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In the production of oil and gas in deep waters, the flow of the produced hydrocarbon through pipelines is a challenging
problem. High hydrostatic pressures and low seabed temperatures may result in the formation of solid deposits, which in
critical operating conditions like unplanned shutdowns can cause pipeline blockages. One of the possible methods for flow
assurance, which can be jointly used with other approaches, is to heat the pipeline. This design concept aims at heating
the produced fluid, if needed, to above a safe reference temperature in order to avoid the formation of solid deposits. The
objective of this article is to utilize the particle filter method for the solution of a state estimation problem, in which the state
variables are considered as the transient temperatures within a pipeline cross section. In addition, the minimum temperature
in the region, predicted with the particle filter method, is used in the optimal control theory as a design tool for a typical
heating system, during simulated shutdown conditions. An application example is presented to illustrate the control of the
minimum temperature in the region, from an observer based on the particle filter method, where temperature measurements
are assumed to be available on the external surface of the pipeline.

INTRODUCTION

One of the key factors in the success of oil production in deep
waters is subsea thermal management, which determines the re-
quirements to maintain the fluid temperature, inside pipelines
and inside other production equipment, above a minimum ref-
erence value. Indeed, the flow of the produced fluid through
subsea pipelines in deep waters is a challenging problem. This
environment presents high hydrostatic pressures and low seabed
temperatures, which can favor the formation of solid deposits.
Under critical operating conditions, such as unplanned shut-
downs, these deposits may result in a pipeline blockage and,
consequently, incur in large financial losses [ 1-3]. Thermal man-
agement includes both steady-state and transient heat transfer
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analyses involving the different stages of the oil field during its
prospective lifetime. Hence, it must serve as a design tool for the
selection of methods to avoid the formation of solid deposits. In
steady-state operations, the temperature of the production fluid
decreases as it flows through the pipeline, due to heat transfer
to the seawater. This steady-state temperature profile is used to
identify the minimum insulation requirements that are needed
to keep the system above a critical temperature during produc-
tion. If steady-state conditions are interrupted, such as during
the critical periods of production shutdowns, a transient heat
transfer analysis for the subsea system is necessary to ensure
that the temperature of the fluid be maintained above that of for-
mation of solid deposits. The main solid deposits formed inside
subsea pipelines are wax and hydrates. For a given fluid, these
solid deposits are formed at certain combinations of pressure
and temperature. Wax deposits typically appear in temperatures
ranging from 30 to 50°C. Hydrate formation temperatures, on
the other hand, are typically around 20°C at 100 bar [3].

There are different techniques to avoid and/or minimize the
formation of these solid deposits. The basic current strategies
are the appropriate design of the thermal insulation and the
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injection of chemical inhibitors, but an alternative method is
to heat the pipeline. This concept, generally known as active
heating, aims at heating the produced fluid to above a safe
reference temperature in order to avoid the formation of the
solid deposits.

The pipeline can be heated by several methods, but typical
concepts are based on the so-called direct electrical heating
system (DEH) [4] and indirect electrical heating system (IEH)
[5]. In the direct electrical heating system, electric current flows
axially through the pipe wall, causing Joule heating. On the
other hand, in the indirect electrical heating system, the electric
current flows through heating elements (e.g., electrical cables)
on the pipe surface.

The objective of this article is to use a Bayesian approach
for the state estimation problem, in which the state variables
are considered as the transient temperatures within a pipeline
cross section, and to apply optimal control for a typical heat-
ing system. The particle filter method [6-22] is used to recon-
struct the temperature field from transient temperature measure-
ments available at one single point on the external surface of the
pipeline. The minimum temperature predicted with the particle
filter is then utilized in a control approach for the heating sys-
tem [23-25], with the objective of maintaining the temperature
within the pipeline above the critical temperature of formation
of solid deposits. The physical problem consists of a pipeline
cross section represented by a circular domain, with four heat-
ing cables on its surface. The fluid is considered to be stag-
nant, homogeneous, isotropic, and with constant thermophysical
properties. The optimal control was based on a linear quadratic
controller and the associated quadratic cost functional was min-
imized through the solution of Riccati’s equation [23, 24].

STATE ESTIMATION PROBLEMS

In state estimation problems, observations obtained during
the evolution of the system are used together with prior knowl-
edge about the physical phenomena and the measuring devices,
in order to sequentially produce estimates of the desired dy-
namic variables. State estimation problems can be solved with
the so-called Bayesian filters [6-22].

In order to define the state estimation problem, consider a
model for the evolution of the state variables x in the form [10]:

x; = fioi(Xp—1, Up—1, Vr_1) (D

where f is, in the general case, a nonlinear function of x, of the
control input to the system u and of the state noise or uncertainty
vector given by v € R™.

The vector x; € R" is called the state vector and contains
the variables to be dynamically estimated. This vector advances
in time in accordance with the state evolution model (1). The
subscriptk =1, 2,3, ..., denotes time #; in a dynamic problem.

The observation model describes the dependence between
the state variable x to be estimated and the measurements z
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through a general, possibly nonlinear, function %. This can be
represented by

Zx = hi(xg, ng) (2)

where z; € R": are available at times #;, k = 1,2, 3, ... . Eq. (2)
is referred to as the observation/measurement model. The vector
ny € R™ represents the measurement noise or uncertainty.
The evolution and observation models, given by Eqs. (1) and
(2), respectively, are based on the following assumptions [6]:

(a) The sequencexy fork=1,2,3,...,isaMarkovian process,
that is,
(X [X05 X15 oo X5 1) = WX x5 1) (32)
(b) The sequence z fork=1,2,3, ..., is a Markovian process
with respect to the history of x, that is,
7 (Zk %05 X15 « - o, Xg) = T (2k %K) (3b)
(c) The sequence x; depends on the past observations only
through its own history, that is,

(X5 [ Xp—15 215 225 -- > Zk—1) = T(Xg|x5_1) (30)

where 1 (a |b) denotes the conditional probability of @ when b
is given.

For the state and observation noises, the following assump-
tions are made [6-22]:

(a) Fori # j, the noise vectors v; and v}, as well as r; and i,
are mutually independent and also mutually independent of
the initial state x.

(b) The noise vectors v; and n; are mutually independent for
all i and j.

Different problems can be considered for the evolution-
observation model just described, such as [6, 10]:

(i) The prediction problem, when the objective is to obtain

(X211

(ii) The filtering problem, when the objective is to obtain
(X |Z1: 1)

(iii) The fixed-lag smoothing problem, when the objective is to
obtain 1w(x|z1:k+p), Wwhere p > 1 is the fixed lag.

(iv) The whole-domain smoothing problem, when the objective
is to obtain w(xg|z1.x), where z1.x = {z;, i =1,..., K}
is the complete set of measurements.

The filtering problem is dealt with in this article, as described
next.
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Figure 1 Hypothetical heating system on a pipeline cross section.

PHYSICAL PROBLEM AND MATHEMATICAL
FORMULATION

The idealized problem addressed here considers a critical
operational condition involving the cooling of a pipeline,during
a production shutdown. This work involves a two-dimensional
heat transfer analysis in a cross section of the pipeline, where
temperature measurements are available. Temperature measure-
ments can be obtained through specially designed optical fiber
sensors [5]. The physical problem under consideration consists
of a pipeline cross section represented by a circular domain filled
with a stagnant fluid and bounded by a constant-thickness pipe
wall, with four electrical cables evenly located over its external
surface [5], as illustrated in Figure 1. The fluid is considered
as homogeneous, isotropic, and with constant thermal proper-
ties. The idealized pipeline will be treated here with a transient
heat conduction problem in a single medium, thus not taking
into account the pipe wall. The heat flow rate resulting from the
Joule effect in the electrical cables is considered in the form of
a transient heat flux imposed as a boundary condition for the
problem.

The dimensionless mathematical formulation for this prob-
lem in cylindrical coordinates is given by

90 (R, @.t) 0% 100 1 3%

S B 9 g<Rr<,
e k2 TRaR TR V=8 T

0<B<2m >0 (4a)

where 0 (R, A, t) is the dimensionless temperature distribution
into the pipeline. This equation was solved subjected to the
following boundary and initial conditions:

0
;—R—I-Bi(%:Q(@,t) R=1,0<@ <2m, t>0(4b)

0=1 0<R<1,0<@<2n, =0 (40)
where the following dimensionless groups were defined:

T(r,@.t) - T
To — Tro
heat transfer engineering

8(R.B.1) = (5a)

ot
T=— (5b)
r
r
r
Bi= 5d
== (5d)
_a@.9r
007 = ra =1 o

Here, T, is the surrounding environment temperature, 7' is
the uniform initial temperature of the fluid, / is the convective
heat transfer coefficient between the pipe and the surrounding
environment, k and o are the fluid thermal conductivity and
diffusivity, respectively, r* is the external radius, Bi is the Biot
number, and ¢(@, ¢) is the heat flux imposed on the external
surface by the heating cable. Uncertainties inherent to the pa-
rameters used in the model are taken care of as described in the
next section.

The mathematical formulation governing the heat conduction
problem, given by Eqs. (4a)—(4c), was solved with the finite-
volume method. The computer code developed for this purpose
was verified by using an analytical solution obtained with the
classical integral transform technique.

OPTIMAL CONTROL BASED ON PARTICLE FILTER
OBSERVER

The state space representation of a dynamical system consists
of the specification of the evolution model for the state variables
and observation model that links the measurements to the state
variables. Thus, for the classical linear time-invariant discrete
state estimation problem, the evolution model may be written in
the form

xp=Fi 1xp 1+ Grqup1 + v 6)

where F is the linear evolution matrix of the state variables x;_{
and G is the input matrix. The state uncertainty or noise vx_; is
assumed to be a Gaussian random variable with zero mean and
known covariance €2,,.

The linear observation equation is given in the form

Zp = Hyxp 4 ng (7

where z; is the measurement vector and H is the linear obser-
vation matrix, which relates the state variables to the measure-
ments. The observation noise n; is assumed to be a Gaussian
random variable with zero mean and known covariance €2,,.

In the application under study, the evolution model is given
by the finite volume representation of Eqs. (4a)—(4c). The state
vector x; contains the values of the temperatures at each of
the volumes and the control variable u is given by the heat
flux imposed on the external boundary. Uncertainties in the
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evolution model come from the fact that different quantities in
the formulation are not exactly known, such as the Biot number.

The main objective of the pipeline heating system is to keep
the fluid temperature above the critical one, before solid deposits
can be formed. Such a critical temperature might be reached
by the fluid during cooling periods. Thus, for the application
of the control strategy in accordance with the optimal control
theory for linear problems, an objective function is established
in order to find the control input # (the boundary heat flux) that
minimizes the difference between the fluid temperature field and
a desired reference temperature, where the formation of solid
deposits can be safely avoided.

For the implementation of the control strategy we consider
[24]:

iy = uj, — ug (8a)

X =x,’§—xd (8b)

where 1, and x4 refer to the steady values of the control input
and of the state variables, respectively. Hence, it; and Xxj are
considered as deviations from their steady-state values.

In terms of the linear quadratic regulator problem, the optimal
values of the control input @ are obtained by minimizing the
following quadratic cost function [24]:

3

J = lim - [(x0" Q (%) + @y, Ritg] 9

frsoo

. k=0
where the weighting matrices @ and R are symmetric positive
definite.

The solution to the optimal control problem is the state feed-
back control law [24] given by

iy = —Kxy 10
where the discrete-time state feedback gain K is of the form
K=(R+G"SG) 'G'SF (11)
The matrix § is the steady-state solution to the time-discrete
Riccati’s equation [24]:
F'SF—S+ Q—F'SG (R+G"SG) " G'SF =0 (12)

Thus, the control input #} can be calculated from the control
law (10) as:

uj =ud—K(x,’;—xd) (13)

However, when the state variables are not directly available
for control, an observer must be built to estimate the state vari-
ables from the input and output variables of the system. For the
solution of the state estimation problem considered here, which
involves the estimation of the transient temperature field in the
medium from temperature measurements taken at the surface
of the pipe (Figure 1), the particle filter method is used [6-22].
The particle filter predicts the transient temperature field in the

heat transfer engineering

cross section of the domain, from which the minimum value is
extracted for control purposes at each time instant.

The particle filter is a Monte Carlo technique used for the so-
lution of state estimation problems, where the main idea is to rep-
resent the required posterior density function by a set of random
samples with associated weights and to compute the estimates

based on these samples and weights. Let {xf);k’ i=0,...,1}
be the particles with associated weights {w}'{, i=0,...,I}and
xox = {xj, j =0, ..., k} be the set of all states up to #;, where

[ is the number of particles. The weights are normalized, so that
Z,'I=1 w; = 1. Then the posterior density at #; can be discretely

approximated by:

I
T (ol Tia) A Y whd (Yo — Xiye) (14)
i=1

where 8 (.) is the Dirac delta function. Similarly, its marginal
distribution, which is of interest for the filtering problem, can
be approximated by:

N
(e lzi) & Y wp b (xe — xp) (15)
i=1

A common problem with the particle filter method is the
degeneracy phenomenon, where after a few states all but one
particle may have negligible weight. The degeneracy implies
that a large computational effort is devoted to updating particles
whose contribution to the approximation of the posterior den-
sity function is almost zero. This problem can be overcome by
increasing the number of particles. In addition, the use of the
resampling technique is recommended to avoid the degeneracy
of the particles [9, 10]. Resampling involves a mapping of the
random measure {xz, w,i} into a random measure {x};, I~} with
uniform weights; it deals with the elimination of particles origi-
nally with low weights and the replication of particles with high
weights. It can be performed if the number of effective particles
with large weights falls below a certain threshold number. Alter-
natively, resampling can also be applied indistinctively at every
instant #;, as in the sampling importance resampling (SIR) al-
gorithm used here [9, 10]. This algorithm can be summarized in
the steps presented in Table 1, as applied to the system evolution
from #;,_1 to ;.

Although the resampling step reduces the effects of the de-
generacy problem, it may lead to a loss of diversity and the resul-
tant sample can contain many repeated particles. This problem,
known as sample impoverishment, can be severe in the case of
small evolution model noise. In this case, all particles collapse to
a single particle within a few instants. Another drawback of the
particle filter is related to the large computational costs due to
the Monte Carlo method, which may not allow its application to
complicated physical problems. On the other hand, algorithms
more involved than the one just presented have been devel-
oped [10, 18] and can reduce the number of particles required
for an appropriate representation of the posterior density, thus
resulting in the reduction of associated computational times,

vol. 34 nos.5-6 2013



Downloaded by [University of Missouri Columbia] at 15:42 04 November 2013

F. L. V. VIANNA ET AL. 515

Table 1 Sampling importance resampling algorithm

Step 1

Fori = 1,..., I draw new particles xfC from the prior density n(xklxj;fl)
and then use the likelihood density to calculate the correspondent weights
wh = m(zglxi).

Step 2
Calculate the total weight T, = 21’1:1 w! and then normalize the particle
weights, that is, fori = 1,..., [let w,i = Tujl w,i.
Step 3

Resample the particles as follows:
Construct the cumulative sum of weights (CSW) by computing
¢G = c¢1 + w,ifori =1,..., I,with¢g = 0.
Leti = 1 and draw a starting point d; from the uniform distribution
v, I71.
Forj=1,...,1
Move along the CSW by making d; = di + I~ =1.
While d; > ¢; makei =7 + 1.
Assign sample x,i = x,i .
Assign sample w,{ =71

especially when associated with parallel computing techniques.
In addition, the use of reduced models or the use of response
surfaces for the solution of the direct problem appear as promis-
ing approaches for the reduction of the computational time, thus
enabling the use of sampling methods for more involved cases.

RESULTS AND DISCUSSIONS

In order to examine a test case involving typical conditions
resulting from a shutdown of the flow through the pipeline, a
hypothetical situation was simulated where the stagnant fluid
was assumed to be initially at the uniform temperature of 7o =
80°C in a circular domain with external diameter of 0.1682 m (6
inches). The surrounding temperature was considered of T, =
4°C. The thermophysical properties were assumed constant and
given by k = 12.54 W m~! °C~!, p = 933.59 kg m3, and
cp = 1826.801 kg~! °C~L. The objective of the heating system
is to drive the minimum temperature of the stagnant fluid to
a reference value of 30°C. The heating system was turned on
when the lowest predicted temperature in the domain reached the
critical value of formation of solid deposits, which was assumed
to be 20°C. For the results presented in the following, the Biot
number was taken as 1.

For the prediction of the state variables, one single sensor
was considered available, located at the surface of the circu-
lar domain (Figure 1). The simulated measurements contain
additive, uncorrelated, Gaussian errors, with zero mean and a
constant standard deviation of 3°C. This corresponds to 3.75%
of the maximum temperature in the region, that is, the initial
temperature of the stagnant fluid (80°C). Errors in the evolu-
tion model are also supposed to be additive, Gaussian, uncor-
related, with zero mean and constant standard deviation. The

heat transfer engineering

effects of the errors in the evolution model, on the prediction
of the temperature field in the region, are examined next by
considering two different standard deviations for such errors:
0.1°C and 3°C, corresponding, namely, to test case 1 and test
case 2, respectively. For the results presented next, S000 parti-
cles were used in the particle filter method. Numerical exper-
iments revealed that such number of particles would be suf-
ficient to represent the posterior distribution of the predicted
states.

Figures 2a and b present the simulated measured tempera-
tures, during both the cooling and heating periods, for standard
deviations in the evolution model of 0.1°C and 3°C, respectively.
The critical temperature for the formation of solid deposits, as
well as the aimed reference temperature, is also presented in
these figures. Figures 2a and b also show the temperatures pre-
dicted with the particle filter at the measurement position, for
test cases 1 and 2, respectively. An analysis of Figures 2a and b
reveals the capabilities of the particle filter in accurately predict-
ing the temperatures, even under a large standard deviation of
errors of the evolution model, such as for test case 2 (Figure 2b).
As the evolution model becomes more uncertain, the predicted

o Rafscanss Yenpe

Figure 2 Exact temperatures, simulated measurements, and predicted temper-
atures for a standard deviation in the evolution model errors of (a) 0.1°C and
(b) 3°C.
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temperatures at the measurement location tend to follow the
measurements (Figure 2b). On the other hand, for evolution
models with low uncertainty, the predicted temperatures follow
the exact ones very closely (Figure 2a).

We now present the results obtained for the state estimation
problem and optimal control, by using simulated experiments.
The minimum temperature predicted by the particle filter (im-
plemented in accordance with the SIR algorithm; Table 1) in the
whole domain was used in the control strategy described earlier,
with the weighting matrices @ = R = I (identity matrix). For
both cases, we compare the exact temperature (obtained with
the numerical solution with finite volumes) and predicted tem-
peratures at three positions: R = O (centerline), R = 1 under
the heater, and R = 1 between heaters (Figure 1). Figures 3a
and 3b show the time evolution of the predicted temperatures
at these three positions, for test cases 1 and 2, respectively.
One can clearly see that the heating is turned on when the low-
est temperature in the domain (at R = 1) reaches the critical
value. During the cooling period, the temperature variation of
the medium is purely radial. On the other hand, after the heating
starts the temperature behavior is two-dimensional as a result
of the nonuniform heating over the boundary, because the con-

Biet ot gt 5
Raf i point 1)
S P fad patt iy

Crfot Tameersium

o B {at odig 23

trolled heat flux is imposed on the regions where the electrical
cables are located (Figure 1). Anyhow, the minimum tempera-
ture inside the domain (at point 2) is accurately predicted by the
particle filter at each time instant, and such a minimum temper-
ature is driven to the reference value to avoid the formation of
solid deposits. Conspicuously, the temperatures at other points
in the domain are above this minimum temperature due to the
external heating. In fact, the largest temperatures take place in
the region below the applied heat flux (point 3).

The optimal heat flux obtained through the control strategy
already described is presented in Figures 4a and b, for test cases
1 and 2, respectively. This figure shows that the heat flux attains
large values when the heating is turned on, but gradually tends
to a constant value that makes the minimum temperature in the
medium approach the desired reference value. It is important
to note that a completely erratic heat flux would be obtained
if the measurements shown in Figure 1 were directly used in
the control approach, without the use of the particle filter to
predict the minimum temperature in the region at each time
instant.

Figures 5a and b were prepared in order to illustrate the
effects of giving different weights to the terms containing the
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P
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CRenB R Eess Tient Pl

ety Shate e

Figure 3 Predicted temperatures and comparison with exact ones with a stan-
dard deviation in the evolution model errors of (a) 0.1°C and (b) 3°C.
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Figure 4 Optimal heat flux on the boundary surface with a standard deviation
in the evolution model errors of (a) 0.1°C and (b) 3°C.
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Figure 5 (a) Predicted temperatures and comparison with exact ones. (b)
Optimal heat flux on the boundary surface, for test case 1, with @ = and R =
101.

state variables and the control variables in the objective function
(9), which was used for the optimal control strategy; the results
presented correspond to test case 1, but they were obtained
with@ =T and R = 10 1. As expected, increasing the weighting
matrix related to the control variable results in a smaller imposed
heat flux (Figures 4a and 5b), but in a larger time required for

LR Ve mpansn

2 ¥ : L8 R
Uhienziontyas Thng
Figure 6 Exact temperatures, simulated measurements, and predicted temper-
atures obtained with the Kalman filter for test case 1.

heat transfer engineering

the minimum temperature to reach its desired reference value
(Figures 3a and 5a). The opposite effect (larger heat flux and
smaller time) can be observed if the weighting matrix @ is made
larger than R.

Finally, we compare the results obtained here with the par-
ticle filter to those obtained with the classical Kalman filter
[6-18]. Figure 6 shows the exact, simulated, and predicted
temperatures obtained with the Kalman filter for test case 1,
with @ = R = 1. An analysis of Figures 2a and 6 reveals
that the particle filter is capable of predicting the exact tem-
peratures with accuracy comparable to that of the Kalman
filter, which is the optimal solution for problems with lin-
ear and Gaussian evolution and measurement models. On the
other hand, for nonlinear and/or non-Gaussian models the ba-
sic hypotheses required for the application of the Kalman fil-
ter are not valid. Therefore, the particle filter can be used for
extensions of the present work (e.g., fluids with temperature-
dependent properties), where the classical Kalman filter cannot
be applied.

CONCLUSIONS

The objective of this article was to apply an optimal control
strategy to a heating system, in order to avoid the formation
of solid deposits in pipelines. The optimal control input was
determined with a linear quadratic regulator, where a quadratic
cost functional was minimized through the solution of Riccati’s
equation. The minimum temperatures in the domain, predicted
with the particle filter, were used in the control strategy instead
of the direct measurements. The particle filter was capable of
providing accurate estimates for the temperature field in the re-
gion, even for large errors in the observation and measurement
models. With the present approach, the control strategy could
be effectively applied and the minimum temperature in the re-
gion maintained above the critical one during the time range of
interest.

This work was supported by CNPq, CAPES, and FAPERJ,
Brazilian agencies for the fostering of science, as well as by
PETROBRAS.

NOMENCLATURE

linear evolution matrix

input matrix

global heat transfer coefficient
linear observation matrix

identity matrix

number of particles

quadratic cost functional

fluid thermal conductivity
discrete-time state feedback gain matrix
measurement noise or uncertainty
heat flux
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r* external radius

T, surrounding environment temperature
v  state noise or uncertainty vector
u  control input
X  state variables
Z  measurements

Greeks Symbols

a diffusivity
2 covariance matrix
6 dimensionless temperature
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