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Automatic Switching Algorithms in 
Hybrid Single-Objective Optimization 

Hybrid optimization algorithms consist of a number of proven constituent 

optimization algorithms and a control algorithm that performs automatic 

switching among the constituent algorithms at each stage during the 

optimization when the rate of convergence becomes unsatisfactory, the 

process tends towards a local minimum, or some other undesirable aspect 

of the iterative process appears. Thus, hybrid optimization algorithms that 

utilize a number of gradient based and non-gradient based constituent 

optimizers are more robust and converge better than individual constituent 

optimization algorithms. The logic of designing the automatic switching 

algorithms in hybrid optimizers is surveyed in this paper focusing on the 

research performed by the authors in the area of hybrid single-objective 

optimization initiated in 1997. 

Keywords: optimization algorithms, hybrid optimization, switching 

algorithms, minimization, single-objective optimization. 

 

 
1. INTRODUCTION  

 

Realistic engineering problems always involve 

interaction of several disciplines such as fluid dynamics, 

heat transfer, elasticity, electromagnetism, dynamics, 

etc. Thus, realistic problems are always 

multidisciplinary and the geometric space is typically 

arbitrarily shaped and three-dimensional. Each of the 

individual disciplines is governed by its own system of 

differential equations or integral equations of different 

degree of non-linearity and based on often widely 

disparate time scales and length scales. All of these 

factors make a typical multidisciplinary optimization 

problem highly non-linear and interconnected. 

Consequently, an objective function space for a typical 

multidisciplinary problem could be expected to have a 

number of local minima. A typical multidisciplinary 

optimization problem, therefore, requires the use of 

optimization algorithms that can either avoid the local 

minima or escape from the local minima.  

Optimization algorithms are de facto minimization 

algorithms, that is, algorithms that search for a global 

minimum and can be divided in three groups: a) 

gradient-based algorithms, b) non-gradient based 

(evolutionary algorithms), and c) hybrid otimization 

algorithms that combine the gradient-based and the non-

gradient-based algorithms via an automatic switching 

algorithm. The objective of this survey paper is to 

elaborate on these switching algorithms. 

Addition of constraints of both equality and 

inequality type to a typical multidisciplinary 

optimization problem reduces significantly the feasible 

domain of the objective function space. To find such 

often-small feasible function space, the optimizer 

should be able to initially search as large portion of the 

objective function space as possible. Non-gradient 

based optimizers are capable of performing this task. 

When equality constraints are to be enforced, the 

gradient-based optimizers can perform this task very 

accurately. 

One of the primary concerns of any optimization 

algorithm is the computational effort required to achieve 

convergence. Except in the case of certain sensitivity 

based optimization algorithms and genetic algorithms 

with extremely large populations, the computer memory 

is not an issue. Typical constrained optimization 

problems in engineering require large number of 

objective function evaluations. Each function evaluation 

involves a very time-consuming computational analysis 

of the physical processes involved.  

An equally important issue is the ability of an 

optimization algorithm to converge to the global 

minimum rather than immediate neighborhood of the 

minimum. Non-gradient based optimizers have these 

capabilities. On the other hand, once the neighborhood 

of the global minimum has been found, the non-gradient 

based optimizers have difficulty converging to the 

global minimum. For this purpose, it is more 

appropriate to use gradient-based optimizers. 

 
2. OPTIMIZATION PROBLEM STATEMENT 

 

The general single-objective, constrained, optimization 

problem can be mathematically stated as follows. 

Minimize the scalar objective function, 

 F(V) (1) 

of a set of design variables, 

 1 2 var{ } NV V V V , (2) 

limited to their extreme individual ranges 

 min max{ } { } { }V V V  (3) 

subject to inequality constraints  
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 0mg V , m = 1,Ninc (4) 

and equality constraints 

 
n nh V , n = 1,Neqc (5) 

Here, F V  is the objective function, { }V  is the vector 

of Nvar design variables, 
min{ }V  is the vector of lower 

limit constraints, }{ maxV  is the vector of upper limit 

constraints, g
m
 is the set of Ninc inequality constraint 

functions, h
n
 is the set of Neqc equality constraint 

functions, and  is a very small number called the 

constraint thickness. The solution of an optimization 

problem is the set of design variables for which the 

objective function takes on its global minimum value,  

 * *F V .  

A set of design variables that does not violate any 

constraints is said to be feasible, while design variables 

that violate one or more constraints are infeasible. If a 

constraint is on the verge of being violated, it is said to 

be an active constraint. That is, active constraints satisfy 

the following relationships. Equality constraints are 

always active. 

 
m mg V  (6) 

 
n nh V  (7) 

 
3. INDIVIDUAL PERFORMANCES OF SOME OF THE 

MOST COMMON OPTIMIZATION ALGORITHMS

 

As a demonstration of the superior performance of a 

hybrid optimizer when compared to individual 

optimization algorithms, we will first show the 

performance of several of the most common optimizers 

to find the optimum of the Griewank’s function #8 [1], 

which is defined as 

 

2

11

cos 1
4000

] 600,600 [

n n
i i

ii

x x
f

i

x

 (8) 

The global minimum for this function is located at x 

= 0 and is f(x) = 0. For a two-dimensional test case, it is 

shown in Figure 1 in three levels of local resolution. 

One can see that this function has an extremely large 

number of local minima, making the optimization task 

of finding the global minimum a serious challenge. 

The following single-objective minimization 

algorithms [2-4] were individually tested to access their 

individual performance when attempting to find the 

global minimum and its location for this test function. 

Figure 2 shows the results for this optimization task 

using separately: (a) Broyden-Fletcher-Goldfarb-

Shanno (BFGS) quasi-Newton method [5], (b) 

Differential Evolution (DE) algorithm [6], (c) Simulated 

Annealing (SA) algorithm, [7] (d) Particle Swarm (PS) 

algorithm [8], and (e) our fourth generation hybrid 

optimization algorithm. Evolutionary methods 

performed somewhat better than the best gradient-based 

algorithm (BFGS). 

 

 

 

Figure 1: Griewank’s function #8: global view, intermediate 

view, local view. 

 

However, only the hybrid optimization algorithm was 

capable of locating the global optimum value of this 

function and to determine its global minimum value 

with satisfactory accuracy. 
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a) Convergence history for BFGS 
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b) Convergence history for DE 
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c) Convergence history for SA 
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d) Convergence history for PS 
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e) Convergence history for hybrid optimizer 

Figure 2: Comparison of performances of various 
optimizers for the Griewank’s function #8 [1]. 

This suggests that it might be beneficial to utilize 

several different optimization algorithms during 

different phases of the optimization process, since “no 

free lunch theorem” [9] definitely holds, that is, no 

single optimization algorithm is better than all the other 

optimizers for all classes of optimization problems. 

Various optimization algorithms have been known to 

provide faster convergence over others depending upon 

the size and topology of the design space, the type of the 

constraints, and where they are during the optimization 

process. Each algorithm provides a unique approach to 

optimization with varying degrees of convergence, 

reliability, and robustness at different stages during the 

iterative optimization process.  

Hybrid optimization algorithms combine individual 

constituent optimization algorithms in a sequential or 

parallel manner so the resulting software can utilize the 

advantages of each constituent algorithm. That is, 

single-objective optimization constituent algorithms that 

rely on different principles of operation are combined 

with a set of measures to perform automatic switching 

among the constituent algorithms. This allows the 

software to choose the most effective constituent 

algorithm for the design problem at hand. The automatic 

back-and-forth switching among several optimization 

algorithms can be viewed as a backup strategy [10] so 

that, if one optimization method fails, another 

optimization algorithm can automatically take over. 

Following is a discussion of various automatic 

switching strategies among the constituent optimizers. 

 
4. FIRST GENERATION OF SINGLE-OBJECTIVE 

HYBRID OPTIMIZATION ALGORITHMS WITH 
AUTOMATIC SWITCHING 

 

The first hybrid, single-objective, constrained 

optimization algorithm was developed and used in the 

period 1995-1998 [10-13]. It had two constitutive 

optimization algorithms: Davidon-Fletcher-Powell 

(DFP) gradient search algorithm [14, 15] and genetic 

algorithm (GA) [16]. Initial search of the objective 

function space was performed using GA. Once the code 

was showing signs of slow convergence, it was 

automatically switched to DFP. When DFP algorithm’s 

convergence rate dropped below a specified minimum 

value, this hybrid optimizer switched automatically 

back to GA algorithm. This back-and-forth automatic 

switching successfully avoided premature termination 

of the overall optimization process in a local minimum 

and continued to the global minimum.  

Preliminary results obtained with different versions 

of a hybrid optimizer that uses a GA for the overall 

logic, a quasi-Newtonian gradient-search algorithm or a 

feasible directions method to ensure monotonic 

reduction of the objective function, and a Nelder-Mead 

sequential simplex algorithm or a steepest descent 

methodology of the design variables into feasible 

regions from infeasible ones has proven to be effective 

at avoiding local minima. Since the classical GA does 

not ensure monotonic decrease of the objective function, 

the hybrid optimizer could store information gathered 

by the genetic search and use it to determine the 

sensitivity derivatives of the objective function and all 



170  VOL. 41, No 3, 2013 FME Transactions

 

constraint function. When enough information has been 

gathered and the sensitivity derivatives are known, the 

optimizer automatically switches to the feasible 

directions method (with quadratic subproblem) thus 

quickly proceeding to further acceleraate the iterative 

search process.   

One possible scenario for such a hybrid algorithm 

can be summarized as follows: 

1)  Let the set of population (candidate solutions) 

members define a simplex like that used in the 

Nelder-Mead method. 

2)  If the fitness evaluations for all of the population 

members does not yield a better solution, then 

define a search direction as described by the 

Nelder-Mead method. 

3)  If there are active inequality constraints, compute 

their gradients and determine a new search 

direction by solving the quadratic subproblem. 

4)  If there are active equality constraints, project this 

search direction onto the subspace tangent to the 

constraints. 

5)  Perform line search. 

 
5. SECOND GENERATION OF SINGLE-OBJECTIVE 

HYBRID OPTIMIZATION ALGORITHMS WITH 
AUTOMATIC SWITCHING 

 

The second generation of our hybrid optimization 

algorithms was developed in the late 1990s [17-22]. It 

had four constitutive optimization algorithms: Davidon-

Fletcher-Powell (DFP) gradient search [14, 15], Genetic 

Algorithm (GA) [16], Nelder-Mead (NM) simplex 

algorithm [23], and Simulated Annealing (SA) [7]. 

Automatic switching among the four constituent 

algorithms was performed using heuristics (Figure 3). 

 

Figure 3. Automatic switching logic among constituent 
optimization algorithms in the second generation of our 
hybrid single-objective optimization algorithms. 

 
6. THIRD GENERATION OF SINGLE-OBJECTIVE 

HYBRID OPTIMIZATION ALGORITHMS WITH 
AUTOMATIC SWITCHING 

 

This version of the hybrid optimizer was developed and 

used briefly during 1998 [24, 25]. It incorporated five 

constitutive optimization algorithms: Davidon-Fletcher-

Powell (DFP) gradient-based algorithm [14, 15], 

Genetic Algorithm (GA) [16], modified Nelder-Mead 

(NM) simplex algorithm [23], Simulated Annealing 

(SA) [7] and Sequential Quadratic Programming (SQP) 

[26]. 

 
7. FOURTH GENERATION OF SINGLE-OBJECTIVE 

HYBRID OPTIMIZATION ALGORITHMS WITH 
AUTOMATIC SWITCHING 

 

The fourth generation of our hybrid optimization 

algorithms was developed in the early 2000s [17-22]. It 

had the following six constituent optimization modules: 

Davidon-Fletcher-Powell (DFP) gradient-based 

algorithm [14, 15], Genetic Algorithm (GA) [16], 

Nelder-Mead (NM) simplex algorithm [23], Differential 

Evolution (DE) algorithm [6], Sequential Quadratic 

Programming (SQP) [26] and quasi-Newton algorithm 

of Pshenichny-Danilin (LM) [27]. Thus, this hybrid 

optimizer had three gradient-based and three non-

gradient-based constituent optimization algorithms that 

are automatically switching back-and-forth as depicted 

in Figure 4. 

Design Variance 0

DFP

DE NM

Local Minimum

Bad Mutation

Stalls

Lost Generation

GA

Stalls

LM

SQP

Local 

Minimum

Local 

Minimum

 

Figure 4: Switching procedure for the third generation of 
our hybrid single-objective optimization algorithms. 

The evolutionary hybrid scheme handled the 

existence of equality and inequality constraint functions, 

Vg  and Vh , in three ways: Rosen's projection 

method, feasible search, and random design generation. 

Rosen's projection method [28, 2-4, 10] provided search 

directions which guided the descent direction tangent to 

active constraint boundaries. In the feasible search [10], 

designs that violate constraints were automatically 

restored to feasibility via the minimization of the active 

global constraint functions. If at any time this constraint 

minimization failed, random designs were generated 

within a Gaussian-shaped probability density cloud 

about a desirable and feasible design until a new design 

is reached. 

Gradients of the objective and constraint functions 

with respect to the design variables, VF , Vg , 

and Vg  (also called design sensitivities), were 

calculated using either forward (first order) finite 

difference formulas, or by the efficient method of 

implicit differentiation of the governing equations [29].  

The population matrix was updated every iteration 

with new designs and ranked according to the value of 

the objective function. As the optimization process 
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proceeded, the population evolved towards the global 

minimum. The optimization problem was completed 

when one of several stopping criterion was met: (1) the 

maximum number of iterations or objective function 

evaluations were exceeded, (2) the best design in the 

population was equivalent to a target design, or (3) the 

optimization program tried all four algorithms but failed 

to produce a non-negligible decrease in the objective 

function. The latter criterion was the primary 

qualification of convergence and it usually indicated 

that a global minimum had been found. 

 
8. FIFTH GENERATION OF SINGLE-OBJECTIVE 

HYBRID OPTIMIZATION ALGORITHMS WITH 
AUTOMATIC SWITCHING 

 
The hybrid optimization algorithm, called H1, was 

developed in 2004 by combining three of the fastest 

gradient-based and evolutionary optimization 

algorithms [2, 30]. It is quite simple conceptually, 

although its computational implementation is more 

involved. The global procedure is illustrated in Figure 5. 

It uses the concepts of three different methods of 

optimization, namely: the Broyden-Fletcher-Goldfarb-

Shanno (BFGS) quasi-Newton algorithm [5], the 

Differential Evolution (DE) algorithm [6] and the 

Particle Swarm (PS) algorithm [8].  

 

Figure 5: Switching procedure for the fifth generation of 
our hybrid single-objective optimization algorithms. 

The most often automatically used constituent 

optimization module is the Particle Swarm (PS) 

algorithm [8]. When certain percent of the particles find 

a minimum, the algorithm switches automatically to the 

Differential Evolution (DE) algorithm [6] and the 

particles are forced to breed. If there is an improvement 

in the objective function, the algorithm returns to the 

Particle Swarm method, meaning that some other region 

is more likely to have a global minimum.  

If there is no improvement in the objective function 

value, this can indicate that this region already contains 

the global value expected and the algorithm 

automatically switches to the BFGS algorithm [5] in 

order to quickly and accurately find the location of the 

minimum.  

In order to speed-up the optimization, the procedure 

is repeated using sequential computational grid 

refinement [30] approach starting with PS algorithm. 

In the hybrid optimizer H1, when a certain percent of 

the particles find a minimum, the algorithm switches 

automatically to the DA method and the particles are 

forced to breed. If there is an improvement in the 

objective function, the algorithm returns to the PS 

method, meaning that some other region is more prone 

to having a global minimum. If there is no improvement 

of the objective function, this can indicate that this 

region already contains the global value expected and 

the algorithm automatically switches to the BFGS 

method in order to find its location more precisely. In 

Figure 5, the algorithm returns to the PS method in 

order to check if there are no changes in this location 

and the entire procedure repeats itself. After some 

maximum number of iterations is performed (e.g., five) 

the process stops.  

 
9. SIXTH GENERATION OF SINGLE-OBJECTIVE 

HYBRID OPTIMIZATION ALGORITHMS WITH 
AUTOMATIC SWITCHING AND RESPONSE 
SURFACE 

 

The hybrid optimizer H2 [31, 4] is quite similar to the 

H1, except by the fact that is uses a response surface 

method at some point of the optimization task [4]. The 

global procedure is illustrated in Figure 6. It can be seen 

from this figure that after a certain number of objective 

functions were calculated, all this information was used 

to obtain a response surface. Such a response surface is 

then optimized using the same hybrid code defined in 

the H1 optimizer so that it fits the calculated values of 

the objective function as closely as possible. New 

values of the objective function are then obtained very 

cheaply by interpolating their values from the response 

surface.  

 

Figure 6: Global procedure for the hybrid optimization 
method H2

In Figure 6, if the BFGS cannot find any better 

solution, the algorithm uses a radial basis function 

interpolation scheme to obtain a response surface and 

then optimizes such response surface using the same 

hybrid algorithm proposed. When the minimum value of 

this response surface is found, the algorithm checks to 

see if it is also a solution of the original problem. Then, 

if there is no improvement of the objective function, the 

entire population is eliminated and a new population is 

generated around the best value obtained so far. The 

hybrid algorithm returns to the PS algorithm in order to 

check if there are no changes in this location and the 
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entire procedure repeats itself. After a specified 

maximum number of iterations is performed (e.g., five) 

the process stops. 

Hybrid optimizer called H3 [31, 4] is an extension of 

H1 and H2. The global procedure is outlined below: 

1. Generate an initial population, using the real 

function (not the interpolated one) f(x). Call this 

population Preal. 

2. Determine the individidual that has the minimum 

value of the objective function, over the entire 

population Preal and call this individual xbest. 

3. Determine the individual that is more distant from 

the xbest, over the entire population Preal. Call this 

individual xfar. 

4. Generate a response surface [4] using the entire 

population Preal as support points. Call this function 

s(x). 

5. Optimize the interpolated function s(x) using the 

hybrid optimizer H1, defined above, and call the 

optimum variable of the interpolated function as xint. 

During the generation of the internal population to 

be used in the H1 optimizer, consider the upper and 

lower bounds limits as the minimum and maximum 

values of the population Preal in order to not 

extrapolate the response surface. 

6. If the real objective function f(xint) is better than all 

objective function of the population Preal, replace xfar 

by xint. Else, generate a new individual, using the 

Sobol’s pseudo-random generator [32] within the 

upper and lower bounds of the variables, and replace 

xfar by this new individual. 

7. If the optimum is achieved, stop the procedure. Else, 

return to step 2. 

From the sequence above, one can notice that the 

number of times that the real objective function f(x) is 

called is very small. Also, from step 6, one can see that 

the search space is reduced after each iteration. When it 

is no longer possible to find a better minimum on the 

current response surface, a new call to the real function 

f(x) is made to generate a new point to be included in 

the pool of the support points and a new response 

surface is generated. Since the computing time to 

calculate the interpolated function (to read the 

approximate/interpolated value of f(x) from the response 

surface s(x)) is very short, the H2 optimizer is 

significantly faster than the H1 optimizer which does 

not use the response surface. 

The hybrid optimizer H3 was compared against the 

optimizer H1, H2 and the commercial code IOSO 2.0 

for some standard test function which was the Levy #9 

function [33]. It has 625 local minima and 4 variables. 

Such function is defined as 
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The function is defined within the interval -10  x  

10 and its minimum is f(x) = 0 for x = 1. Figure 7 shows 

the optimization history of the IOSO, H1, H2 and H3 

optimizers. Since the H1, H2 and H3 optimizers are 

based on random number generators (because of the PS 

module), we present the best and worst estimates for 

these three optimizers. 
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(g) 

Figure 7 – Optimization history of the Levy #9 function 
using: (a)IOSO, (b)H1-best, (c)H2-best, (d)H3-best, (e)H1-
worst, (f)H2-worst and (g)H3-worst hybrid optimizers of the 
fifth and sixth generation 

From Figure 7, it can be seen that the performance of 

the H3 optimizer is very close to the IOSO commercial 

code [34]. The H1 code is the worst and the H2 

optimizer also has a reasonable good performance. It is 

interesting to note that the H1 code is the only one that 

doesn’t have a response surface model implemented. 

 
10. AUTOMATED SWITCHING RULES AMONG THE 

CONSTITUENT OPTIMIZERS 

 

A set of rules has been added to the hybrid constrained 

optimization system [22] in order to make the switching 

among the algorithms automatic, as well as to utilize 

some of the heuristic understanding of each algorithm's 
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behavior. The purpose of this switching was to increase 

the program's robustness and improve upon its 

convergence.  

Each switching rule was based upon and 

incorporated with the unique behavior of each 

numerical optimization algorithm. The timing of the 

switching among the algorithms was forced to occur 

during those instances in which they performed badly, 

stalled, or failed. The first algorithm that the 

optimization process chose to switch to was determined 

by reasoning and by trial and error. If the subsequent 

algorithm also failed in its processes, the opportunity 

was made for every one of the algorithms in the system 

to have a try at the problem. When all the available 

algorithms had been tried on a particular population of 

feasible designs, and all failed at their given tasks, then 

the program was terminated.  

The rules for switching will now be discussed for 

each algorithm in the hybrid optimization system. 

Figures 3, 4 and 5 demonstrate the major characteristics 

of this switching process in flowchart form. 

Gradient based algorithms are the most time 

consuming of the optimization algorithms, but their 

convergence is both maximized and guaranteed, 

assuming the gradient calculation, VF , is accurate 

enough. These methods exhibit very rapid convergence 

early in the optimization process, especially when the 

initial guess starts with a poor design. But, the nature of 

their operation is based upon the local gradient. 

Therefore, they will always move in the direction that 

minimizes the function until they reach the minimum. 

The problem is that this minimum might not be the 

solution to the problem (global minimum), but only a 

local minimum. Another one of their limitations also 

comes from the fact that the gradient of the objective 

function tends to level off near a minimum. The DFP 

method provides for a modified second-order accurate 

convergence rate, so that the algorithm can home in on 

the local or global minimum a bit faster than the first 

order accurate steepest descent, but the convergence 

during these periods will be slow.  

Local Minimum rule was developed for gradient-

based methods. The gradient search optimization 

algorithm is switched whenever the change in the 

objective is less than a user-specified tolerance, F . 
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Here, F* is the value of the objective function at the 

new optimum, F0 is the value of the objective function 

for the design at the start of the gradient search, and FK 

is the value of the objective function from the previous 

optimization cycle. The genetic algorithm is the first 

algorithm chosen, then comes the simulated annealing 

and finally the Nelder-Mead algorithm (GA – SA - 

NM). The genetic algorithm is chosen first because its 

random search capabilities are useful in escaping local 

minima. This rule is also applicable whenever the 

program stalls on a constraint boundary. 

Descent Direction rule is applied when the DFP 

search direction is not a descent direction, in which case 

the dot product of the search direction, S , and the 

gradient of the objective function, F , is greater than 

zero. Remember that the search direction may be 

different from the negative gradient direction, because 

of the DFP update formula and because search direction 

is projected onto the subspace of active constraints 

(Rosen's projection method). 

 0S F  (12) 

When this condition is met, the inverse Hessian 

matrix is re-initialized to the identity matrix. If the 

inverse Hessian is already equal to the identity due to 

re-initialization, the program is automatically switched 

to simulated annealing (SA – NM - GA). The 

randomness and simplex searching methods of the 

simulated annealing process provide quick and effective 

ways of navigating through the irregular design spaces 

characteristic of the non-descent direction criterion.  

New designs (optimum along the line search 

direction) created by the DFP are added to the 

population matrix and the DFP always works on the 

best member in the population matrix 

The GA has several criteria that can qualify its 

performance and so several switching rules have been 

developed from these. The most often used switching 

criterion is based upon the variance in the population. 

As the genetic algorithm proceeds, it tends to select 

members in the population with like qualities to breed 

more often. The result is that the population tends to 

take on a similar set of characteristics and the variation 

in the population reduces. This can happen too quickly 

when the specified mutation rate is too infrequent. In the 

ideal situation, the design variables of the population 

will tend to collect around the global minimum, but may 

have difficulty in finding it.  

Design Variance Limit rule was developed as the 

first rule for switching from GA. 
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In this equation, the non-dimensional standard 

deviation, V , for all design variables in the population 

is measured with respect to the average design variable 

in the population. 
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When the design variance in the population becomes 

less than the user specified limit, GA is switched to 

DFP. The reasoning is that the population variance is 

contracting around a minimum and the DFP can be used 

to quickly home in on that minimum. The order of the 

automatic switching is DFP – NM - SA.   

Objective RMS Limit rule is similar to the 

aforementioned rule, except that the variance in the 

objective function is computed rather than the variance 

in the design variables. 
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Here, the Fj is the objective function value of the jth 

population member, and the average function value of 

the population is computed from them. 
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The difference between this rule and the design 

variance limit is that the population may be dispersed 

over a wide design space, but each may have very 

similar objective function values. This can occur is the 

objective function space is a large flat area with little or 

no gradient. The program is then switched first to the 

simulated annealing method (SA – NM – DFP).   

Bad Mutation rule causes GA to switch to the 

Nelder-Mead algorithm if the average objective function 

increases from the previous optimization cycle that used 

GA. This will most likely occur if the random mutation 

rate is too large or if it produces one or more really bad 

designs. Since the Nelder-Mead algorithm specializes in 

bringing the worst members of the population closer to 

the centroid of the population, it is the most obvious 

first choice resulting in a sequence (NM – SA – DFP). 

Lost Generation rule causes the hybrid optimizer to 

switch to the simulated annealing program (SA – NM – 

DFP). GA develops sequential populations of new 

'childdren’ that are entered into the population only if 

the population size is allowed to increase, or if the 

'children’ are better (have lower objective functions) 

than the worst (highest objective function) members in 

the population. If no new designs are entered into the 

population, the GA. This rule takes care of such 

situations. 

Stalled Process rule is specifically developed for 

Nelder-Mead simplex searching algorithm that has only 

one failure mode. The NM is said to stall whenever the 

line search (produced by the direction from the worst 

design in the population through the centroid of the best 

designs) fails to improve itself so that it is better than 

the second worst member in the population. 

 *
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This rule causes the program to switch to the DFP 

method (DFP – GA – SA). If the best design in the 

population was generated by the DFP, then the DFP is 

passed by and the GA takes over. 

Population Less Fit rule has the purpose to assist the 

simulated annealing algorithm to add energy into the 

optimization system and allow it to escape local 

minima. The objective functions of the design variables 

in the population might get worse in this process. 

Therefore, there should be a limit set as to how much 

worse the population could get. That is, whenever the 

average objective function of the current population is 

less fit than some multiple of the average objective 

function of the previous optimization cycle's population, 

the program is switched. 

 11K KF F  (18) 

Insufficient Random Energy rule can be stated as 

follows. 
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Here, the algorithm ends whenever the variance of 

the objective function values with added random 

energy, F
~

, are less than a user-specified limit. The 

program is switched from the simulated annealing to the 

DFP method (DFP – GA – NM). After several cycles, 

the random energy in the simulated annealing algorithm 

may have been reduced to a negligible amount, while 

the insufficient random energy criterion might not be 

met because of the large variance in the population. 

Therefore, the simulated annealing algorithm is 

switched to the Nelder-Mead (NM – GA – DFP) after 

maxK
~

optimization cycles. The simulated annealing 

algorithm has, therefore, been programmed to end 

whenever the cooling protocol did not add sufficient 

energy into the system.  

 
11. SEVENTH GENERATION OF SINGLE-OBJECTIVE 

HYBRID OPTIMIZATION ALGORITHMS WITH 
AUTOMATIC SEARCH VECTOR-BASED 
SWITCHING 

 
The degree of success of any optimization process 
depends on the structure of the optimization algorithm, 
and the topology of the objective function. An 
optimization algorithm may be written such that it 
searches consistently in the direction of the current 
global best design vector (e.g., DE best/2/bin [35]), but 
if the objective function topology is deceptive, it may 
direct the optimization algorithm into a local minimum. 
This rigidity in search strategy causes certain 
optimization algorithms to be better at optimizing some 
functions than others. The Search Vector-based hybrid 
(SVH) presented here [36] attempts to overcome this 
drawback by changing search directions during the 
optimization process. 

It does so through the use of a predetermined set of 
search vectors (SV). Each iteration, the SVH will 
generate the SVs based on a predetermined formula or 
quality. The SVs are then evaluated. Some examples of 
the SVs formulations currently in use include: 
1. Global Best Vector (GB): This is the fittest design 

vector currently in the population. It is implemented 
in the same way that the global best vector is 
implemented in PS [8] and DE best/2/bin [35].  

2. Population Weighted Average (PWA): The 
population is ranked from best to worst, with the 
best receiving a rank equal to the population size, 
and the worst having a rank of one. The ranks are 
then used as weights, and the standard weighted 
arithmetic mean procedure is used to create this SV. 
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After the SVs have been evaluated, the fittest SV is 

selected as the SV for that iteration. At least one author 

has previously used the phrase “optimal search 

direction” [37], which is superficially similar to the 

concept of a “fittest SV,” but the strategy presented here 

differs from any other known work in that it uses a 

collection of different search directions, each with their 

own unique formulation, and chooses between them. 

The method presented in [37], like most other 

algorithms, generates the search direction and keeps it 

fixed throughout the entire optimization process. The 

approach presented here will be called the “aggressive 

search strategy” since it assumes that the fittest SV must 

also be the best search direction, and selected for use.  

The SVH automatically switches between a 

collection of optimization algorithms called constituent 

algorithms. Once the SV has been selected, the 

constituent algorithm selection process begins.  

First, each constituent algorithm is executed so that 

it generates a temporary population. This temporary 

population will not be evaluated. Instead, it will be used 

as an indication of the behavior of the constituent 

algorithm for a given topology. For example, suppose 

the SVH has two constituent algorithms called CA1 and 

CA2 (see Figure 8). 

 

Figure 8: Example of population movements and their 
accompanying centroids using two fictitious constituent 
algorithms CA1 and CA2 

It is possible that CA1 will use the current population 

(black dots) to generate a temporary population shifted 

to the left (red dots), while CA2 will create a temporary 

population shifted to the right (blue dots). The vectors in 

Figure 8 represent the centroids of each population. In 

order to select the constituent algorithm, the Euclidean 

distance between the endpoint of each centroid vector 

and the selected SV is calculated and stored. Secondly, 

each centroid is evaluated. The constituent algorithms 

are then ranked (using the Pareto dominance scheme in 

[38]) based on two objectives: (1) minimize distance 

between the centroid and the SV, and (2) minimum 

objective function value of the centroid. With this, a 

Pareto front can be created, and the constituent 

algorithm to be used is randomly selected from the 

Pareto front. In order for the centroids of the constituent 

algorithms to be statistically meaningful, the constituent 

algorithms are executed 10 times each iteration. 

Once a constituent algorithm has been selected, it is 

then executed one last time. This time, the population is 

permanently changed, and the objective function for 

each design vector is evaluated. This completes one full 

iteration of the SVH.  

The SVH can be summarized as follows: 

 

1) Create an initial population. 

2) Calculate fitness for each design vector. 

3) Begin main loop: 

a. Calculate and evaluate SVs. 

b. Select fittest SV. 

c. Execute each constituent algorithm ten times 

and obtain a centroid of temporary populations 

for each constituent algorithm. 

d. Evaluate centroids of the constituent 

algorithms. 

e. Using (a) and (d), randomly select one of the 

Pareto optimal constituent algorithms (i.e., 

minimum distance to SV and fittest centroid). 

f. Execute selected constituent algorithm 

normally. 

4) End main loop once population converges or 

maximum number of iterations is reached. 

Proper incorporation of constituent algorithms and 

maintenance of auxiliary vector populations such as the 

velocity of PS is not trivial. The SVH currently utilizes 

six constituent algorithms: PS [8], Particle Swarm with 

Random Differencing (PRD) [39], Modified Quantum 

Particle Swarm (MQP) [40], DE best/2/bin with 

randomized parameters (BST) [35], DE Donor3 with 

randomized parameters (DN3) [41], and Cuckoo Search 

(CKO) [42].  

Algorithms like BST, DN3, and CKO do not utilize 

information from previous iterations and can be treated 

as independent modules. The PS [8] and PRD [39] 

constituent algorithms, however, utilize a velocity 

vector population that is a function of the previous 

iteration’s velocity. As long as one of these modules is 

called sequentially, the velocity vector can be computed 

normally. However, if the SVH switches from PS or 

PRD to another method and then back to PS or PRD, the 

velocity calculation becomes meaningless. Therefore, 

the velocity must be reinitialized. As a first attempt, the 

velocity re-initialization equation can be used as  

 , , ,
0.2

1.02
j l j u j l j G
V D R D D  (20) 

where jV  is the jth coordinate of the velocity vector, 

jlD ,  and juD ,  are the lower and upper limits of the 

search domain in the jth direction respectively, R is a 

uniformly distributed random number [0,1] and G is the 

generation (iteration) number.  

Additionally, algorithms with DE-style comparisons 

have an implicit form of elitism. These comparisons 

prohibit the fitter design vectors like the GB from being 

replaced by inferior design vectors. This feature is not 

present in algorithms like PS. Therefore, if the SVH 
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switches from DE to PS and back to DE it is possible to 

lose fitter design vectors. In order to partially remedy 

this, the SVH stores the GB separately, but allows other 

vectors to be overwritten by constituent algorithms. 

Since each constituent algorithm has its own logic, 

another issue inherent to this SVH is that the SV and 

constituent algorithm selection process overrides this 

logic. This is not necessarily a flaw, but it is an 

important consideration nonetheless. As suggested 

earlier, no optimization algorithm can solve all 

problems because no single search method is capable of 

optimizing all function topologies, which includes the 

presented SVH. Although automatically switching SVs 

partly resolves this issue, the strategy itself can still fall 

victim to this limitation.  

Therefore, a random parameter was introduced in the 

algorithm. Each iteration after the first, there is a 10% 

chance that the SVH will reselect the constituent 

algorithm used in the previous iteration. In this way, the 

SVH is not strictly bound to behave in a particular 

manner and can possibly escape the pitfalls of a strict 

search strategy. Another way to implement this feature 

could be to introduce a probability that the SVH will 

select a random constituent algorithm rather than the 

previous one, but this has not yet been tested. 

Since the constituent algorithms are effectively 

modular, they can be added or removed as desired. SVs 

can also be added or removed as needed, thereby 

allowing the user of the SVH to incorporate the latest in 

optimization research into the SVH with minimal 

changes to the SVH code. Furthermore, it is widely 

known that changing the values of user-defined 

parameters can greatly impact the performance of an 

optimization algorithm. With this SVH, if a single 

optimization algorithm can be tailored to several classes 

of problems, then each tailored optimization algorithm 

can be incorporated as a distinct constituent algorithm. 

While increasing the number of constituent algorithms 

will increase the SVH’s overhead computing costs, it 

can also increase its robustness. Since many real-world 

engineering problems have objective functions that 

require hours or even days to evaluate, the increased 

overhead of the SVH can be trivial by comparison. 

To benchmark this hybrid the Schittkowski & Hock 

test cases [43, 44] will be used. This set of analytical 

test functions contains over 300 test cases ranging from 

unconstrained, smooth and continuous objective 

functions to heavily constrained, discontinuous 

objective functions. For simplicity, constraints will be 

enforced using penalty functions. Test cases 290 – 293 

use the same unconstrained function, given by the 

equation (21). 
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where N is the dimension of the function space. The 

dimension N for test cases 290, 291, 292, and 293 is 2, 

10, 30, and 50, respectively, making them useful for 

examining the performance of an algorithm as the 

problem dimensionality increases. 

 

a) 2 dimensional test case 

 

b) 50 dimensional test case 

Figure 9: SVH performance with increasing dimension 

Figure 9, like most optimization algorithms, 

demonstrates that the hybrid optimizer requires more 

objective function evaluations with increased problem 

dimensionality. However, unlike many optimization 

algorithms, the increase in number of function 

evaluations needed to reach the same level of accuracy 

is not exponential. In order to obtain an accuracy on the 

order of 10-5 from the global minimum, the SVH 

requires roughly 760 evaluations for the 2-dimensional 

problem, and 13440 evaluations for the 50-dimensional 

problem. Therefore, although the dimensionality has 

increased by a factor of 25, the number of function 

evaluations increases by a factor of approximately 17. 

Figure 10 demonstrates the performance of the SVH 

on the Griewank function [1] averaged over 50 

optimization trials. In this case, the accuracy of the SVH 

is on par with DE, PSO, and SA, but slower than the 

hybrid of Figure 2e. This difference in performance can 

potentially be improved through the use of different SVs 

or different constitutive algorithms. 

Overall, this hybrid optimizer outperforms its 

constitutive algorithms in accuracy and speed in over 

60% of the Schittkowski and Hock test cases and 

performs competitively against other hybrid algorithms, 

including those previously presented. 
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Figure 10: Convergence history of SVH optimizer applied to 
Griewank’s function 

CONCLUSION 

A collection of standard gradient-based and 

evolutionary optimization algorithms was assembled in 

several generations of hybrid optimization tools where a 

set of heuristic rules was used to perform automatic 

switching among the individual optimizers in order to 

avoid local minima, escape from the local minima, 

converge on the global minimum, and reduce the overall 

computing time. The constraints were enforced either 

via penalty function or via Rosen’s projection method. 

Lessons learned from these efforts are valuable. Most 

importantly, hybrid optimization is a very robust and 

cost-effective optimization concept. Automatic 

switching among the individual optimizers can be 

further improved by incorporating certain aspects of 

neural networks. Use of simplified models (surrogates) 

for evaluation of the objective function is highly cost 

effective, although progressively more complete 

physical models should be used as the global 

optimization process starts converging. 

Parameterization of the design space plays a crucial role 

in the hybrid constrained optimization.  
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