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ESTIMATION OF A LOCATION- AND TIME-DEPENDENT
HIGH-MAGNITUDE HEAT FLUX IN A HEAT
CONDUCTION PROBLEM USING THE KALMAN FILTER
AND THE APPROXIMATION ERROR MODEL

César C. Pacheco1, Helcio R. B. Orlande1,
Marcelo J. Colaço1, and George S. Dulikravich2

1Department of Mechanical Engineering, Politecnica=COPPE, Federal
University of Rio de Janeiro – UFRJ, Rio de Janeiro, RJ, Brazil
2Department of Mechanical and Materials Engineering, Florida International
University - MAIDROC Laboratory, Miami, USA

This paper aims to estimate a location- and time-dependent high-magnitude heat flux in a

heat conduction problem. The heat flux is applied on a small region of a surface of a flat

plate, while transient temperature measurements are taken on the opposite surface. This

inverse problem is solved using the Kalman filter and a reduced forward model, obtained

by simplifications of a three-dimensional and nonlinear heat conduction problem. To deal

with the modeling errors of this reduced model, the Approximation Error Model is used.

The results show that excellent estimates can be obtained at feasible computational times.

INTRODUCTION

In recent years, modern and reliable available techniques for measuring tem-
perature and heat flux have been developed. However, such measurements can still
be very challenging, especially when involving fast transients and=or when the heat
flux is imposed on small spots, thus resulting in large temperature gradients [1].
Other situations presenting a considerable level of difficulty involve complex geome-
tries or hazardous environments, which might make direct measurements of heat flux
impractical [2]. In such situations, surface heat fluxes need to be indirectly measured
through the solution of an inverse problem, by using transient temperature measure-
ments taken at other regions of the body.

In this article, a location- and time-dependent high-magnitude heat flux,
applied on a surface of a flat plate, is estimated using transient temperature measure-
ments taken on the opposite surface of the plate. The imposed heat flux could be ori-
ginated by a moving high-power energy beam or modern electronic chips. Similar
papers that addressed this problem using different techniques can be found in the
literature, such as the Markov Chain Monte Carlo Method [1], the LSQR method
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[3], Laplace’s Transform [4], and the DCT=Laplace Method [5]. Other inverse heat
transfer problems of interest can be found in references [6–14]. The main contri-
bution of this paper is to show that the nonlinear inverse problem can be solved
by combining the classical Kalman Filter (KF) [15–19], a Lumped System Analysis
[20], and the Approximation Error Model (AEM) [1, 21, 22]. The KF is capable of
estimating the instantaneous state of a linear dynamic system perturbed by Gaussian
white noise, using measurements linearly related to this state and also corrupted by
Gaussian white noise [17]. To provide a linear dynamic system to the KF, a Lumped

NOMENCLATURE

a length of the plate, m

b width of the plate, m

c thickness of the plate, m

C volumetric heat capacity of the

complete model, J=m3K

C� volumetric heat capacity of the reduced

model, J=m3K

F state vector evolution matrix

H observation matrix

I number of volumes on the grid in the x

direction

J number of volumes on the grid in the y

direction

kT thermal conductivity of the complete

model, W=mK

k�T thermal conductivity of the reduced

model, W=mK

K Kalman gain matrix

M number of approximation error samples

Pn posterior estimate of the error

covariance matrix

Pnjn� 1 prior estimate of the error covariance

matrix

q heat flux, W=m2

q0 heat flux constant value for the

piecewise function, W=m2

q vector of heat flux, W=m2

Q covariance matrix of the evolution

model noise

R covariance matrix of the observation

model noise

Tc temperature of the complete model, K

T mean temperature in the z direction, K

T vector of mean temperatures in the z

direction, K

T� reference temperature, K

T0 initial temperature, K

t time, s

t1 starting time for the heat flux

application, s

v observation model noise vector

w evolution model noise vector

x spatial independent variable, m

x1 lower boundary for the proposed heat

flux in the x direction, m

x2 upper boundary for the proposed heat

flux in the x direction, m

x state vectorbxxn posterior estimate of the state vectorbxxnjn�1 prior estimate of the state vector

y spatial independent variable, m

y1 lower boundary for the proposed heat

flux in the y direction, m

y2 upper boundary for the proposed heat

flux in the y direction, m

y observation vector

z spatial independent variable, m

Dt time step, s

Dx finite-volume grid spacing in the x

direction, m

Dy finite-volume grid spacing in the y

direction, m

Dz finite-volume grid spacing in the z

direction, m

e approximation error of the state vector

f approximation error of the observation

vector

p probability density function

rq standard deviation for the random walk

process, W=m2

rt standard deviation of the mean

temperatures on the reduced model, K

ry standard deviation of the simulated

measurements, K

x standard Gaussian random vector

AEM Approximation Error Model

CEM Complete Error Model

CLSA Classical Lumped System Analysis

EEM Enhanced Error Model

ILSA Improved Lumped System Analysis

KF Kalman Filter

MAP Maximum A Posteriori
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System Analysis was used in this work to simplify the original nonlinear
three-dimensional model by transforming it into a two-dimensional linear problem.
The AEM then allows one to quantify the modeling errors of the reduced model in
comparison to the original one, in order to improve the accuracy of the estimates
[21]. Several studies have been carried out, showing the efficacy of the Lumped Sys-
tem Analysis [20, 23] and of the KF [15, 17–19]. Similarly for the AEM, papers can
be found in the literature where such an approach has been used with the Metrop-
olis–Hastings algorithm, providing excellent estimates at reduced computational
costs [1, 24]. Recently, it has been shown that the classical KF can be used in con-
junction with the AEM, by redefining the evolution–observation models to account
for the state and observation approximation errors [22]. The approach proposed in
this paper is capable of sequentially estimating a boundary heat flux at low computa-
tional costs, as described next.

FORWARD PROBLEM

The physical problem considered here involves the application of a
high-magnitude heat flux at the top surface of a flat plate, while temperature mea-
surements are taken at its bottom surface, as shown in Figure 1. The dimensions
of the flat plate are given by Table 1. Since the focus is on fast transients that take
place at short times, the bottom and lateral surfaces are considered as thermally insu-
lated. The heat flux is location- and time dependent and the initial temperature dis-
tribution is considered to be uniform. Based on these assumptions, the resulting
mathematical model, named here as complete model, is given by [23]

Figure 1. Geometry of the physical problem.

Table 1. Dimensions of the flat plate

Dimension Value [mm]

a 120

b 120

c 3

1200 C. C. PACHECO ET AL.
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CðTcÞ
qTc

qt
¼ q

qx
kTðTcÞ

qTc

qx

� �
þ q
qy

kTðTcÞ
qTc

qy

� �
þ q
qz

kTðTcÞ
qTc

qz

� �
in 0 < x < a; 0 < y < b; 0 < z < c; t > 0 ð1:aÞ

qTc

qx
¼ 0 at x ¼ 0 and x ¼ a; 0 < y < b; 0 < z < c; t > 0 ð1:bÞ

qTc

qy
¼ 0 at y ¼ 0 and y ¼ b; 0 < x < a; 0 < z < c; t > 0 ð1:cÞ

qTc

qz
¼ 0 at z ¼ 0; 0 < x < a; 0 < y < b; t > 0 ð1:dÞ

kT ðTcÞ
qTc

qz
¼ qðx; y; tÞ at z ¼ c; 0 < x < a; 0 < y < b; t > 0 ð1:eÞ

Tc ¼ T0 at t ¼ 0; in 0 � x � a; 0 � y � b; 0 � z � c ð1:fÞ

The selected material for this work is stainless steel. The thermal properties are
modeled as functions of temperature in the form [25]

CðTÞ ¼ 1324:75T þ 3557900 ½J=m3K� ð2:aÞ

kT ðTÞ ¼ 12:45þ 0:014 T þ 2:517� 10�6T2 ½W=mK� ð2:bÞ

The proposed inverse problem cannot be solved with KF, since the complete
model is nonlinear. Regarding other techniques, a similar inverse problem solved
with the complete model, using the Metropolis–Hastings algorithm in a time range
of 2.0 seconds with Dx¼Dy¼ 5 mm, Dz¼ 0.5 mm, Dt¼ 0.01 s, and 105 states of
the Markov chain, led to eight days of computational time [1]. In order to reduce
this extremely high computational cost, a simpler model should be considered.
The reduced model used in this work was then obtained by applying the steps
described next [1].

1st Step: Linearization of the Complete Model

The first step involves the linearization of problem (1.a–f) by substituting the
temperature-dependent thermal properties by constant thermal properties C� and
k�T , which are obtained by evaluating Eqs. (2.a) and (2.b) at a reference temperature
of T� ¼ 600 K [1], that is,

C� ¼ CðT�Þ ð3:aÞ
k�T ¼ kTðT�Þ ð3:bÞ

ESTIMATION OF HEAT FLUX IN A HEAT CONDUCTION PROBLEM 1201
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2nd Step: Lowering of the Number of Dimensions

The discrete solution of a three-dimensional problem generally leads to large
memory requirements and computational costs. Thus, methodologies for appropri-
ately lowering the number of dimensions of the forward problem are desired. One
possible approach for the present case is to perform the analysis in terms of the mean
temperature in the z direction, which is defined as

Tðx; y; tÞ ¼ 1

c

Zc

0

Tðx; y; z; tÞdz ð4Þ

The application of the operator that defines this mean temperature to the
linearized version of Eq. (1.a) is straightforward. The resulting expression for the
diffusion term in the z direction is the difference of the heat fluxes at the z¼ c
and z¼ 0 surfaces of the plate, that is,

1

c

Zc

0

q
qz

k�T
qT

qz

� �
dz ¼ qðx; y; tÞ

c
ð5Þ

The operator of mean temperature in the z direction is also applied to the lin-
earized versions of Eqs. (1.b), (1.c), and (1.f). The final result is the following linear
and two-dimensional reduced model:

C�
qTðx; y; tÞ

qt
¼ k�T

q2T

qx2
þ k�T

q2T

qy2
þ qðx; y; tÞ

c
in 0 < x < a; 0 < y < b; t > 0

ð6:aÞ

qT

qx
¼ 0 at x ¼ 0 and x ¼ a; 0 < y < b; t > 0 ð6:bÞ

qT

qy
¼ 0 at y ¼ 0 and y ¼ b; 0 < x < a; t > 0 ð6:cÞ

T ¼ T0 at t ¼ 0; in 0 � x � a; 0 � y � b ð6:dÞ

3rd Step: The Lumped System Analysis

Compared with the complete model, the reduced model is much simpler and its
solution can be found at much lower computational costs. Moreover, its use as a for-
ward model allows the application of the KF to solve the inverse problem. However,
the solution of this mathematical problem provides the mean temperature in the z
direction instead of the temperatures at the plate surfaces. Such temperatures can
be approximately related through the Lumped System Analysis [20]. In the Classical
Lumped System Analysis (CLSA), the temperature gradients in the z direction are
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neglected. Thus, the temperature at the plate surfaces can be approximated by the
mean temperature in the z direction, obtained by solving the reduced model. In
the so-called Improved Lumped System Analysis (ILSA), the temperature gradient
in the z direction is not neglected, but approximately taken into account using the
following Hermite’s formulas for integrals [20]:

Zh

0

yðxÞdx ¼ h

2
yð0Þ þ yðhÞ½ � þOðh3Þ ð7:aÞ

Zh

0

yðxÞdx ¼ h

2
yð0Þ þ yðhÞ½ � þ h2

12

dy

dx

����
x¼0

� dy

dx

����
x¼h

� �
þOðh5Þ ð7:bÞ

Equation (7.a) is used to approximate the integral of the temperature gradient
in the z direction, while Eq. (7.b) is used to approximate the mean temperature in the
z direction, thus leading to the following approximations for the temperatures at the
z¼ 0 and z¼ c surfaces of the plate in terms of the solution of the reduced model [1]:

Tðx; y; 0; tÞ � Tðx; y; tÞ � c

6k�T
qðx; y; tÞ ð8:aÞ

Tðx; y; c; tÞ � Tðx; y; tÞ þ c

3k�T
qðx; y; tÞ ð8:bÞ

INVERSE PROBLEM

The proposed inverse problem of estimating the unsteady heat flux distribution
at z¼ c is solved with a Bayesian filter, where the probability distribution of the
unknown state vector xn, given the set of observations y0:n, is built with Bayes’ the-
orem. The complete characterization of this posterior probability distribution func-
tion allows for statistical inference about the unknowns [15].

The KF is the most widely used Bayesian filtering method [21], but it can be
applied only to linear problems with Gaussian joint probability function p(x, y),
in the form of an evolution–observation model such as

xn ¼ Fnxn�1 þ wn ð9:aÞ

yn ¼ Hnxn þ vn ð9:bÞ

where wn and vn are Gaussian random vectors with zero means and covariance
matrices Qn and Rn, respectively.

The state vector xn is presented in Eq. (10), where Tn contains the values of
mean temperature in the z direction at the center of each control volume of the
numerical grid along the (x,y) plane, while qn contains the heat flux values at
the same locations, at each time tn. The observations yn used for the estimation of
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the state vector xn are given by the measured temperatures at the surface z¼ 0, at the

center of the same control volumes used for Tn and qn. In the example of the grid
illustrated in Figure 2, containing I volumes in the x direction and J volumes in
the y direction, the total number of unknowns in xn is thus 2IJ.

xn ¼ Tn

qn

� �
ð10Þ

The Fn matrix, with size 2IJ� 2IJ, is built by joining four smaller matrices of
size IJ� IJ, that is,

Fn ¼
An Bn

0 I

� �
ð11Þ

where An and Bn are matrices that result from the discretization of the reduced model.
While An accounts for heat diffusion in the domain, the Bn matrix considers the effect
of heat flux on the temperatures. The 0 and I matrices correspond to a matrix with
zero elements and the identity matrix, respectively, both with sizes IJ� IJ. They result
from a random walk model used for the evolution of the heat flux, in the form

qn ¼ qn�1 þ rqx ð12Þ

where x is a Gaussian vector with zero mean and identity covariance matrix, while the
standard deviation of the random walk is denoted by rq.

Figure 2. Example of a finite-volume uniform grid with I volumes in the x direction and J volumes in the y

direction.
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The Hn matrix of the observation model is of size IJ� 2IJ and is also built by
combining two matrices of size IJ� IJ :

Hn ¼ I C½ � ð13Þ

The C matrix depends on whether the measurement model is based on the
CLSA or on the ILSA, that is,

C ¼ 0 for CLSA ð14:aÞ

C ¼ � c

6k�T
I for ILSA ð14:bÞ

The recursive equations of the KF are given by [17–19, 21]:

bxxnjn�1 ¼ Fnbxxn�1 ð15:aÞ

Pnjn�1 ¼ FnPn�1FT
n þQn ð15:bÞ

Kn ¼ Pnjn�1HT
n ðHnPnjn�1HT

n þ RnÞ�1 ð15:cÞ

bxxn ¼ bxxnjn�1 þ Knðyn �Hnbxxnjn�1Þ ð15:dÞ

Pn ¼ ðI� KnHnÞPnjn�1 ð15:eÞ

We note that these equations do not account for modeling errors, for example,
such as those resulting from the use of the reduced model given by Eqs. (6.a–d),
instead of the complete model given by Eqs. (1.a–f). The AEM, developed by Kaipio
and coworkers [21, 22], can be conveniently used within the Bayesian framework, for
taking such errors into account, as described next.

AEM

For the solution of a state estimation problem, extremely accurate evolution
and observation models, which are supposed to perfectly represent the physical
phenomena, would possibly be considered if their numerical solution could be calcu-
lated within a feasible computational time. Here we write such models in terms of
general nonlinear functions, respectively, as [19, 21]

xn ¼ f�ðxn�1; w�nÞ ð16:aÞ

yn ¼ g�ðxn; v�nÞ ð16:bÞ

On the other hand, if the computational times are too large for the use of the
complete models given by Eqs. (16.a,b), such as in this work, a reduced evolution
model, fðxn�1;wnÞ, and a reduced observation model, gðxn; vnÞ, could be considered
for the inverse analysis. The solution of the state estimation problem with the
reduced models is faster, but errors between the complete and reduced models must
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be taken into account in the analysis. By adding and subtracting fðxn�1;wnÞ to Eq.

(16.a) and gðxn; vnÞ to Eq. (16.b), we can write

xn ¼ fðxn�1;wnÞ þ ½f�ðxn�1;w
�
nÞ � fðxn�1;wnÞ� ð17:aÞ

yn ¼ gðxn; vnÞ þ ½g�ðxn; v
�
nÞ � gðxn; vnÞ� ð17:bÞ

or alternatively,

xn ¼ fðxn�1;wnÞ þ en ð18:aÞ

yn ¼ gðxn; vnÞ þ fn ð18:bÞ

where en ¼ ½f�ðxn�1;w
�
nÞ � fðxn�1;wnÞ� and fn ¼ ½g�ðxn; v

�
nÞ � gðxn; vnÞ� are the

approximation errors for the evolution and observations models, respectively [21].
In order to develop the AEM, one can assume, for example, cov(xn,

en)¼ cov(xn, fn)¼ 0, that is, the sought state variables and the approximation errors
are independent, which is usually referred to as the Enhanced Error Model (EEM)
[1, 21, 22]. Based on our previous experience and excellent results obtained for the
solution of a similar inverse problem with the Markov chain Monte Carlo method
[1], the EEM is used in this paper. For the application of the EEM to the linear state
estimation problem of this work, the evolution and observation models given by Eqs.
(18.a,b) are then rewritten as

xn ¼ Fnxn�1 þ wn þ en ð19:aÞ

yn ¼ Hnxn þ vn þ fn ð19:bÞ

and the recursive equations of the KF become [22]

bxxnjn�1 ¼ Fnbxxn�1 þ EðenÞ ð20:aÞ

Pnjn�1 ¼ FnPn�1FT
n þQn þ covðenÞ ð20:bÞ

Kn ¼ Pnjn�1HT
n ½HnPnjn�1HT

n þ covðfnÞ þ Rn��1 ð20:cÞ

bxxn ¼ bxxnjn�1 þ Kn½yn �Hnbxxnjn�1 � EðfnÞ� ð20:dÞ

Pn ¼ ðI� KnHnÞPnjn�1 ð20:eÞ

Therefore, for the proper application of the recursive Eqs. (20.a–e) of the KF
that take into account the modeling errors, the statistics of such errors must be quan-
tified. In this work the approximation error statistics are calculated online, that is,
during the estimation process, by sequentially calculating the system’s state variables
with both the reduced and the complete models. In order to allow the computation
of the statistics, the state variables are sampled from the Gaussian distributions that
result from the application of the KF given by Eq. (20.a–e). The estimators of the
statistics with M samples are obtained from [22]
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EðenÞ ¼
1

M

XM
i¼1

ei;n ð21:aÞ

EðfnÞ ¼
1

M

XM
i¼1

fi;n ð21:bÞ

covðenÞ ¼
1

M � 1

XM
i¼1

½ei;n � EðenÞ�½ei;n � EðenÞ�T ð21:cÞ

covðfnÞ ¼
1

M � 1

XM
i¼1

½fi;n � EðfnÞ�½fi;n � EðfnÞ�
T ð21:dÞ

Note that, in this work, the calculation of the modeling error statistics require
the coupling between the linear two-dimensional reduced model given by Eqs. (6.a–
d) and the nonlinear three-dimensional complete model given by Eqs. (1.a–f). For
the sequential calculation of the approximation error, the complete model is solved
with the implicit finite-volume method on a grid with three volumes in the z direction
at each point (xi, yj), as illustrated by Figure 3. In this case, the mean temperature in
the z direction can be approximated as an arithmetic mean, while the surface tem-
peratures can be approximated using second-order forward and backward finite dif-
ferences, respectively, given by

Tðxi; yj; tÞ ¼
1

3
½T1ðxi; yj; tÞ þ T2ðxi; yj; tÞ þ T3ðxi; yj; tÞ� ð22:aÞ

Figure 3. Discretization in the z direction at a (xi, yj) point of the complete model grid.
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Tðxi; yj; 0; tÞ � Tbottomðxi; yj; tÞ ¼
1

8
½9T1ðxi; yj ; tÞ � T2ðxi; yj; tÞ� ð22:bÞ

Tðxi; yj; c; tÞ � Ttopðxi; yj ; tÞ ¼
1

8
9T3ðxi; yj; tÞ � T2ðxi; yj; tÞ þ

3qðxi; yj; tÞDz

kT ½Ttopðxi; yj ; tÞ�

� �
ð22:cÞ

Equations (22.a–c) are rewritten for the temperature at each of the three points
of the numerical grid in the z direction of the complete model as

T1ðxi; yj ; tÞ ¼
1

99

80Tbottomðxi; yj; tÞ þ 27Tðxi; yj; tÞ � 8Ttopðxi; yj ; tÞ

þ 3qðxi; yj; tÞDz

kT ½Ttopðxi; yj; tÞ�

2
64

3
75 ð23:aÞ

T2ðxi; yj; tÞ ¼
1

11

� 8Tbottomðxi; yj; tÞ þ 27Tðxi; yj; tÞ � 8Ttopðxi; yj; tÞ

þ 3qðxi; yj ; tÞDz

kT ½Ttopðxi; yj; tÞ�

2
64

3
75 ð23:bÞ

T3ðxi; yj; tÞ ¼
1

99

� 8Tbottomðxi; yj; tÞ þ 27Tðxi; yj; tÞ þ 80Ttopðxi; yj; tÞ

� 30qðxi; yj ; tÞDz

kT ½Ttopðxi; yj; tÞ�

2
64

3
75 ð23:cÞ

Hence, the estimated variables Tðxi; yj; tÞ and q(xi, yj, t), obtained with the KF

by using the reduced model at each time instant (see Eqs. 20.a–e), are used to gen-
erate the temperatures across the plate given by Eqs. (23.a–c), which are required
to advance the three-dimensional complete model and then allow the sequential esti-
mation of the approximation error.

RESULTS AND DISCUSSIONS

In this work, the proposed inverse problem was solved using simulated measure-
ments obtained from the solution of the complete model with a reference heat flux, on
a sufficiently fine grid. This was done so that the simulated measurements and the esti-
mates from the inverse problem are obtained using different mathematical models
and different grid sizes, ensuring that these results are not affected by inverse crimes
[21]. The complete model was solved with the implicit scheme of the finite-volume
method, while the reduced model was solved with the explicit scheme of the
finite-volume method [26–28]. The measurement errors were modeled as mutually
uncorrelated and with a constant standard deviation, ry. Thus, to simulate the noisy

data, a Gaussian vector with zero mean and covariance matrix r2
yI was added to the

temperatures obtained from the solution of the complete model, where I stands for
the identity matrix. The measurements were simulated by solving the complete model
on a grid with 768� 768� 64 volumes and a time step of Dt¼ 10�4s.
The inverse problem was solved on a 24� 24 grid with a time step of Dt¼ 10�2s.
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The initial temperature was considered as 300 K. In a real case, surface temperature
measurements could be obtained using modern infrared cameras, with standard devia-
tions of the order of 0.01	C [1]. On the other hand, for challenging the performance of
the approach proposed in this paper, based on the KF and the EEM, a much higher
value for this standard deviation was selected (ry¼ 1	C). The number of samples used
for calculating the approximation errors was M¼ 10. The standard deviation of the
random walk model for the evolution of the heat flux was 5� 104 W=m2, while the
standard deviation of the evolution model for the temperatures was 1	C.

The proposed heat flux to be estimated follows Eq. (24), and its parameters are
given in Table 2. The size of the region of application was chosen so it does not
necessarily coincide with the coarse grid.

qðx; y; tÞ ¼ q0 if x1 � x � x2; y1 � y � y2 and t 
 t1

0 otherwise

�
ð24Þ

The exact values of the temperatures calculated with the complete model at
time t¼ 2.0 s are shown in Figure 4. These values are projected on the coarse grid

Table 2. Parameters used for the simulated heat flux from Eq. (24)

Variable Value

x1 60 mm

x2 72 mm

y1 60 mm

y2 72 mm

q0 107 W=m2

t1 0.4 s

Figure 4. Exact surface temperatures at z¼ 0 and t¼ 2.0 s on the fine grid.
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of the reduced model, resulting in the temperature field shown in Figure 5 at time
t¼ 2.0 s. These projected temperature values corrupted with Gaussian noise are then
used to solve the inverse problem. The exact heat flux at time t¼ 2.0 s is presented for
the fine and coarse grids in Figures 6 and 7, respectively.

Figure 5. Projection of the exact temperatures on the coarse grid used to solve the inverse problem at z¼ 0

and t¼ 2.0 s.

Figure 6. Exact heat flux on the fine grid at time t¼ 2.0 s.
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The results obtained with the CLSA for the temperature field are presented in
Figure 8, while the estimated heat fluxes are presented in Figure 9, at time t¼ 2.0 s.
The time evolutions of temperature and heat flux at the point (x, y, z)¼ (6.25, 6.25,
0.00) cm, which is located inside the region of application of the heat flux where the
greatest variations are expected, are presented by Figures 10 and 11, respectively.

Figure 7. Projection of the exact heat flux on the coarse grid at time t¼ 2.0 s.

Figure 8. Estimated temperature field at time t¼ 2.0 s using the CLSA.
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The results presented in Figure 10 show excellent agreement between the exact and
estimated temperatures. The results for the heat flux presented in Figures 9 and 11
show that the EEM successfully compensates for the approximation errors present
in the reduced model, thus resulting in a very good agreement between the estimated

Figure 9. Estimated heat flux at time t¼ 2.0 s using the CLSA.

Figure 10. Evolution in time of the reference and estimated temperatures with CLSA at (x, y, z)¼ (6.25,

6.25, 0.00) cm.
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and exact heat fluxes. The temperature residuals at point (x, y, z)¼ (6.25, 6.25,
0.00)cm are not correlated, as shown by Figure 12, despite the fact that the inverse
problem was solved with the reduced model. In fact, Figure 13 shows the residual

Figure 11. Evolution in time of the reference and estimated heat flux with CLSA at (x, y, z)¼ (6.25, 6.25,

0.00) cm.

Figure 12. Evolution in time of the residuals at (x, y, z)¼ (6.25, 6.25, 0.00) cm using the CLSA.
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field at time t¼ 1.0 s, which reveals an excellent agreement between estimated and
measured temperatures in the whole region.

We now focus our analysis on the results obtained with the ILSA. The
estimated temperature field at t¼ 2.0 s is presented in Figure 14. Similarly,
Figure 15 presents the estimated heat flux at t¼ 2.0 s. These figures reveal that the

Figure 13. Residuals at time t¼ 1.0 s obtained using the CLSA.

Figure 14. Estimated temperature field using the ILSA at time t¼ 2.0 s.

1214 C. C. PACHECO ET AL.

D
ow

nl
oa

de
d 

by
 [

Fl
or

id
a 

In
te

rn
at

io
na

l U
ni

ve
rs

ity
] 

at
 1

0:
45

 2
5 

Ju
ne

 2
01

5 



state variables can be quite accurately estimated (see also Figures 4–7). A compari-
son of the time evolution of the estimated state variables with their exact values is
also done for point (x, y, z)¼ (6.25, 6.25, 0.00) cm, in Figures 16 and 17. The results
obtained for temperature, presented in Figure 16, show an excellent agreement

Figure 15. Estimated heat flux field using the ILSA at time t¼ 2.0 s.

Figure 16. Evolution in time of the reference and estimated temperatures with ILSA at (x, y)¼ (6.25, 6.25,

0.00) cm.

ESTIMATION OF HEAT FLUX IN A HEAT CONDUCTION PROBLEM 1215

D
ow

nl
oa

de
d 

by
 [

Fl
or

id
a 

In
te

rn
at

io
na

l U
ni

ve
rs

ity
] 

at
 1

0:
45

 2
5 

Ju
ne

 2
01

5 



between the exact and estimated values, but with slightly larger confidence intervals
than for the case with CLSA (see Figure 10). Figure 17 shows that the transient vari-
ation of the heat flux can be quite accurately estimated, although larger confidence

Figure 17. Evolution in time of the reference and estimated heat flux with ILSA at (x, y)¼ (6.25, 6.25,

0.00) cm.

Figure 18. Evolution in time of the residuals at (x, y, z)¼ (6.25, 6.25, 0.00) cm, obtained using the ILSA.
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intervals and a larger time lag are noticed, compared with the case with the CLSA (see
Figure 11). On the other hand, the time variation of the heat flux estimated with the
ILSA was smoother than that estimated with the CLSA. This behavior was due to the
standard deviation of the random walk model for heat flux, which was the same for
both cases. The analysis of the residuals, with transient variation for the point (x, y,
z)¼ (6.25, 6.25, 0.00)cm presented by Figure 18 and with spatial distribution at
t¼ 1.0 s presented by Figure 19, shows that they are uncorrelated. Such is the case
despite the fact that the inverse problem was solved with the reduced model.

The results obtained in this paper reveal that the proposed inverse analysis
approach is not sensitive to the accuracy of the lumping technique used to obtain
the reduced model. While the improved lumped formulation is certainly more accu-
rate than the classical lumped formulation for direct (forward) problem simulations,
the EEM was capable of effectively dealing with the approximation errors for these
two reduced models.

All the computer codes used in this paper were developed in FORTRAN90
language. The results were obtained on an Intel1CoreTM i7-3610QM CPU with
8GB of RAM. The processes of matrix inversion and multiplication of the KF were
executed in parallel, by using the OpenMP platform and four threads. On average,
each run of the computational code that combines the KF and the EEM took
around 5 minutes to be completed.

CONCLUSIONS

This paper presented the inverse problem of estimating a boundary heat flux
applied on the top surface of a flat plate by using transient temperature measure-
ments taken on the bottom side of the plate. The heat flux is position and time

Figure 19. Residuals at time t¼ 1.0 s, obtained using the ILSA.
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dependent and has high magnitude. The inverse problem was solved combining two
different Lumped System Analyses: the KF and the AEM. The main contribution
here is to show that it is possible to solve complex inverse problems using reduced
models, provided that the approximation errors are properly quantified. While the
complete model, which is assumed to perfectly reproduce the physics of the problem,
is nonlinear and three-dimensional, the reduced model used for the inverse analysis
was linear and two-dimensional.

The approximation errors in this paper were sequentially calculated, as the KF
was applied to advance the solution in time. Indeed, the EEM, used in this paper for
estimating the approximation errors, was capable of accurately identifying the spa-
tial and time variations of the imposed heat flux, resulting in small and practically
uncorrelated residuals, despite the fact that the reduced model was used in the
inverse analysis instead of the complete model. We note that the proposed approach
was also robust with respect to large uncertainties in the evolution and observations
models and was not affected by the accuracy of the lumping technique used to obtain
the reduced model.
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