response Surface Algorithms

Performance of different hybrid response surface algorithms was evaluated on data
sets containing either scarce (3L), small (10L), medium (30L) or large (50L) number
of points, where L designates the dimensionality of the problem [39, 40].

2.5.1 Fittest Polynomial RBF Versus Hybrid Wavelet Neural
Network [42]

In order to compare the accuracy of the FP-RBF [27] model against the Hybrid
Wavelet Neural Network (WNN) [31], 13 test cases were used, representing linear
and non-linear problems with up to 16 variables. These test cases, defined as problems
1–13 were selected by Jin et al. [41] in a comparative study among different kinds
of meta-models. Such problems were selected from a collection of 395 problems
(actually 296 test cases), proposed by Hock and Schittkowski [42] and Schittkowski
[43]. For the other comparison presented in this paper, all 296 test cases will be
presented. The reason is the very high computational cost associated with the WNN
method that restricted us to these 13 test cases initially. Also, for these test cases,
the polynomial degree of the FP-RBF model was fixed in a pre-specified value, and
the shape parameter was set to 1/N, where N is the number of training points. For the
other sections of this paper, those two parameters were allowed to vary according to
the cross-validation procedure defined previously.

The first 12 problems do not have random errors added to the original function,
while the problem no. 13 has a noise added with the following form

ε (x1, x2) = σ r (2.31)
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where σ is the standard deviation and r is a random number with Gaussian distribution
and zero mean.

For accuracy, the goodness of fit obtained from “training” data is not sufficient to
assess the accuracy of newly predicted points. For this reason, additional confirma-
tion samples are used to verify the accuracy of the metamodels. To provide a more
complete picture of metamodel accuracy, two different metrics are used: R Square,
and Relative Average Absolute Error (RAAE) [41].

(a) R Square (R2)

R2 = 1 −
∑n

i=1

(
yi − ŷi

)2

∑n
i=1 (yi − ȳ)2 = 1 − MSE

variance
(2.32)

where ŷi is the corresponding predicted value for the observed value yi; ȳ is the
mean of the observed values. While MSE (Mean Square Error) represents the
departure of the metamodel from the real simulation model, the variance captures
how irregular the problem is. The larger the value of R2, the more accurate the
metamodel.

(b) Relative Average Absolute Error (RAAE)

RAAE =
∑n

i=1

∣
∣yi − ŷi

∣
∣

n∗STD
(2.33)

where STD stands for standard deviation. The smaller the value of RAAE, the
more accurate the metamodel.

The FP-RBF model presented here was compared against the WNN method for the
13 selected analytical test cases. In order to check the accuracy of the metamodel
when different samples were employed, three different sets of training points were
used, as suggested by Jin et al. [41]. Table 2.1 gives the number of training points,
testing points, minimum and maximum value of each test function, as well as the
standard deviation and average value of each test function.

Initially, the results obtained with the FP-RBF model, with a polynomial of order
10 using a large number of training points and the results obtained with a polynomial
of order 1 for small and scarce sets of training points were compared with the results
obtained by using WNN method [44]. Only problems no. 1–5 were tested for a scarce
set of training points, as suggested by Jin et al. [41].

Figure 2.7 demonstrates that when considering R2 metric, for large and small sets
of training points, the RBF was better than the WNN, while for a scarce number of
training points, the WNN was more accurate. On the contrary, it appears that when
considering RAAE metric, for large and small sets of training points, the WNN was
better than the RBF, while for a scarce number of training points, the RBF was more
accurate.
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Fig. 2.7 R2 and RAAE metrics for WNN and FP-RBF

Fig. 2.8 R2 results with WNN for a large number of variables (WNN with five subnets)

However, one of the major problems with WNN is its rapidly decreasing accuracy
with increasing dimensionality of the problem. Figure 2.8 demonstrates the results
for test problem no. 2 when using the WNN. One can see that the accuracy, given
by the R2 metric, decreases rapidly when using 100 training points. Also, for 400
training points, the R2 goes to a negative value when using more than 100 variables.
Colaço et al. [39] demonstrated that the RBF model was able to maintain a very high
accuracy even when the number of variables increased to 500.

Figure 2.9a shows the computational time required to run this test case using the
FP-RBF model. The code was written in Fortran 90 and the CPU was an Intel T2300
1.66 Ghz (Centrino Duo) with 1 Gb RAM. Figure 2.9b shows the computational time
required by the WNN where one can notice the extremely high computational cost.
The code for the WNN was written in Matlab 7.0.4 and the CPU was an Intel T2300
1.66 Ghz (Centrino Duo) with 1 Gb RAM. Some improvement in the performance
could be expected by converting this code to Fortran90 or C++. However, the compu-
tational cost for the WNN for a problem with 300 variables and 400 training points,
even with different programming languages (Matlab and Fortran90) was approxi-
mately 6,000 times greater than for the RBF.
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Fig. 2.9 Computing time for a large number of variables: (a) RBF with M=1, (b) WNN with five
subnets
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Fig. 2.10 Number of variables for each problem considered in the Schittkowski suite of analytical
test cases [42, 43]

Table 2.2 Number of training
and testing points

Number of training points Number of testing points

(L) (L)

Scarce set 3 300

Small set 10 1,000

2.5.2 Fittest Polynomial RBF Versus Kriging

In this section we will compare the accuracy and computing time requirement of the
FP-RBF model against the one given by the Kriging model proposed by Jones et al.
[23]. From now on, 296 test cases will be used, representing linear and non-linear
analytical problems with up to 100 variables. These test problems were selected from
a collection of 395 (actually 296) test cases proposed by Hock and Schittkowski [42]
and Schittkowski [43]. Figure 2.10 shows the number of variables of each test case
analyzed. To verify the accuracy of the interpolation over different number of training
points, two sets were defined. Also, the number of testing points varied, according to
the number of training points. Table 2.2 presents these two sets, based on the number
of dimensions (variables) L of the problem.

Initially, Fig. 2.11 presents the values of R2 and RAAE metrices for the FP-RBF
model, considering a scarce set of data. As one can see, most of the test cases
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Fig. 2.11 Metrics for the FP-RBF method (scarce set of data)

Fig. 2.12 Metrics for the FP-RBF method (small set of data)

Fig. 2.13 CPU time for the FP-RBF method. a scarce set of data, b small set of data

have high values of R2 and low values of RAAE, indicating a good approximation,
even for such small number of training points. When the number of training points is
increased from scarce to small, results look better, as one can notice from the analysis
of Fig. 2.12 for the R2 and RAAE metrics.

Figure 2.13 shows the CPU time for FP-RBF method. All test cases ran on an
Intel i7 2GHz with 4 Gb of RAM (Windows XP emulated under Mac OS X 10.8.4)
and codes were written in Fortran 90. Besides running on different processors, CPU
times in these test cases are a little higher than in previous one, since now we are also
optimizing the shape parameter, the RBF polynomial degree and the scaling of the
variables, as discussed before. Notice that computing time increased only slightly by
going from a scarce data set to a small data set.

Figure 2.14 shows difference of R2 and RAAE metrics between the Kriging
method and the FP-RBF model for 296 test-cases studied in this section, using the
scarce set of data. Since higher R2 and lower RAAE values indicate a good accuracy,
in these graphics, negative values of Delta R2 and positive values of RAAE indicate
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Fig. 2.14 Difference of the R2 and RAAE metrices between the Kriging model proposed by Jones
et al. [23] and FP-RBF methods for the scarce set of data (negative values of Delta R2 and positive
values of Delta RAAE indicates superiority of the FP-RBF method)

Fig. 2.15 Difference of the R2 and RAAE metrics between the Kriging model proposed by Jones
et al. [23] and FP-RBF methods for the small set of data (negative values of Delta R2 and positive
values of Delta RAAE indicates superiority of the FP-RBF method)

the superiority of the FP-RBF method. As a general trend, the FP-RBF method per-
forms better than the original Kriging method, given by Eq. (2.9), for most of the test
cases, although there are some functions were Kriging has a better accuracy. For the
small set of data, such comparison is presented in Fig. 2.15, where one can notice
the superiority of the FP-RBF method over Kriging.

Figure 2.16 shows the CPU time ratio between Kriging and FP-RBF for scarce
and small sets of data. In this figure, values greater than one indicate how many
times the Kriging is slower than the FP-RBF. As a general trend, for the scarce set
of data, Kriging is one order of magnitude slower than the FP-RBF, whereas for the
small set of data it is two orders of magnitude slower. Two factors contribute for
the high computing cost of Kriging: (i) the need to invert the covariance matrix R
in Eqs. (2.27)– (2.29) and the minimization of [(detR)1/mσ 2] by the Particle Swarm
method. We intend to investigate ways to reduce this computational cost, since Krig-
ing seems to have some advantage over FP-RBF model when applied to certain
functions, as shown above. It is also worth noting that the CPU time ratio is almost
constant over all test problems. In fact, going from test function number 200–295 the
CPU time ratio decreases, when the number of dimensions of the problems varies
considerably, as one can check from Figs. 2.10 and 2.16.
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Fig. 2.16 CPU time ratio between the Kriging model proposed by Jones et al. [23] and FP-RBF
methods for the scarce and small sets of data (values higher than one indicate the Kriging method
is more expensive than FP-RBF)

Fig. 2.17 Difference of the R2 and RAAE metrics between the HYBSORSM and FP-RBF methods
for the scarce sets of data (negative values of Delta R2 and positive values of Delta RAAE indicates
superiority of the FP-RBF method)

Fig. 2.18 Difference of the R2 and RAAE metrics between the HYBSORSM and FP-RBF methods
for the small sets of data (negative values of Delta R2 and positive values of Delta RAAE indicates
superiority of the FP-RBF method)

2.5.3 Fittest Polynomial RBF Versus Hybrid Self Organizing
Response Surface Method—HYBSORSM

Results in Fig. 2.17 indicate better accuracy of the FP-RBF method over HYBSORM.
From the analysis of this figure it is clear the superiority of FP-RBF model. Compar-
ing Fig. 2.17 with Fig. 2.14, it is evident that for this set of data, the Kriging model
is also superior to HYBSORSM. However, when the small set of data is used (see
Fig. 2.18) the HYBSORM method improves its performance, but is still outperformed
by the FP-RSM method. Comparing now Figs. 2.15 and 2.18, the HYBSORM has a
better performance than the Kriging model for the small sets of data.
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Fig. 2.19 CPU time ratio between the HYBSORSM and FP-RBF methods for the scarce and small
sets of data (values higher than one indicate the method is more expensive than FP-RBF)

Fig. 2.20 Difference of the R2 and RAAE metrics between the KRG-FP-RBF and FP-RBF methods
for the scarce sets of data (negative values of Delta R2 and positive values of Delta RAAE indicates
superiority of the FP-RBF method)

Figure 2.19 shows some interesting results regarding the CPU time ratio between
HYBSORM and FP-RSM model. In some cases, the first method is faster then the
FP-RBF model, whereas it is slower for other ones. Comparing Figs. 2.10 and 2.19,
it is interesting to notice that the CPU time ratio follows the same behaviour as the
number of variables. Thus, opposite to the Kriging model, where the CPU time was
almost constant with the number of variables, the HYBSORSM method requires
more computational effort for problems where the number of dimensions is high.

2.5.4 Fittest Polynomial RBF Versus Kriging Approximation with
Fittest Polynomial Radial Basis Function—KRG-FP-RBF

This section compares the results of the FP-RBF method with the ones obtained
by the combined (hybrid) KRG-FP-RBF method. Figures 2.20 and 2.21 show Delta
R2 and Delta RAAE for the scarce and small sets of data. In general, the hybrid
KRG-FP-RBF method does not modify the accuracy of the FP-RBF method, except
in a few cases. Although for some cases the performance decreases, for most of the
cases where the hybrid KRG-FP-RBF method changes the FP-RBF performance, it
improves the solution. These results are still in a very early stage of development
and we believe this approach might improve the overall performance of the FP-RBF
method if some better strategy to minimize [(detR)1/mσ 2] is used.
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Fig. 2.21 Difference of the R2 and RAAE metrics between the KRG-FP-RBF and FP-RBF methods
for the small set of data (negative values of Delta R2 and positive values of Delta RAAE indicates
superiority of the FP-RBF method)

Fig. 2.22 CPU time ratio between the KRG-FP-RBF and FP-RBF methods for the scarce and small
sets of data (values higher than one indicate the method is more expensive than FP-RBF)

Finally, Fig. 2.22 shows the CPU time ratio between the KRG-FP-RBF method
and the FP-RBF method. This ratio can be reduced if better optimization procedures
are used in the Kriging part of the code.

2.6 Conclusions

A number of concepts for constructing hybrid optimization algorithms with focus on
automatic switching logic have been described. Also, a number of multi-dimensional
response surface fitting algorithms and their hybrids have been described and their
performances compared for scarce, small and medium data sets. Fittest polyno-
mial radial basis function (FP-RBF) method appears to offer the best overall perfor-
mance concerning high accuracy of fitting arbitrary data sets and low computing time
requirements. Possible hybridization of Kriging and FP-RBF was also thoroughly
tested showing its promises as far as increased robustness of such hybrids, although
at significant increase in the computing time.
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