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thermal micro-Couette and thermal micro-Poiseuille channel flows and the effect of the Knudsen number
on the velocity and temperature profile is investigated.
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1. Introduction

The lattice Boltzmann method is a kinetic method based on the
particle distribution function and during the past few years it has
gained the attention of many researchers whom investigated the
applicability of LBM for simulation of microscale flows (Table 1).

Nie et al. [1] applied the LBM method for compressible flow in
microchannels and micro-cavities and they have observed that
LBM can capture behaviors such as velocity slip, nonlinear pressure
distribution along the channel and dependence of mass flow rate
on Knudsen number. In their study they have used a D2Q9 model
on a two-dimensional, square lattice. They used a modified relax-
ation time in order to include the dependence of viscosity on den-
sity for compressible flows. They defined the mean free path as a
function of viscosity and density multiplied with a coefficient that
was determined by comparing simulation results with microchan-
nel experiments. Bounce-back wall boundary conditions were used
for the particle distribution functions at the top and bottom plates.
This boundary condition results in a non-slip velocity in the contin-
uum regime; however, the results have shown that when Kn is
large, a mean slip velocity on wall boundary can be achieved. This
was owed to the kinetic nature of the LBM.

Lim et al. [2] used specular reflection and a second order extrap-
olation scheme for gas interaction with surfaces in their LBM sim-
ulations. The non-linear pressure distribution, increase of slip
velocity along the channel, and radial velocity profile obtained
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were in agreement with analytical results [3]. Their result for the
slip flow regime was in good agreement with experimental data
of Pong et al. [4] for pressure distribution along the microchannel.
However, it was observed that using different boundary treatment
has little influence on pressure distribution, though the effect on
slip velocity on the wall surfaces is significant. Further investiga-
tion has shown that the mass flow rate and the overall average
velocity were in perfect agreement with Arkilic’s analytical solu-
tion [3] and the mass flow rate was found to be insensitive to
the boundary treatment on the wall surfaces.

Tang et al. [5] has combined the bounce-back boundary condi-
tion [1] with the specular reflection boundary condition [6] in
order to accurately capture the momentum exchange and friction
drag between the wall surface and the gas in microflows. They
have defined a reflection coefficient r, for which r, =1 corre-
sponds to pure bounce-back reflection and r, = 0 to pure specular
reflection. Using a value of r, = 0.7 they have successfully matched
the mass flow rate and the non-linear pressure variation observed
in the experiments by Shih et al. [7] for Kn =0.16. Recently, the
authors extended their model to 3D by using a D3Q15 lattice
model [8]. Their LBM results for nonlinear pressure profiles were
in good agreement with the 3D analytical model of Aubert et al. [9].

Shen et al. [10] has extended the work of Nie et al. [1] and com-
pared the results for velocity and pressure distributions for micro-
channels with the results obtained with DSMC, IP, and slip NS
methods. In their LBM simulations they have used bounce-back
boundary condition on the walls and the extrapolation scheme
[11] at the inlet and exit of the channel. In their definition of the
mean free path, they use a coefficient whose value (a = 0.388) is
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Table 1
Lattice Boltzmann method for gas flow in microchannels in literature.

# Author Year Kn Boundary condition

1 Nie et al. [1] 2002 Kn = at/pH Bounce back

2 Lim et al. [2] 2002 Kn = 6x(t + 0.5)/H(P,/P) Specular reflection and extrapolation scheme
3 Tang et al. [5] 2003 Kn = at/pH

4 Shen et al. [10] 2004 Kn = at/pH Bounce back

5 Lee et al. [12] 2005 Kn = 6xt/H(P,/P) Wall equilibrium

6 Zhang et al. [15] 2005 Kn = at/pH Maxwellian scattering

7 Zhou et al. [20] 2006 Kn = at/pH Bounce back

determined from the best match of the results with the experi-
ments. The flow rate prediction of LBM was observed to be in good
agreement with other methods for Kn = 0.0194,0.194, and 0.388.
The velocity profile and the pressure distribution results were
found to be in good agreement with the results of other methods
for Kn = 0.0194 however for Kn = 0.194 and 0.388 the LBM veloc-
ity profile and pressure variation were observed to deviate from
the results of DSMC and IP. Depending on these results the authors
have concluded that the version of LBM proposed by Nie et al. [1]
shows feasibility to simulate MEMS gas flow in continuum and slip
flow regimes but not in the transition regime where the Knudsen
number is large.

Lee et al. [12] proposed a second order definition of Knudsen
number and a wall equilibrium boundary condition for LBM to
simulate gas flows in a microchannel. They tested their method
for gas flow in a periodic microchannel with constant external
pressure gradient. The normalized slip velocity was found to be
in excellent agreement with the analytical prediction of Arkilic
[3] for Kn < 0.1. They validated their proposed LBM method by
comparing their results for normalized streamwise velocity profile
with those of the linearized Boltzmann equation [13] and the
DSMC methods [14] for Kn = 0.1. The LBM solution was found to
be in excellent agreement with the others. Their model was also
tested for gas flow in a microchannel with constant pressures at
inlet and exit. It was shown that the slip velocity is in good agree-
ment with Arkilic’s prediction [3]. They have concluded that their
proposed method for the definition of Knudsen number and the
wall equilibrium boundary condition is more physically meaning-
ful compared to previous versions of LBM simulations for micro-
channel flow [1,2].

Zhang et al. [15] showed that LBM can predict the correct trend
of mass flow rate as the Knudsen number increases along the
microchannel and captures the “Knudsen minimum” phenomena,
which was observed previously in experiments [16]. A slip bound-
ary condition was proposed by adopting the Maxwellian scattering
kernel to describe gas surface interactions. Their proposed bound-
ary condition requires the assignment of a constant for the accom-
modation coefficient.

The Knudsen paradox was also captured by Toschi and Succi
[17] for flow in a rectangular duct where the flow was driven by
a volumetric force along the streamwise direction. In their simula-
tions they compared the performance of the bounce back boundary
condition [11] and the kinetic boundary condition proposed by
Ansumali and Karlin [18] in the rarefaction range 107> < Kn < 30
and at a fixed Mach number Ma = 0.03. Being independent from
the boundary condition at the wall surfaces, Toschi and Succi have
proposed that every LBM simulation at finite Kn regime should
take care of the momentum transfer along the direction orthogonal
to the boundaries. In order to achieve this, they proposed a virtual
wall collision (VWC) model that should be implemented at every
lattice site in the flow domain. Their simulations have shown that
with VWC model the results for the mass flux was in good agree-
ment with the analytical prediction of Cercignani [19]. The bounce
back boundary condition has shown to be incapable of predicting

the correct wall slip velocity in the high Knudsen number regime.
They have concluded that the LBM method using the kinetic wall
boundary conditions of Ansumali and Karlin [18] combined with
their VWC method [17] can capture continuum and non-contin-
uum effects of microchannel flow.

Lattice Boltzmann method has been introduced to the scientific
community as a new alternative numerical method that can solve
for flows with complex physics [21,22] however there are still
areas that need to be studied in order to obtain a well-established
numerical method that covers a wide range of engineering applica-
tions. One aspect of this improvement is the solution of flows with
heat transfer [23,24]. In an effort to obtain a thermal lattice
Boltzmann method (TLBM), a variety of techniques were proposed
in the literature, namely the multi-speed approach, the passive-
scalar approach and the double populations approach. The model
developed by He et al. [25] has gained the most popularity because
it was more stable and it had the capability to solve for viscous
dissipation and compression work. In this model, the thermal lattice
Boltzmann equation was derived by discretizing the Boltzmann equa-
tion for the internal energy distribution. As a result, thermal energy
and heat flux were able to be obtained by taking the kinetic moments
of the thermal energy distribution function.

The method proposed by He et al. [25] was accepted by many
researchers and it was successfully applied to solve for various
kinds of fluid flow problems with heat transfer. Dixit and Babu
[26] used this model to simulate natural convection of a Bous-
sinesq fluid in a square cavity. It was demonstrated that for high
Rayleigh numbers the TLBM results agreed well with other bench-
mark numerical simulations. Tang et al. [27] proposed boundary
conditions to improve the same model in order to solve for two-
dimensional Poiseuille and Couette flow and verified the TLBM
results with Finite Volume Method and analytical solutions at var-
ious wall boundary conditions. D’Orazio and Succi [28] introduced
a counter-slip internal energy boundary condition for the TLBM
model and obtained satisfactory results for hydrodynamically
and thermally developed channel flows heated at the inlet. In their
simulations, the TLBM was able to capture the effect of viscous dis-
sipation which was tested for thermal Couette flow at various
Brinkmann numbers.

There have been a couple of studies that aimed to implement
the TLBM in fluid flow and heat transfer in complex geometries.
Huang et al. [29] solved the natural convection in a concentric
annulus involving circular solid boundaries. The curved non-slip
wall boundary treatment for isothermal LBM [30] was extended
to treat the thermal curved solid boundary in the two-population
TLBM computations. Chen et al. [31] applied the same boundary
condition for two-dimensional solutions of backward-facing step
flows with inclined plates positioned along the flow field at various
angles. Gokaltun and Dulikravich [32] verified the TLBM solutions
for a constricted channel flow against FEM solutions for velocity
and thermal fields.

Heat transfer in microscales is a major issue in analysis and
design of computer chips and cooling of electronic equipments.
Due to its kinetic nature, LBM can be an important tool in the study
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of the mechanism of microlevel flow and heat transfer. It was
shown that thermal LBM successfully predicts heat transfer char-
acteristics in the continuum regime [32] and it has been lately
the interest of the academic society to investigate whether it can
be further used for micro flow and heat transfer.

Shu et al. [33] have proposed to extend the thermal LBM devel-
oped by He et al. [25] to simulate micro flows with heat transfer.
They have used a diffuse scattering boundary condition to consider
the velocity slip and temperature jump at wall boundaries. The slip
length and temperature jump on the wall obtained from their
simulations were well agreed with DSMC and analytical data for
thermal Couette and thermal developing channel flow. In a later
study by the same authors [34], it was shown that the TLBM was
able to predict the decrease in local friction coefficient and Nusselt
number by increasing the Knudsen number. They further investi-
gated in another study the effect of aspect ratio of the microchan-
nel by using a 3D TLBM solver.

Wang and Yang [35] used TLBM to solve for heat transfer
characteristics of fluid flow in a microchannel. They used the
bounce-back boundary condition to treat the wall boundaries in
their simulations and they were able to obtain slip flow on the
solid surfaces. However, the physical explanation of the boundary
treatment is not clear and the paper in general cannot be consid-
ered as a fine example of TLBM on microflows.

Tian et al. [36] on the other hand, obtained good results with
the TLBM for micro-Couette flow with a temperature gradient in
the slip flow regime. Their method used Maxwell’s first-order slip
boundary condition for wall velocity and temperature jump. They
were able to show the effect of viscous heat dissipation and heat
transfer in microflows.

In the present study, Maxwell’s approach is followed for a
perfectly diffusive wall boundary. The TLBM is used to simulate
micro-Couette flow as well as thermally developing channel flow.
The variation of slip velocity and temperature jump can be
obtained with the current application of TLBM.

2. Numerical method

In this paper, He’s thermal lattice Boltzmann model [25] is
adopted to solve for the heat transfer in channel flows. The TLBM
solves the following discrete evolution equations:

fa(X+ €At t + At) = fo(x,t) — ﬁ (fu(X, £) - fo(x, t)), )
Za(X + AL, + At) = Zo(X, 1) — ﬁ (a(X, 1) — g9(X, 1))

_ ‘[,'g—‘}[—g—OA.;Atfa(X7 £)ha(x, 1). 2
where
Fax,6) = fux. ) —zATi,(f:"(x £) —fa(x.1), (3)

Box.6) = B0 1) ~ 5 (B000) - Bk ) + 5 KOk DRk D). (4

In Eq. (4), the term h, represents the effect of viscous heating and
can be expressed as

ha(x7t):(ea—u)~{—V<§>+%V~H+(ea—u)-Vu , (5)
which can be reduced to [27]

ha(x,t) = (€2 —u) - [O;u + (e - V)u]. (6)
In D’Orazio et al. [24], Eq. (6) is given as:

ha(X,t) = (e, —u(X,t)) - [u(X + e,At, t + At) — u(x, t)]/At, (7)

which is used in this work to calculate h,. The new distribution vari-
ables f and g are related to old variables f and g as given below:

= 0.5At

fa:fa+ T (fa *f:q)v (8)
p

- 0.5At At

8a = ga + (ga _ggq) +7fﬂha' (9)

g

The equilibrium density distribution functions for f and g are given
as follows:

f;anp|:]+3eaC~2u+g(ea(;—4u)2_%l:_j}7 (10)
e L
g9, = ws_spe(x) 3+6e“c'2“+g(e“c':')zg':j}, (12)
g1 = wope(o |3 . (13

The weighting coefficients in Eqgs. (10)-(13) are selected as
w4 =1/9,ws_g =1/36 and we = 4/9. The D2Q9 lattice structure
used in this study is shown in Fig. 1, where particles move along
9 specific directions with speed

(cos [(a—1)Z],sin [(a-1)Z])c,
—5)Z+1],sin[(a—5)2+7])c,

The ninth velocity is zero which stands for the particles at rest. The
length scale (1 [u) is fixed by the distance between nodes. The mac-
roscopic density p, velocity u, internal energy per unit mass e, heat
flux q, are obtained by the following relations:

p=S e, (15)
pu=>"efa, (16)
pe = Zga *%Zfahuv (17)
q= (Ea:eaga — peu — %za:eafaha> ) (18)

Kinematic viscosity is given by v = 7,RT, and thermal diffusivity is
given by y = 27,RT, and internal energy is related to temperature
by pe = pRT in 2D.

! @
€6 €, €5
1lu
@ €
€3 & ey
A\

Fig. 1. The D2Q9 lattice structure.
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2.1. Relation of T with the Knudsen number

In order to simulate microscale flows with TLBM, the first step is
to define the relation between Kn and the relaxation times, 7y and
7. From kinetic theory, it is known that, the kinematic viscosity is
v = 0.5¢4 where the mean molecule velocity is ¢ = /8RT /7. Using
the definition of Knudsen number, Kn = A/H, and the expression of
kinematic viscosity, Tian et al. showed that

T T

Using the collision frequency in kinetic theory, Niu et al. [34] used
the relation t=4/(v) where the mean thermal velocity
(v) = \/8RT/m. This gives 7= ,/8RT/m/% and since in LBM
¢ =+/3RT =1 for the D2Q9 model, then the relation between T
and Kn can be given as

T
= 07236 ;. (19)

8 1 T
30 0'9213ﬁ'

Kn =
n 3r

(20)

In their earlier work however, Niu et al. [33] have derived the Kn-t
relation using the Knudsen number relation with Mach number and

799

Reynolds number given as Kn = ﬁ’,‘g’—g where Ma = U, /c; and

Re=U,v/H. Since sound speed in LBM is given as
¢ = ¢/v/3 =1/V/3, the combination with T = gives

_JIrT z
Kn = 3 H_0.8562H. (21)

In the current work, Kn = 7;/H is employed where t7/27, = Pr.

2.2. Thermal LBM procedure

The solution of the TLB equations given by Egs. (2) and (3) is
carried in two steps: (a) collision and (b) streaming. The collision
step calculates the right hand side of Eqs. (2) and (3) and assigns
the value to buffer parameters, f;; and g; by

Fax,t) = (1 = opfa(x,6) + Of (%, 1),
81X, t) = (1 — Wg)8a(X, t) + g8 (X, t) — g TefaMa,
where wy = At/(1y + 0.5At) and wg = At/(Tg + 0.5A¢). The distribu-

tion functions at the new time level are then streamed to the neigh-
boring nodes in the streaming step by

(22)
(23)

1
0.9f E 0.9F i
0.8f 1 0.8f -
0.7f E 0.7+ ]
0.6f E 0.6F J
I
< o5f 1 Sosp 1

0.4F 1 0.4f 1

o Kn=0.029276
0.3f o Kn=0.073529 1 0.3f 1
> Kn=0.14706
0:2r —— Analytical 1 0.2} |
——Kn=0.029276
01F ] 0.1F i ----Kn=0.073529 ]
~ e ---Kn=0.14706
0 £ . . 0 o . . . : :
0 0.2 0.4 0.6 0.8 1 1 1.002 1.004 1.006 1.008 1.01 1.012 1.014
u(y)/Ut
(a) Velocity profile (b) Temperature profile
Fig. 2. Cross-sectional profiles at various Kn numbers for micro-Couette flow.

1 T T T T T T 1003
0.9F E
o8r 1.0025} ]
0.7f 1
0.6 1 1.002F 1

- o Top wall
2 o05f o Bottom wall E }:g
Analytical solution =
0.4r 1 1.0015f 1
0.3 E —e—Top wall
- o - Bottom wall

0.2f 1 1.001F 1
01F // 1

0 , . . . . . 1.0005 . . . . . .

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

Kn

(a) Velocity slip

Kn

(b) Temperature jump

Fig. 3. Effect of rarefaction on velocity slip and temperature jump for micro-Couette flow.
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(a) Kn =0.0125
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x/L

(b) Kn =0.025
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o8
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x/L
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Fig. 4. Temperature isolines in the microchannel for various Kn numbers.

Fa(X + €At t + At) = fi(x, 1), (24)
8a(X+ ALt + At) = g4 (X, £). (25)

The LBM simulation is initialized by calculating Egs. (10)-(13) for
the equilibrium distributions f& and g% at all lattice nodes in the
domain using the initial velocity, density and temperature values.
Then the effects of boundary conditions and forces (if any) are
incorporated in order to calculate the unknown buffer distributions,
f; and g;, at the boundaries that are directed into the flow domain.
First the boundary conditions at the open ends are imposed accord-
ing to the pressure and temperature values specified at inlet and
outlet. Then, no-slip and constant temperature boundary conditions
are applied at the walls. This is followed by the collision step where
the direction-specific density distributions are relaxed toward
quasi-equilibrium distributions. The equilibrium distributions are
recomputed by Egs. (10)-(13), and the particles are streamed to
the neighboring nodes. Finally the macroscopic flow properties
are calculated at the next time step using Eqgs. (15)-(18). The pres-
sure is related to density by p = pc?/3 where the particle streaming
speed is taken as ¢ = v/3RT, (assigned to 1 for now), where T is the
average temperature. The relation between the relaxation parame-
ters is determined by the imposed Prandtl number, Pr = 7,/7,.

2.3. Velocity and thermal boundary conditions

2.3.1. Inlet and outlet boundaries

For Couette flow and for the force driven channel flow periodic
boundary conditions are applied at the inlet. For Poiseuille flow
and channel flow with a blockage cases the a constant velocity
and temperature profile is assigned at the inlet and at the exit
the unknown distribution functions were extrapolated from the
neighboring fluid nodes. To specify a constant temperature profile
at the inlet boundary, the incoming unknown thermal populations
(g1,85,83) are assumed to be equilibrium distribution functions,
with e; thermal energy density imposed at the inlet. The unknown
exit thermal populations facing the flow domain are set equal to
those of the nearest interior nodes. To specify the velocity at the
inlet, the idea of bounce-back of non-equilibrium part of the parti-
cle distribution function proposed by Zou and He [37]. The velocity
component normal to the inlet boundary is assumed to be zero and

the density is to be determined. After streaming, at the inlet
boundary (f1,fs,fs) are unknown. Using Eqgs. (15) and (16) the
density at the inlet p; and unknown density functions are calculated
as follows:

3 (fg +f2 +f4+2(f3 +_f6+_f7))

Pin (1 _ Ui) ? (26)
fi=Fs +§Pmum, 27)
fs=Fr - % (F2~Fa) +%piui7 (28)
fs=Fs +%(f ~fa) +%p,-uf. (29)

In order to obtain the above equations, the bounce-back rule for the
non-equilibrium part of the momentum density population normal
to the inlet was used as, f1 — f{* = f3 — f3".

2.3.2. Velocity slip and temperature jump boundary conditions

The critical issue in extending the TLBM into microflow simula-
tion is the appropriate treatment of fluid solid interactions. Zhang
[15] has used the second-order slip model of Cercignani in their
isothermal LBM simulations whereas Tian et al. [36] has applied
it to TLBM for Kn < 0.1 where the second order terms were
assumed to be negligible. Here we use the first-order slip boundary
condition given as

Uy = Uy_g — Uyar = GKn <g—;) o (30)
U™ = Uyar — Uy = 0Kn @_;)y::f (31)

where 6 = (2 - 0,)/0,and « = (2 — or)/or. The tangential momen-
tum accommodation coefficient o, is defined as the fraction of mol-
ecules reflected diffusively from the wall, and oy is the thermal
accommodation coefficient. Both coefficients are generally assigned
to one which means that the molecules hitting the wall boundary
are reflected back completely diffusively which means that they
forget the information before the collision and take on the values
of the wall after the collision. The above equations are reorganized
to get the velocity and temperature values at the walls as

ly o = Kn (%) (34)
Uy — (I(n(4uH,;A—x1:,_.,,321)<: 2AxUy) 7 (35)
= o1 201
oot

where Cjymp = (2 (y+ 1)Pr) and second order implicit finite-dif-
ference scheme is used to obtain the derivatives.

3. Results

3.1. Thermal micro-Couette flow

Micro-Couette flow with zero temperature gradient was solved
using the TLBM. The flow is driven by the top wall moving at U,
while the temperature of both walls is kept same (T; = T}). Periodic
boundary conditions for both velocity and energy distributions



S. Gokaltun, G.S. Dulikravich / International Journal of Heat and Mass Transfer 78 (2014) 796-804 801

were applied at the open boundaries. Air's properties at room
temperature are used here for 7 = 1.4 and Pr = 0.7. Density and

Knudsen number increasing. The reduction in wall velocity and
increase in temperature is plotted in Fig. 3.

temperature variations along the axial direction are negligible.
Initially, the flow is at rest with temperature equal to the wall
temperature. Fig. 2 show the linear velocity profile and nonlinear
temperature profiles respectively with Kn varying from 0.12 to
0.48. The temperature jump is observed to increase with the

3.2. Thermal micro-Poiseuille flow

A 2D planar microchannel flow driven by a constant inlet veloc-
ity profile U;, with the walls at rest and at constant temperature

1 - 1 -
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0.6 1 0.6}
I
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0 - 0 :
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(a) Kn =0.0125
1 - 1 -
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--- x/L=0.25
0.8 E 0.8}
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I
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0.8 E 0.8}
0.7 1 0.7t
0.6 E 0.6}
I
o5 1 Sosp
0.4 E 0.4}
0.3 E 0.3}
0.2 E 0.2f
——x/L=0.05
0.1 1 0.1 ---- x/L=0.1
- - xIL=0.25
0 - 0 -
0 15 2 0 2
(¢) Kn =0.050

Fig. 5. Velocity profiles along the microchannel at various Kn numbers.
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Fig. 7. Effect of Kn number on velocity slip (a) and wall temperature jump.
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T, = Ty, is considered. The walls are kept at constant temperatures
and the channel is cooled at the inlet, 10T; = T; = T,. The
temperature contours at Kn = 0.0125 — 0.05 are shown in Fig. 4.
It is observed that the rarefaction effect reduces the convection
from the cooler inlet stream. The velocity slip and temperature
jump can be observed in Fig. 5 by comparing velocity and temper-
ature profiles along the microchannel for Kn = 0.0125 — 0.05.

The axial variation of the amount of velocity slip and tempera-
ture jump is presented in Fig. 6. In the developing region, the
velocity and temperature values at the wall are higher in the slip
regime compared to the continuum regime. This is still valid for
velocity in the developed region however the temperature value
approaches to the wall temperature and Kn does not seem to affect
the temperature distribution so much in the developed region.
However, the outlet slip and temperature values at the wall tend
to change nonlinearly as the rarefaction is increased. Fig. 7 shows
this effect where the wall velocity approaches to zero for Kn — 0
and temperature value approaches to wall temperature. In Fig. 8
the variation of local skin friction coefficient and Nusselt number
is plotted for Kn = 0.0125 — 0.083. It can be seen that the increase
of Knudsen number causes the friction coefficient and Nusselt
number decreased. Near the entrance region where the flow is
developing very fast, the Knudsen number has a great effect on
the friction coefficient and Nusselt number. The outlet CfRe and
Nu are observed to decrease as Kn is increased as shown in Fig. 9
which is in agreement with previous data in literature [14].
The values for CfRe and Nu approach to their continuum values
as the Kn — 0.

4. Conclusions

In this paper the TLBM computations of incompressible flow
and heat transfer in microchannels have been reported. The relax-
ation parameter is related to the Knudsen number and Maxwell’s
slip boundary treatment is used to calculate the velocity and tem-
perature values at the wall boundaries. Thermal micro-Couette and
thermal micro-Poiseuille flow in a straight channel are simulated
as test cases. It is observed that the present method can model
the microscale flow and heat transfer characteristics.
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