
New Series, Volume 41, Number 3, 2013

FME TRANSACTIONS

Editor:
Boško Rašuo
University of Belgrade

Associate Editor:
Stevanovi Vladimir
University of Belgrade

Editorial Board:
Aškovi Radomir
Université de Valenciennes, France

Avellan François
Laboratory for Hydraulic Machines
Swiss Federal Institute of Technology, Zurich, Switzerland

Boji Milorad
University of Kragujevac

Dulikravich S. George
Department of Mechanical and Materials Eng.
Florida International University, Miami, USA

or evi Vladan
University of Belgrade

Ehmann F. Kornel
Department of Mechanical Engineering
Northwestern University, Evanston IL, USA

Felix Hong
Wayne State University, Detroit, USA

Gabi Martin
Karlsruher lnstitut für Technologie (KIT)
Universität des Landes Baden-Württemberg

Gaji Zoran
Rutgers University, USA

Jovanovi Jasmina
University of Belgrade

Kartnig Georg
Technische Universität Wien, Austria

Klimenko A. Sergei
National Academy of Sciences, Kiev, Ukraine

Komatina Mirko
University of Belgrade

Meerkamm Harald
Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany

Nedi Novak
University of Kragujevac

Plan ak Miroslav
University of Novi Sad

Radovanovi Miroslav
University of Nis

Sedmak Aleksandar
University of Belgrade

Soutis Constantinos
Aerospace Research Institute & Composites Centre,
The Unversity of Manchester, Manchester, UK

Stamenovi Dimitrije
Boston University, Boston, USA

Technical Editor:
Dinulovi Mirko
University of Belgrade

Published by:
University of Belgrade
Faculty of Mechanical Engineering

ISSN 1451-2092 UDC: 621

Volume 41, No 3, 2013, pp. 167-256

CONTENTS PAGE

Dulikravich George, Martin Thomas, Colaço
Marcelo, Inclan Eric
Automatic Switching Algorithms in Hybrid Single-

Objective Optimization

167

Jazarevi Vladimir, Rašuo Boško
Computation of acoustic sources for the landing

gear during the take-off and landing

180

Samardži Marija, Isakovi Jovan, Miloš Marko,
Anastasijevi Zoran, Nauparac Dragan
Measurement of the Direct Damping Derivative in

Roll of the Two Callibration Missile Models

189

Rabey Vadim
The Study of a Stress-Strain State of Bridge

Cranes’ Metal Constructions in the Process of a

Collision with the End Stops

195

Bugari Uglješa, Vukovi Josif, Gliši Dušan,
Petrovi Dušan
Optimal Movement of the Suspended Payload

202

Farkašová Mária, Tillová Eva, Chalupová Mária
Modification of Al-Si-Cu cast alloy

210

Figlus Tomasz, Wilk Andrzej, Franke Patryk
The Estimation of Changes in The Noise Level

Generated by Devices Equipped with Two-Stroke

Internal Combustion Engines with Small

Displacement Volume

216

Zdravkovi Nebojša, Gaši Milomir, Savkovi
Mile
Energy Method in Efficient Estimation of Elastic

Buckling Critical Load of Axially Loaded Three-

Segment Stepped Column

222

Živanovi Milovan, Živanovi Miloš
Kinematics of Base Sphere as a Segment of Spheres

Kinematical Chain - Gravitational acceleration as

equivalent central acceleration

230

Debeljkovic Dragutin, Stojanovic Sreten,
Jovanovic Aleksandra
Further Results on Finite Timeand Practical

Stability of Linear Continuous Time Delay Systems

241

Spasojevi -Brki Vesna, Putnik Goran, Shah
Vaibhav, Castro Helio, Veljkovi Zorica
Human - Computer Interactions and User

Interfaces for Remote Control of Manufacturing

Systems

250

Obradovi M., Popkonstantinovi B., Miši S.
On the Properties of the Concave Antiprisms of

Second Sort

256

On line service:

http:/www.mas.bg.ac.rs/transactions

© Faculty of Mechanical Engineering, Belgrade. All rights reserved FME Transactions (2013) 41, 167-179 167

Received: June 2013, Accepted: July 2013

Correspondence to: Prof. George S. Dulikravich

Dept. of Mechanical & Materials Eng., MAIDROC Lab.

10555 West Flagler St., Miami, Florida 33174, USA

E-mail: dulikrav@fiu.edu

George S. Dulikravich

Full Professor
Florida International University

Dept. of Mechanical & Materials Eng.
MAIDROC Lab., Miami, Florida, USA

Thomas J. Martin

Senior Design Engineer
Hot Section Advanced Methods

Pratt & Whitney, a division of UTC
East Hartford, Connecticut, USA

Marcelo J. Colaço

Associate Professor
Federal University of Rio de Janeiro

Faculty of Mechanical Engineering
Rio de Janeiro, Brazil

Eric J. Inclan

Research Assistant
Florida International University

Dept. of Mechanical & Materials Eng.
MAIDROC Lab., Miami, Florida, USA

Automatic Switching Algorithms in
Hybrid Single-Objective Optimization

Hybrid optimization algorithms consist of a number of proven constituent

optimization algorithms and a control algorithm that performs automatic

switching among the constituent algorithms at each stage during the

optimization when the rate of convergence becomes unsatisfactory, the

process tends towards a local minimum, or some other undesirable aspect

of the iterative process appears. Thus, hybrid optimization algorithms that

utilize a number of gradient based and non-gradient based constituent

optimizers are more robust and converge better than individual constituent

optimization algorithms. The logic of designing the automatic switching

algorithms in hybrid optimizers is surveyed in this paper focusing on the

research performed by the authors in the area of hybrid single-objective

optimization initiated in 1997.

Keywords: optimization algorithms, hybrid optimization, switching

algorithms, minimization, single-objective optimization.

1. INTRODUCTION

Realistic engineering problems always involve

interaction of several disciplines such as fluid dynamics,

heat transfer, elasticity, electromagnetism, dynamics,

etc. Thus, realistic problems are always

multidisciplinary and the geometric space is typically

arbitrarily shaped and three-dimensional. Each of the

individual disciplines is governed by its own system of

differential equations or integral equations of different

degree of non-linearity and based on often widely

disparate time scales and length scales. All of these

factors make a typical multidisciplinary optimization

problem highly non-linear and interconnected.

Consequently, an objective function space for a typical

multidisciplinary problem could be expected to have a

number of local minima. A typical multidisciplinary

optimization problem, therefore, requires the use of

optimization algorithms that can either avoid the local

minima or escape from the local minima.

Optimization algorithms are de facto minimization

algorithms, that is, algorithms that search for a global

minimum and can be divided in three groups: a)

gradient-based algorithms, b) non-gradient based

(evolutionary algorithms), and c) hybrid otimization

algorithms that combine the gradient-based and the non-

gradient-based algorithms via an automatic switching

algorithm. The objective of this survey paper is to

elaborate on these switching algorithms.

Addition of constraints of both equality and

inequality type to a typical multidisciplinary

optimization problem reduces significantly the feasible

domain of the objective function space. To find such

often-small feasible function space, the optimizer

should be able to initially search as large portion of the

objective function space as possible. Non-gradient

based optimizers are capable of performing this task.

When equality constraints are to be enforced, the

gradient-based optimizers can perform this task very

accurately.

One of the primary concerns of any optimization

algorithm is the computational effort required to achieve

convergence. Except in the case of certain sensitivity

based optimization algorithms and genetic algorithms

with extremely large populations, the computer memory

is not an issue. Typical constrained optimization

problems in engineering require large number of

objective function evaluations. Each function evaluation

involves a very time-consuming computational analysis

of the physical processes involved.

An equally important issue is the ability of an

optimization algorithm to converge to the global

minimum rather than immediate neighborhood of the

minimum. Non-gradient based optimizers have these

capabilities. On the other hand, once the neighborhood

of the global minimum has been found, the non-gradient

based optimizers have difficulty converging to the

global minimum. For this purpose, it is more

appropriate to use gradient-based optimizers.

2. OPTIMIZATION PROBLEM STATEMENT

The general single-objective, constrained, optimization

problem can be mathematically stated as follows.

Minimize the scalar objective function,

 F(V) (1)

of a set of design variables,

 1 2 var{ } NV V V V , (2)

limited to their extreme individual ranges

 min max{ } { } { }V V V (3)

subject to inequality constraints

168 VOL. 41, No 3, 2013 FME Transactions

 0mg V , m = 1,Ninc (4)

and equality constraints

n nh V , n = 1,Neqc (5)

Here, F V is the objective function, { }V is the vector

of Nvar design variables,
min{ }V is the vector of lower

limit constraints, }{ maxV is the vector of upper limit

constraints, g
m
 is the set of Ninc inequality constraint

functions, h
n
 is the set of Neqc equality constraint

functions, and is a very small number called the

constraint thickness. The solution of an optimization

problem is the set of design variables for which the

objective function takes on its global minimum value,

 * *F V .

A set of design variables that does not violate any

constraints is said to be feasible, while design variables

that violate one or more constraints are infeasible. If a

constraint is on the verge of being violated, it is said to

be an active constraint. That is, active constraints satisfy

the following relationships. Equality constraints are

always active.

m mg V (6)

n nh V (7)

3. INDIVIDUAL PERFORMANCES OF SOME OF THE

MOST COMMON OPTIMIZATION ALGORITHMS

As a demonstration of the superior performance of a

hybrid optimizer when compared to individual

optimization algorithms, we will first show the

performance of several of the most common optimizers

to find the optimum of the Griewank’s function #8 [1],

which is defined as

2

11

cos 1
4000

] 600,600 [

n n
i i

ii

x x
f

i

x

 (8)

The global minimum for this function is located at x

= 0 and is f(x) = 0. For a two-dimensional test case, it is

shown in Figure 1 in three levels of local resolution.

One can see that this function has an extremely large

number of local minima, making the optimization task

of finding the global minimum a serious challenge.

The following single-objective minimization

algorithms [2-4] were individually tested to access their

individual performance when attempting to find the

global minimum and its location for this test function.

Figure 2 shows the results for this optimization task

using separately: (a) Broyden-Fletcher-Goldfarb-

Shanno (BFGS) quasi-Newton method [5], (b)

Differential Evolution (DE) algorithm [6], (c) Simulated

Annealing (SA) algorithm, [7] (d) Particle Swarm (PS)

algorithm [8], and (e) our fourth generation hybrid

optimization algorithm. Evolutionary methods

performed somewhat better than the best gradient-based

algorithm (BFGS).

Figure 1: Griewank’s function #8: global view, intermediate

view, local view.

However, only the hybrid optimization algorithm was

capable of locating the global optimum value of this

function and to determine its global minimum value

with satisfactory accuracy.

FME Transactions VOL. 41, No 3, 2013 169

0 100 200 300 400 500
Number of function evaluations

1.0E-32
1.0E-31
1.0E-30
1.0E-29
1.0E-28
1.0E-27
1.0E-26
1.0E-25
1.0E-24
1.0E-23
1.0E-22
1.0E-21
1.0E-20
1.0E-19
1.0E-18
1.0E-17
1.0E-16
1.0E-15
1.0E-14
1.0E-13
1.0E-12
1.0E-11
1.0E-10

1.0E-9
1.0E-8
1.0E-7
1.0E-6
1.0E-5
1.0E-4
1.0E-3
1.0E-2
1.0E-1
1.0E+0
1.0E+1
1.0E+2

B
e
s
t
v
a

lu
e
 o

f
o

b
je

c
t
fu

n
c
ti
o
n

a) Convergence history for BFGS

0 200 400 600 800
Number of function evaluations

1.0E-32
1.0E-31
1.0E-30
1.0E-29
1.0E-28
1.0E-27
1.0E-26
1.0E-25
1.0E-24
1.0E-23
1.0E-22
1.0E-21
1.0E-20
1.0E-19
1.0E-18
1.0E-17
1.0E-16
1.0E-15
1.0E-14
1.0E-13
1.0E-12
1.0E-11
1.0E-10

1.0E-9
1.0E-8
1.0E-7
1.0E-6
1.0E-5
1.0E-4
1.0E-3
1.0E-2
1.0E-1
1.0E+0
1.0E+1
1.0E+2

B
e
s
t

v
a

lu
e
 o

f
o

b
je

c
t
fu

n
c
ti
o

n

b) Convergence history for DE

0 500 1000 1500 2000 2500
Number of function evaluations

1.0E-32
1.0E-31
1.0E-30
1.0E-29
1.0E-28
1.0E-27
1.0E-26
1.0E-25
1.0E-24
1.0E-23
1.0E-22
1.0E-21
1.0E-20
1.0E-19
1.0E-18
1.0E-17
1.0E-16
1.0E-15
1.0E-14
1.0E-13
1.0E-12
1.0E-11
1.0E-10

1.0E-9
1.0E-8
1.0E-7
1.0E-6
1.0E-5
1.0E-4
1.0E-3
1.0E-2
1.0E-1
1.0E+0
1.0E+1
1.0E+2

B
e
s
t
v
a
lu

e
 o

f
o
b
je

c
t
fu

n
c
ti
o
n

c) Convergence history for SA

0 1000 2000 3000 4000
Number of function evaluations

1.0E-32
1.0E-31
1.0E-30
1.0E-29
1.0E-28
1.0E-27
1.0E-26
1.0E-25
1.0E-24
1.0E-23
1.0E-22
1.0E-21
1.0E-20
1.0E-19
1.0E-18
1.0E-17
1.0E-16
1.0E-15
1.0E-14
1.0E-13
1.0E-12
1.0E-11
1.0E-10

1.0E-9
1.0E-8
1.0E-7
1.0E-6
1.0E-5
1.0E-4
1.0E-3
1.0E-2
1.0E-1
1.0E+0
1.0E+1
1.0E+2

B
e

s
t

v
a

lu
e

 o
f

o
b

je
c
t

fu
n

c
ti
o

n

d) Convergence history for PS

0 400 800 1200 1600 2000
Number of function evaluations

1.0E-32
1.0E-31
1.0E-30
1.0E-29
1.0E-28
1.0E-27
1.0E-26
1.0E-25
1.0E-24
1.0E-23
1.0E-22
1.0E-21
1.0E-20
1.0E-19
1.0E-18
1.0E-17
1.0E-16
1.0E-15
1.0E-14
1.0E-13
1.0E-12
1.0E-11
1.0E-10

1.0E-9
1.0E-8
1.0E-7
1.0E-6
1.0E-5
1.0E-4
1.0E-3
1.0E-2
1.0E-1
1.0E+0
1.0E+1
1.0E+2

B
e
s
t
v
a
lu

e
 o

f
o

b
je

c
t
fu

n
c
ti
o
n

e) Convergence history for hybrid optimizer

Figure 2: Comparison of performances of various
optimizers for the Griewank’s function #8 [1].

This suggests that it might be beneficial to utilize

several different optimization algorithms during

different phases of the optimization process, since “no

free lunch theorem” [9] definitely holds, that is, no

single optimization algorithm is better than all the other

optimizers for all classes of optimization problems.

Various optimization algorithms have been known to

provide faster convergence over others depending upon

the size and topology of the design space, the type of the

constraints, and where they are during the optimization

process. Each algorithm provides a unique approach to

optimization with varying degrees of convergence,

reliability, and robustness at different stages during the

iterative optimization process.

Hybrid optimization algorithms combine individual

constituent optimization algorithms in a sequential or

parallel manner so the resulting software can utilize the

advantages of each constituent algorithm. That is,

single-objective optimization constituent algorithms that

rely on different principles of operation are combined

with a set of measures to perform automatic switching

among the constituent algorithms. This allows the

software to choose the most effective constituent

algorithm for the design problem at hand. The automatic

back-and-forth switching among several optimization

algorithms can be viewed as a backup strategy [10] so

that, if one optimization method fails, another

optimization algorithm can automatically take over.

Following is a discussion of various automatic

switching strategies among the constituent optimizers.

4. FIRST GENERATION OF SINGLE-OBJECTIVE

HYBRID OPTIMIZATION ALGORITHMS WITH
AUTOMATIC SWITCHING

The first hybrid, single-objective, constrained

optimization algorithm was developed and used in the

period 1995-1998 [10-13]. It had two constitutive

optimization algorithms: Davidon-Fletcher-Powell

(DFP) gradient search algorithm [14, 15] and genetic

algorithm (GA) [16]. Initial search of the objective

function space was performed using GA. Once the code

was showing signs of slow convergence, it was

automatically switched to DFP. When DFP algorithm’s

convergence rate dropped below a specified minimum

value, this hybrid optimizer switched automatically

back to GA algorithm. This back-and-forth automatic

switching successfully avoided premature termination

of the overall optimization process in a local minimum

and continued to the global minimum.

Preliminary results obtained with different versions

of a hybrid optimizer that uses a GA for the overall

logic, a quasi-Newtonian gradient-search algorithm or a

feasible directions method to ensure monotonic

reduction of the objective function, and a Nelder-Mead

sequential simplex algorithm or a steepest descent

methodology of the design variables into feasible

regions from infeasible ones has proven to be effective

at avoiding local minima. Since the classical GA does

not ensure monotonic decrease of the objective function,

the hybrid optimizer could store information gathered

by the genetic search and use it to determine the

sensitivity derivatives of the objective function and all

170 VOL. 41, No 3, 2013 FME Transactions

constraint function. When enough information has been

gathered and the sensitivity derivatives are known, the

optimizer automatically switches to the feasible

directions method (with quadratic subproblem) thus

quickly proceeding to further acceleraate the iterative

search process.

One possible scenario for such a hybrid algorithm

can be summarized as follows:

1) Let the set of population (candidate solutions)

members define a simplex like that used in the

Nelder-Mead method.

2) If the fitness evaluations for all of the population

members does not yield a better solution, then

define a search direction as described by the

Nelder-Mead method.

3) If there are active inequality constraints, compute

their gradients and determine a new search

direction by solving the quadratic subproblem.

4) If there are active equality constraints, project this

search direction onto the subspace tangent to the

constraints.

5) Perform line search.

5. SECOND GENERATION OF SINGLE-OBJECTIVE

HYBRID OPTIMIZATION ALGORITHMS WITH
AUTOMATIC SWITCHING

The second generation of our hybrid optimization

algorithms was developed in the late 1990s [17-22]. It

had four constitutive optimization algorithms: Davidon-

Fletcher-Powell (DFP) gradient search [14, 15], Genetic

Algorithm (GA) [16], Nelder-Mead (NM) simplex

algorithm [23], and Simulated Annealing (SA) [7].

Automatic switching among the four constituent

algorithms was performed using heuristics (Figure 3).

Figure 3. Automatic switching logic among constituent
optimization algorithms in the second generation of our
hybrid single-objective optimization algorithms.

6. THIRD GENERATION OF SINGLE-OBJECTIVE

HYBRID OPTIMIZATION ALGORITHMS WITH
AUTOMATIC SWITCHING

This version of the hybrid optimizer was developed and

used briefly during 1998 [24, 25]. It incorporated five

constitutive optimization algorithms: Davidon-Fletcher-

Powell (DFP) gradient-based algorithm [14, 15],

Genetic Algorithm (GA) [16], modified Nelder-Mead

(NM) simplex algorithm [23], Simulated Annealing

(SA) [7] and Sequential Quadratic Programming (SQP)

[26].

7. FOURTH GENERATION OF SINGLE-OBJECTIVE

HYBRID OPTIMIZATION ALGORITHMS WITH
AUTOMATIC SWITCHING

The fourth generation of our hybrid optimization

algorithms was developed in the early 2000s [17-22]. It

had the following six constituent optimization modules:

Davidon-Fletcher-Powell (DFP) gradient-based

algorithm [14, 15], Genetic Algorithm (GA) [16],

Nelder-Mead (NM) simplex algorithm [23], Differential

Evolution (DE) algorithm [6], Sequential Quadratic

Programming (SQP) [26] and quasi-Newton algorithm

of Pshenichny-Danilin (LM) [27]. Thus, this hybrid

optimizer had three gradient-based and three non-

gradient-based constituent optimization algorithms that

are automatically switching back-and-forth as depicted

in Figure 4.

Design Variance 0

DFP

DE NM

Local Minimum

Bad Mutation

Stalls

Lost Generation

GA

Stalls

LM

SQP

Local

Minimum

Local

Minimum

Figure 4: Switching procedure for the third generation of
our hybrid single-objective optimization algorithms.

The evolutionary hybrid scheme handled the

existence of equality and inequality constraint functions,

Vg and Vh , in three ways: Rosen's projection

method, feasible search, and random design generation.

Rosen's projection method [28, 2-4, 10] provided search

directions which guided the descent direction tangent to

active constraint boundaries. In the feasible search [10],

designs that violate constraints were automatically

restored to feasibility via the minimization of the active

global constraint functions. If at any time this constraint

minimization failed, random designs were generated

within a Gaussian-shaped probability density cloud

about a desirable and feasible design until a new design

is reached.

Gradients of the objective and constraint functions

with respect to the design variables, VF , Vg ,

and Vg (also called design sensitivities), were

calculated using either forward (first order) finite

difference formulas, or by the efficient method of

implicit differentiation of the governing equations [29].

The population matrix was updated every iteration

with new designs and ranked according to the value of

the objective function. As the optimization process

FME Transactions VOL. 41, No 3, 2013 171

proceeded, the population evolved towards the global

minimum. The optimization problem was completed

when one of several stopping criterion was met: (1) the

maximum number of iterations or objective function

evaluations were exceeded, (2) the best design in the

population was equivalent to a target design, or (3) the

optimization program tried all four algorithms but failed

to produce a non-negligible decrease in the objective

function. The latter criterion was the primary

qualification of convergence and it usually indicated

that a global minimum had been found.

8. FIFTH GENERATION OF SINGLE-OBJECTIVE

HYBRID OPTIMIZATION ALGORITHMS WITH
AUTOMATIC SWITCHING

The hybrid optimization algorithm, called H1, was

developed in 2004 by combining three of the fastest

gradient-based and evolutionary optimization

algorithms [2, 30]. It is quite simple conceptually,

although its computational implementation is more

involved. The global procedure is illustrated in Figure 5.

It uses the concepts of three different methods of

optimization, namely: the Broyden-Fletcher-Goldfarb-

Shanno (BFGS) quasi-Newton algorithm [5], the

Differential Evolution (DE) algorithm [6] and the

Particle Swarm (PS) algorithm [8].

Figure 5: Switching procedure for the fifth generation of
our hybrid single-objective optimization algorithms.

The most often automatically used constituent

optimization module is the Particle Swarm (PS)

algorithm [8]. When certain percent of the particles find

a minimum, the algorithm switches automatically to the

Differential Evolution (DE) algorithm [6] and the

particles are forced to breed. If there is an improvement

in the objective function, the algorithm returns to the

Particle Swarm method, meaning that some other region

is more likely to have a global minimum.

If there is no improvement in the objective function

value, this can indicate that this region already contains

the global value expected and the algorithm

automatically switches to the BFGS algorithm [5] in

order to quickly and accurately find the location of the

minimum.

In order to speed-up the optimization, the procedure

is repeated using sequential computational grid

refinement [30] approach starting with PS algorithm.

In the hybrid optimizer H1, when a certain percent of

the particles find a minimum, the algorithm switches

automatically to the DA method and the particles are

forced to breed. If there is an improvement in the

objective function, the algorithm returns to the PS

method, meaning that some other region is more prone

to having a global minimum. If there is no improvement

of the objective function, this can indicate that this

region already contains the global value expected and

the algorithm automatically switches to the BFGS

method in order to find its location more precisely. In

Figure 5, the algorithm returns to the PS method in

order to check if there are no changes in this location

and the entire procedure repeats itself. After some

maximum number of iterations is performed (e.g., five)

the process stops.

9. SIXTH GENERATION OF SINGLE-OBJECTIVE

HYBRID OPTIMIZATION ALGORITHMS WITH
AUTOMATIC SWITCHING AND RESPONSE
SURFACE

The hybrid optimizer H2 [31, 4] is quite similar to the

H1, except by the fact that is uses a response surface

method at some point of the optimization task [4]. The

global procedure is illustrated in Figure 6. It can be seen

from this figure that after a certain number of objective

functions were calculated, all this information was used

to obtain a response surface. Such a response surface is

then optimized using the same hybrid code defined in

the H1 optimizer so that it fits the calculated values of

the objective function as closely as possible. New

values of the objective function are then obtained very

cheaply by interpolating their values from the response

surface.

Figure 6: Global procedure for the hybrid optimization
method H2

In Figure 6, if the BFGS cannot find any better

solution, the algorithm uses a radial basis function

interpolation scheme to obtain a response surface and

then optimizes such response surface using the same

hybrid algorithm proposed. When the minimum value of

this response surface is found, the algorithm checks to

see if it is also a solution of the original problem. Then,

if there is no improvement of the objective function, the

entire population is eliminated and a new population is

generated around the best value obtained so far. The

hybrid algorithm returns to the PS algorithm in order to

check if there are no changes in this location and the

172 VOL. 41, No 3, 2013 FME Transactions

entire procedure repeats itself. After a specified

maximum number of iterations is performed (e.g., five)

the process stops.

Hybrid optimizer called H3 [31, 4] is an extension of

H1 and H2. The global procedure is outlined below:

1. Generate an initial population, using the real

function (not the interpolated one) f(x). Call this

population Preal.

2. Determine the individidual that has the minimum

value of the objective function, over the entire

population Preal and call this individual xbest.

3. Determine the individual that is more distant from

the xbest, over the entire population Preal. Call this

individual xfar.

4. Generate a response surface [4] using the entire

population Preal as support points. Call this function

s(x).

5. Optimize the interpolated function s(x) using the

hybrid optimizer H1, defined above, and call the

optimum variable of the interpolated function as xint.

During the generation of the internal population to

be used in the H1 optimizer, consider the upper and

lower bounds limits as the minimum and maximum

values of the population Preal in order to not

extrapolate the response surface.

6. If the real objective function f(xint) is better than all

objective function of the population Preal, replace xfar

by xint. Else, generate a new individual, using the

Sobol’s pseudo-random generator [32] within the

upper and lower bounds of the variables, and replace

xfar by this new individual.

7. If the optimum is achieved, stop the procedure. Else,

return to step 2.

From the sequence above, one can notice that the

number of times that the real objective function f(x) is

called is very small. Also, from step 6, one can see that

the search space is reduced after each iteration. When it

is no longer possible to find a better minimum on the

current response surface, a new call to the real function

f(x) is made to generate a new point to be included in

the pool of the support points and a new response

surface is generated. Since the computing time to

calculate the interpolated function (to read the

approximate/interpolated value of f(x) from the response

surface s(x)) is very short, the H2 optimizer is

significantly faster than the H1 optimizer which does

not use the response surface.

The hybrid optimizer H3 was compared against the

optimizer H1, H2 and the commercial code IOSO 2.0

for some standard test function which was the Levy #9

function [33]. It has 625 local minima and 4 variables.

Such function is defined as

2

1

1
2 22

1 4

1

sin

1 1 10sin 1
n

i i

i

f z

z z z

x
 (9)

 1
1 , 1,4

4

i
i

x
z i (10)

The function is defined within the interval -10 x

10 and its minimum is f(x) = 0 for x = 1. Figure 7 shows

the optimization history of the IOSO, H1, H2 and H3

optimizers. Since the H1, H2 and H3 optimizers are

based on random number generators (because of the PS

module), we present the best and worst estimates for

these three optimizers.

0 400 800 1200 1600 2000
Number of function evaluations

1.0E-14

1.0E-13

1.0E-12

1.0E-11

1.0E-10

1.0E-9

1.0E-8

1.0E-7

1.0E-6

1.0E-5

1.0E-4

1.0E-3

1.0E-2

1.0E-1

1.0E+0

1.0E+1

B
e
s
t

v
a

lu
e

 o
f
th

e
 o

b
je

c
ti
v
e

 f
u

n
c
ti
o

n

 (a) (b)

0 100 200 300
Number of function evaluations

1.0E-14

1.0E-13

1.0E-12

1.0E-11

1.0E-10

1.0E-9

1.0E-8

1.0E-7

1.0E-6

1.0E-5

1.0E-4

1.0E-3

1.0E-2

1.0E-1

1.0E+0

1.0E+1

B
e
s
t
v
a
lu

e
 o

f
th

e
 o

b
je

c
ti
v
e
 f
u
n
c
ti
o
n

0 40 80 120 160
Number of function evaluations

1.0E-14

1.0E-13

1.0E-12

1.0E-11

1.0E-10

1.0E-9

1.0E-8

1.0E-7

1.0E-6

1.0E-5

1.0E-4

1.0E-3

1.0E-2

1.0E-1

1.0E+0

1.0E+1

B
e
s
t
v
a
lu

e
 o

f
th

e
 o

b
je

c
ti
v
e
 f
u
n
c
ti
o
n

 (c) (d)

0 1000 2000 3000 4000 5000
Number of function evaluations

1.0E-14

1.0E-13

1.0E-12

1.0E-11

1.0E-10

1.0E-9

1.0E-8

1.0E-7

1.0E-6

1.0E-5

1.0E-4

1.0E-3

1.0E-2

1.0E-1

1.0E+0

1.0E+1
B

e
s
t

v
a
lu

e
 o

f
th

e
 o

b
je

c
ti
v
e
 f
u
n

c
ti
o

n

0 100 200 300 400
Number of function evaluations

1.0E-14

1.0E-13

1.0E-12

1.0E-11

1.0E-10

1.0E-9

1.0E-8

1.0E-7

1.0E-6

1.0E-5

1.0E-4

1.0E-3

1.0E-2

1.0E-1

1.0E+0

1.0E+1

B
e
s
t

v
a
lu

e
 o

f
th

e
 o

b
je

c
ti
v
e
 f
u
n

c
ti
o

n

 (e) (f)

0 50 100 150 200 250
Number of function evaluations

1.0E-14

1.0E-13

1.0E-12

1.0E-11

1.0E-10

1.0E-9

1.0E-8

1.0E-7

1.0E-6

1.0E-5

1.0E-4

1.0E-3

1.0E-2

1.0E-1

1.0E+0

1.0E+1

B
e
s
t
v
a

lu
e
 o

f
th

e
 o

b
je

c
ti
v
e
 f
u

n
c
ti
o

n

(g)

Figure 7 – Optimization history of the Levy #9 function
using: (a)IOSO, (b)H1-best, (c)H2-best, (d)H3-best, (e)H1-
worst, (f)H2-worst and (g)H3-worst hybrid optimizers of the
fifth and sixth generation

From Figure 7, it can be seen that the performance of

the H3 optimizer is very close to the IOSO commercial

code [34]. The H1 code is the worst and the H2

optimizer also has a reasonable good performance. It is

interesting to note that the H1 code is the only one that

doesn’t have a response surface model implemented.

10. AUTOMATED SWITCHING RULES AMONG THE

CONSTITUENT OPTIMIZERS

A set of rules has been added to the hybrid constrained

optimization system [22] in order to make the switching

among the algorithms automatic, as well as to utilize

some of the heuristic understanding of each algorithm's

FME Transactions VOL. 41, No 3, 2013 173

behavior. The purpose of this switching was to increase

the program's robustness and improve upon its

convergence.

Each switching rule was based upon and

incorporated with the unique behavior of each

numerical optimization algorithm. The timing of the

switching among the algorithms was forced to occur

during those instances in which they performed badly,

stalled, or failed. The first algorithm that the

optimization process chose to switch to was determined

by reasoning and by trial and error. If the subsequent

algorithm also failed in its processes, the opportunity

was made for every one of the algorithms in the system

to have a try at the problem. When all the available

algorithms had been tried on a particular population of

feasible designs, and all failed at their given tasks, then

the program was terminated.

The rules for switching will now be discussed for

each algorithm in the hybrid optimization system.

Figures 3, 4 and 5 demonstrate the major characteristics

of this switching process in flowchart form.

Gradient based algorithms are the most time

consuming of the optimization algorithms, but their

convergence is both maximized and guaranteed,

assuming the gradient calculation, VF , is accurate

enough. These methods exhibit very rapid convergence

early in the optimization process, especially when the

initial guess starts with a poor design. But, the nature of

their operation is based upon the local gradient.

Therefore, they will always move in the direction that

minimizes the function until they reach the minimum.

The problem is that this minimum might not be the

solution to the problem (global minimum), but only a

local minimum. Another one of their limitations also

comes from the fact that the gradient of the objective

function tends to level off near a minimum. The DFP

method provides for a modified second-order accurate

convergence rate, so that the algorithm can home in on

the local or global minimum a bit faster than the first

order accurate steepest descent, but the convergence

during these periods will be slow.

Local Minimum rule was developed for gradient-

based methods. The gradient search optimization

algorithm is switched whenever the change in the

objective is less than a user-specified tolerance, F .

0

*

*

KF F
F

F F
 (11)

Here, F* is the value of the objective function at the

new optimum, F0 is the value of the objective function

for the design at the start of the gradient search, and FK

is the value of the objective function from the previous

optimization cycle. The genetic algorithm is the first

algorithm chosen, then comes the simulated annealing

and finally the Nelder-Mead algorithm (GA – SA -

NM). The genetic algorithm is chosen first because its

random search capabilities are useful in escaping local

minima. This rule is also applicable whenever the

program stalls on a constraint boundary.

Descent Direction rule is applied when the DFP

search direction is not a descent direction, in which case

the dot product of the search direction, S , and the

gradient of the objective function, F , is greater than

zero. Remember that the search direction may be

different from the negative gradient direction, because

of the DFP update formula and because search direction

is projected onto the subspace of active constraints

(Rosen's projection method).

 0S F (12)

When this condition is met, the inverse Hessian

matrix is re-initialized to the identity matrix. If the

inverse Hessian is already equal to the identity due to

re-initialization, the program is automatically switched

to simulated annealing (SA – NM - GA). The

randomness and simplex searching methods of the

simulated annealing process provide quick and effective

ways of navigating through the irregular design spaces

characteristic of the non-descent direction criterion.

New designs (optimum along the line search

direction) created by the DFP are added to the

population matrix and the DFP always works on the

best member in the population matrix

The GA has several criteria that can qualify its

performance and so several switching rules have been

developed from these. The most often used switching

criterion is based upon the variance in the population.

As the genetic algorithm proceeds, it tends to select

members in the population with like qualities to breed

more often. The result is that the population tends to

take on a similar set of characteristics and the variation

in the population reduces. This can happen too quickly

when the specified mutation rate is too infrequent. In the

ideal situation, the design variables of the population

will tend to collect around the global minimum, but may

have difficulty in finding it.

Design Variance Limit rule was developed as the

first rule for switching from GA.

2

,
1

min
1 max, min,

1

NPOP

i j iNVAR
j

V V
VAR POP i i i

P V

N N V V
(13)

In this equation, the non-dimensional standard

deviation, V , for all design variables in the population

is measured with respect to the average design variable

in the population.

 ,
1

1
NPOP

i i j
POP j

V P
N

 i = 1,...,NVAR (14)

When the design variance in the population becomes

less than the user specified limit, GA is switched to

DFP. The reasoning is that the population variance is

contracting around a minimum and the DFP can be used

to quickly home in on that minimum. The order of the

automatic switching is DFP – NM - SA.

Objective RMS Limit rule is similar to the

aforementioned rule, except that the variance in the

objective function is computed rather than the variance

in the design variables.

174 VOL. 41, No 3, 2013 FME Transactions

 1

0

1

*

NPOP

j
j

F
POP

F F

N F F
 (15)

Here, the Fj is the objective function value of the jth

population member, and the average function value of

the population is computed from them.

1

1
NPOP

j
POP j

F F
N

 (16)

The difference between this rule and the design

variance limit is that the population may be dispersed

over a wide design space, but each may have very

similar objective function values. This can occur is the

objective function space is a large flat area with little or

no gradient. The program is then switched first to the

simulated annealing method (SA – NM – DFP).

Bad Mutation rule causes GA to switch to the

Nelder-Mead algorithm if the average objective function

increases from the previous optimization cycle that used

GA. This will most likely occur if the random mutation

rate is too large or if it produces one or more really bad

designs. Since the Nelder-Mead algorithm specializes in

bringing the worst members of the population closer to

the centroid of the population, it is the most obvious

first choice resulting in a sequence (NM – SA – DFP).

Lost Generation rule causes the hybrid optimizer to

switch to the simulated annealing program (SA – NM –

DFP). GA develops sequential populations of new

'childdren’ that are entered into the population only if

the population size is allowed to increase, or if the

'children’ are better (have lower objective functions)

than the worst (highest objective function) members in

the population. If no new designs are entered into the

population, the GA. This rule takes care of such

situations.

Stalled Process rule is specifically developed for

Nelder-Mead simplex searching algorithm that has only

one failure mode. The NM is said to stall whenever the

line search (produced by the direction from the worst

design in the population through the centroid of the best

designs) fails to improve itself so that it is better than

the second worst member in the population.

 *
1N NPOP POP

F F (17)

This rule causes the program to switch to the DFP

method (DFP – GA – SA). If the best design in the

population was generated by the DFP, then the DFP is

passed by and the GA takes over.

Population Less Fit rule has the purpose to assist the

simulated annealing algorithm to add energy into the

optimization system and allow it to escape local

minima. The objective functions of the design variables

in the population might get worse in this process.

Therefore, there should be a limit set as to how much

worse the population could get. That is, whenever the

average objective function of the current population is

less fit than some multiple of the average objective

function of the previous optimization cycle's population,

the program is switched.

 11K KF F (18)

Insufficient Random Energy rule can be stated as

follows.

2

1

min0 *

Npop

j
j

F

pop

F F

N F F
 (19)

Here, the algorithm ends whenever the variance of

the objective function values with added random

energy, F
~

, are less than a user-specified limit. The

program is switched from the simulated annealing to the

DFP method (DFP – GA – NM). After several cycles,

the random energy in the simulated annealing algorithm

may have been reduced to a negligible amount, while

the insufficient random energy criterion might not be

met because of the large variance in the population.

Therefore, the simulated annealing algorithm is

switched to the Nelder-Mead (NM – GA – DFP) after

maxK
~

optimization cycles. The simulated annealing

algorithm has, therefore, been programmed to end

whenever the cooling protocol did not add sufficient

energy into the system.

11. SEVENTH GENERATION OF SINGLE-OBJECTIVE

HYBRID OPTIMIZATION ALGORITHMS WITH
AUTOMATIC SEARCH VECTOR-BASED
SWITCHING

The degree of success of any optimization process
depends on the structure of the optimization algorithm,
and the topology of the objective function. An
optimization algorithm may be written such that it
searches consistently in the direction of the current
global best design vector (e.g., DE best/2/bin [35]), but
if the objective function topology is deceptive, it may
direct the optimization algorithm into a local minimum.
This rigidity in search strategy causes certain
optimization algorithms to be better at optimizing some
functions than others. The Search Vector-based hybrid
(SVH) presented here [36] attempts to overcome this
drawback by changing search directions during the
optimization process.

It does so through the use of a predetermined set of
search vectors (SV). Each iteration, the SVH will
generate the SVs based on a predetermined formula or
quality. The SVs are then evaluated. Some examples of
the SVs formulations currently in use include:
1. Global Best Vector (GB): This is the fittest design

vector currently in the population. It is implemented
in the same way that the global best vector is
implemented in PS [8] and DE best/2/bin [35].

2. Population Weighted Average (PWA): The
population is ranked from best to worst, with the
best receiving a rank equal to the population size,
and the worst having a rank of one. The ranks are
then used as weights, and the standard weighted
arithmetic mean procedure is used to create this SV.

FME Transactions VOL. 41, No 3, 2013 175

After the SVs have been evaluated, the fittest SV is

selected as the SV for that iteration. At least one author

has previously used the phrase “optimal search

direction” [37], which is superficially similar to the

concept of a “fittest SV,” but the strategy presented here

differs from any other known work in that it uses a

collection of different search directions, each with their

own unique formulation, and chooses between them.

The method presented in [37], like most other

algorithms, generates the search direction and keeps it

fixed throughout the entire optimization process. The

approach presented here will be called the “aggressive

search strategy” since it assumes that the fittest SV must

also be the best search direction, and selected for use.

The SVH automatically switches between a

collection of optimization algorithms called constituent

algorithms. Once the SV has been selected, the

constituent algorithm selection process begins.

First, each constituent algorithm is executed so that

it generates a temporary population. This temporary

population will not be evaluated. Instead, it will be used

as an indication of the behavior of the constituent

algorithm for a given topology. For example, suppose

the SVH has two constituent algorithms called CA1 and

CA2 (see Figure 8).

Figure 8: Example of population movements and their
accompanying centroids using two fictitious constituent
algorithms CA1 and CA2

It is possible that CA1 will use the current population

(black dots) to generate a temporary population shifted

to the left (red dots), while CA2 will create a temporary

population shifted to the right (blue dots). The vectors in

Figure 8 represent the centroids of each population. In

order to select the constituent algorithm, the Euclidean

distance between the endpoint of each centroid vector

and the selected SV is calculated and stored. Secondly,

each centroid is evaluated. The constituent algorithms

are then ranked (using the Pareto dominance scheme in

[38]) based on two objectives: (1) minimize distance

between the centroid and the SV, and (2) minimum

objective function value of the centroid. With this, a

Pareto front can be created, and the constituent

algorithm to be used is randomly selected from the

Pareto front. In order for the centroids of the constituent

algorithms to be statistically meaningful, the constituent

algorithms are executed 10 times each iteration.

Once a constituent algorithm has been selected, it is

then executed one last time. This time, the population is

permanently changed, and the objective function for

each design vector is evaluated. This completes one full

iteration of the SVH.

The SVH can be summarized as follows:

1) Create an initial population.

2) Calculate fitness for each design vector.

3) Begin main loop:

a. Calculate and evaluate SVs.

b. Select fittest SV.

c. Execute each constituent algorithm ten times

and obtain a centroid of temporary populations

for each constituent algorithm.

d. Evaluate centroids of the constituent

algorithms.

e. Using (a) and (d), randomly select one of the

Pareto optimal constituent algorithms (i.e.,

minimum distance to SV and fittest centroid).

f. Execute selected constituent algorithm

normally.

4) End main loop once population converges or

maximum number of iterations is reached.

Proper incorporation of constituent algorithms and

maintenance of auxiliary vector populations such as the

velocity of PS is not trivial. The SVH currently utilizes

six constituent algorithms: PS [8], Particle Swarm with

Random Differencing (PRD) [39], Modified Quantum

Particle Swarm (MQP) [40], DE best/2/bin with

randomized parameters (BST) [35], DE Donor3 with

randomized parameters (DN3) [41], and Cuckoo Search

(CKO) [42].

Algorithms like BST, DN3, and CKO do not utilize

information from previous iterations and can be treated

as independent modules. The PS [8] and PRD [39]

constituent algorithms, however, utilize a velocity

vector population that is a function of the previous

iteration’s velocity. As long as one of these modules is

called sequentially, the velocity vector can be computed

normally. However, if the SVH switches from PS or

PRD to another method and then back to PS or PRD, the

velocity calculation becomes meaningless. Therefore,

the velocity must be reinitialized. As a first attempt, the

velocity re-initialization equation can be used as

 , , ,
0.2

1.02
j l j u j l j G
V D R D D (20)

where jV is the jth coordinate of the velocity vector,

jlD , and juD , are the lower and upper limits of the

search domain in the jth direction respectively, R is a

uniformly distributed random number [0,1] and G is the

generation (iteration) number.

Additionally, algorithms with DE-style comparisons

have an implicit form of elitism. These comparisons

prohibit the fitter design vectors like the GB from being

replaced by inferior design vectors. This feature is not

present in algorithms like PS. Therefore, if the SVH

176 VOL. 41, No 3, 2013 FME Transactions

switches from DE to PS and back to DE it is possible to

lose fitter design vectors. In order to partially remedy

this, the SVH stores the GB separately, but allows other

vectors to be overwritten by constituent algorithms.

Since each constituent algorithm has its own logic,

another issue inherent to this SVH is that the SV and

constituent algorithm selection process overrides this

logic. This is not necessarily a flaw, but it is an

important consideration nonetheless. As suggested

earlier, no optimization algorithm can solve all

problems because no single search method is capable of

optimizing all function topologies, which includes the

presented SVH. Although automatically switching SVs

partly resolves this issue, the strategy itself can still fall

victim to this limitation.

Therefore, a random parameter was introduced in the

algorithm. Each iteration after the first, there is a 10%

chance that the SVH will reselect the constituent

algorithm used in the previous iteration. In this way, the

SVH is not strictly bound to behave in a particular

manner and can possibly escape the pitfalls of a strict

search strategy. Another way to implement this feature

could be to introduce a probability that the SVH will

select a random constituent algorithm rather than the

previous one, but this has not yet been tested.

Since the constituent algorithms are effectively

modular, they can be added or removed as desired. SVs

can also be added or removed as needed, thereby

allowing the user of the SVH to incorporate the latest in

optimization research into the SVH with minimal

changes to the SVH code. Furthermore, it is widely

known that changing the values of user-defined

parameters can greatly impact the performance of an

optimization algorithm. With this SVH, if a single

optimization algorithm can be tailored to several classes

of problems, then each tailored optimization algorithm

can be incorporated as a distinct constituent algorithm.

While increasing the number of constituent algorithms

will increase the SVH’s overhead computing costs, it

can also increase its robustness. Since many real-world

engineering problems have objective functions that

require hours or even days to evaluate, the increased

overhead of the SVH can be trivial by comparison.

To benchmark this hybrid the Schittkowski & Hock

test cases [43, 44] will be used. This set of analytical

test functions contains over 300 test cases ranging from

unconstrained, smooth and continuous objective

functions to heavily constrained, discontinuous

objective functions. For simplicity, constraints will be

enforced using penalty functions. Test cases 290 – 293

use the same unconstrained function, given by the

equation (21).

2

2

1

()
N

i
i

U x ix (21)

where N is the dimension of the function space. The

dimension N for test cases 290, 291, 292, and 293 is 2,

10, 30, and 50, respectively, making them useful for

examining the performance of an algorithm as the

problem dimensionality increases.

a) 2 dimensional test case

b) 50 dimensional test case

Figure 9: SVH performance with increasing dimension

Figure 9, like most optimization algorithms,

demonstrates that the hybrid optimizer requires more

objective function evaluations with increased problem

dimensionality. However, unlike many optimization

algorithms, the increase in number of function

evaluations needed to reach the same level of accuracy

is not exponential. In order to obtain an accuracy on the

order of 10-5 from the global minimum, the SVH

requires roughly 760 evaluations for the 2-dimensional

problem, and 13440 evaluations for the 50-dimensional

problem. Therefore, although the dimensionality has

increased by a factor of 25, the number of function

evaluations increases by a factor of approximately 17.

Figure 10 demonstrates the performance of the SVH

on the Griewank function [1] averaged over 50

optimization trials. In this case, the accuracy of the SVH

is on par with DE, PSO, and SA, but slower than the

hybrid of Figure 2e. This difference in performance can

potentially be improved through the use of different SVs

or different constitutive algorithms.

Overall, this hybrid optimizer outperforms its

constitutive algorithms in accuracy and speed in over

60% of the Schittkowski and Hock test cases and

performs competitively against other hybrid algorithms,

including those previously presented.

FME Transactions VOL. 41, No 3, 2013 177

Figure 10: Convergence history of SVH optimizer applied to
Griewank’s function

CONCLUSION

A collection of standard gradient-based and

evolutionary optimization algorithms was assembled in

several generations of hybrid optimization tools where a

set of heuristic rules was used to perform automatic

switching among the individual optimizers in order to

avoid local minima, escape from the local minima,

converge on the global minimum, and reduce the overall

computing time. The constraints were enforced either

via penalty function or via Rosen’s projection method.

Lessons learned from these efforts are valuable. Most

importantly, hybrid optimization is a very robust and

cost-effective optimization concept. Automatic

switching among the individual optimizers can be

further improved by incorporating certain aspects of

neural networks. Use of simplified models (surrogates)

for evaluation of the objective function is highly cost

effective, although progressively more complete

physical models should be used as the global

optimization process starts converging.

Parameterization of the design space plays a crucial role

in the hybrid constrained optimization.

ACKNOWLEDGMENTS

Authors are grateful for the pioneering work performed

by Norman Foster in his M.Sc. Thesis in 1996 that lead

to the first two generations of our hybrid single-

objective constrained optimizers. Lead author dedicates

this article to his alma mater – University of Belgrade.

REFERENCES

[1] GEATbx: Genetic and Evolutionary Algorithm

Toolbox for use with MATLAB, Version 1.91, July

1997.

[2] Colaço, J.M., Dulikravich, G.S., Orlande, H.R.B.

and Martin, T.J.: Hybrid Optimization With

Automatic Switching Among Optimization

Algorithms, a chapter in Evolutionary Algorithms

and Intelligent Tools in Engineering Optimization

(eds: W. Annicchiarico, J. Périaux, M. Cerrolaza

and G. Winter), CIMNE, Barcelona,

Spain/WITpress, UK, pp. 92-118, 2005.

[3] Colaço, M.J., Orlande, H.R.B. and Dulikravich,

G.S.: Inverse and Optimization Problems in Heat

Transfer, Journal of the Brazilian Society of

Mechanical Science & Engineering, Vol. XXVIII,

No. 1, pp. 1-23, January-March 2006.

[4] Colaço, J.M. and Dulikravich, G.S.: A Survey of

Basic Deterministic, Heuristic and Hybrid Methods

for Single-Objective Optimization and Response

Surface Generation, Chapter 10 in Thermal

Measurements and Inverse Techniques, (eds:

Orlande, H.R.B., Fudym, O., Maillet, D. and Cotta,

R.), Taylor & Francis, pp. 355-405, May 2011.

[5] Broyden, C.G.: Quasi-Newton Methods and Their

Applications to Function Minimization, Math.

Comp., Vol. 21, pp. 368-380, 1987.

[6] Storn, R. and Price, K.V.: Minimizing the real

function of the ICEC’96 contest by differential

evolution, Proc. of IEEE Conference on

Evolutionary Computation, pp. 842-844, 1996.

[7] Corana, A., Marchesi, M., Martini, C. and Ridella,

S.: Minimizing Multimodal Functions of

Continuous Variables with the ‘Simulated

Annealing Algorithm’, ACM Transactions on

Mathematical Software, Vol. 13, pp. 262-280,

1987.

[8] Kennedy, J. and Eberhart, R.C.: Particle Swarm

Optimization, Proc. of the 1995 IEEE International

Conf. on Neural Networks, Vol. 4, pp. 1942-1948,

1995.

[9] Wolpert, D.H. and Macready, W.G.: No free lunch

theorems for optimization, Evolutionary

Computation, IEEE Transactions on Evolutionary

Computing, Vol. 1, No. 1, pp. 67-82, 1997.

[10] Foster, N.F.: Shape Optimization Using Genetic

Evolution and Gradient Search Constrained

Algorithms, M.Sc. Thesis, Department of

Aerospace Eng., The Pennsylvania State

University, State College, PA, USA, August 1995.

[11] Foster, N.F. and Dulikravich, G.S.: Three-

Dimensional Aerodynamic Shape Optimization

Using Genetic and Gradient Search Algorithms,

AIAA Journal of Spacecraft and Rockets, Vol. 34,

No. 1, pp. 36-42, 1997.

[12] Dulikravich, G. S.: Design and Optimization Tools

Development, chapters no. 10-15 in New Design

Concepts for High Speed Air Transport, (eds.: H.

Sobieczky), Springer, Wien/New York, pp. 159-

236, 1997.

[13] Martin, T.J., Dennis, B.H. and Dulikravich, G.S.:

Aero-Thermal-Structural Optimization, NASA /

ICOMP 1996 Coolant Flow Management

Workshop, Cleveland, OH, USA (eds: S.

Hippensteele and J. Gladden), NASA Conference

CP 10195, pp. 311-334, December 12-13, 1996.

[14] Davidon, W.C.: Variable Metric Method for

Minimization, Atomic Energy Commission

Research and Development Report, ANL-5990

(Rev.), November 1959.

178 VOL. 41, No 3, 2013 FME Transactions

[15] Fletcher, R. and Powell, M.J.D.: A Rapidly

Convergent Descent Method for Minimization,

Computer Journal, Vol. 6, pp. 163-168, 1963.

[16] Goldberg, D.E.: Genetic Algorithms in Search,

Optimization and Machine Learning, Addison-

Wesley, 1989.

[17] Martin, T.J. and Dulikravich, G.S.: Aero-Thermal

Analysis and Optimization of Internally Cooled

Turbine Blades, XIII International Symposium on

Airbreathing Engines (XIII ISABE), (eds.: F.S.

Billig) Chattanooga, TN, USA, ISABE 97-7165,

Vol. 2, pp. 1232-1250, September 8-12, 1997.

[18] Dennis, B.H. and Dulikravich, G.S.: Thermo-

Elastic Analysis and Optimization Environment for

Internally Cooled Turbine Airfoils, XIII

International Symposium on Airbreathing Engines

(XIII ISABE), (eds.: F.S. Billig), Chattanooga, TN,

USA, ISABE 97-7181, Vol. 2, pp. 1335-1341, Sept.

8-12, 1997.

[19] Martin, T.J., Dulikravich, G.S. and Han, Z.X.:

Aero-Thermal Optimization of Internally Cooled

Turbine Blades, Minisymposium on

Multidisciplinary-Optimum Design, Fourth

ECCOMAS Computational Fluid Dynamics

Conference (eds.: Editors: K. Papailiou, D.

Tsahalis, J. Periaux, D. Knoerzer), John Wiley &

Sons, New York, Vol. 2, pp.158-161, Athens,

Greece, September 7-11, 1998.

[20] Martin, T.J., Dennis, B.H., Dulikravich, G.S., Lee,

S.S. and Han, Z.X.: Aero-Thermo-Structural

Design Optimization of Internally Cooled Turbine

Blades, AGARD - AVT Propulsion and Power

Systems Symposium on Design Principles and

Methods for Aircraft Gas Turbine Engines, NATO-

RTO-MP-8 AC/323(AVT)TP/9, Ch. 35, Toulouse,

France, May 11-15, 1998.

[21] Petrovic, M.V., Martin, T.J. and Dulikravich, G.S.:

Axial Gas Turbine Efficiency Over a Range of

Operating Conditions, Proceedings of 10TH Thermal

& Fluids Analysis Workshop (TFAWS’99) (eds.:

L.W. Griffin), NASA Marshall Space Flight

Center, Huntsville, AL, USA, Sept. 13-17, 1999.

[22] Dulikravich, G.S., Martin, T.J., Dennis, B.H. and

Foster, N.F.: Multidisciplinary Hybrid Constrained

GA Optimization, a chapter in EUROGEN’99 -

Evolutionary Algorithms in Engineering and

Computer Science: Recent Advances and Industrial

Applications (eds. K. Miettinen, M.M. Makela, P.

Neittaanmaki and J. Periaux), Jyvaskyla, Finland,

John Wiley & Sons, pp. 233-259, May 30 - June 3,

1999.

[23] Nelder, J.A. and Mead, R.: A Simplex Method for

Function Minimization, Computer Journal, Vol. 7,

pp. 308-313, 1965.

[24] Dulikravich, G.S., Dennis, B.H., Martin, T.J. and

Egorov, I.N.: Multi-disciplinary Analysis and

Design Optimization, Invited Lecture, Mini-

Symposium on Inverse Problems - State of the Art

and Future Trends, XXIV Brazilian Congress on

Applied and Computational Mathematics, Sept. 10-

13, 2001, Belo Horizonte, Brazil.

[25] Dulikravich, G.S., Dennis, B.H., Martin, T.J. and

Egorov, I.N.: Multi-disciplinary Design

Optimization, Invited Lecture, EUROGEN 2001 -

Evolutionary Methods for Design, Optimization

and Control with Applications to Industrial

Problems, (ed.: Giannakoglou, K., Tsahalis, D.T.,

Periaux, J. and Fogarty, T.), Athens, Greece, Sept.

19-21, 2001, Published by International Center for

Numerical Methods in Engineering (CIMNE),

Barcelona, Spain, pp. 11-18, 2002.

[26] Zhou, J.L. and Tits, A.: User's Guide for FFSQP

Version 3.7: A Fortran Code for Solving

Optimization Programs, Possibly Minimax, with

General Inequality Constraints and Linear Equality

Constraints, Generating Feasible Iterates, Institute

for Systems Research, University of Maryland,

Tech. Report SRC-TR-92-107r5, 1997.

[27] Pshenichny, B.N. and Danilin, Y.M.: Numerical

Methods in Extremal Problems, MIR Publishers,

Moscow, 1969.

[28] Hafka, R.T. and Gurdal, Z.: Elements of Structural

Optimization, 3rd edition, Kluwer Academic Publ.,

Boston, MA, USA, 1992.

[29] Hafka, R.T. and Malkus, D.S.: Calculation of

Sensitivity Derivatives in Thermal Problems by

Finite Differences,” Int. Journal of Numerical

Methods in Engineering., Vol. 17, pp. 1811-21,

1981.

[30] Colaco, M.J. and Dulikravich, G.S.: A Multilevel

Hybrid Optimization of Magnetohydrodynamic

Problems in Double-Diffusive Fluid Flow, Journal

of Physics and Chemistry of Solids, Vol. 67, pp.

1965-1972, 2006.

[31] Colaco, M.J. and Dulikravich, G.S.: Solidification

of Double-Diffusive Flows Using Thermo-

Magneto-Hydrodynamics and Optimization,

Materials and Manufacturing Processes, Vol. 22,

pp. 594-606, 2007.

[32] Sobol, I. and Levitan, Y.L.: The Production of

Points Uniformly Distributed in a multidimensional

Cube, Preprint IPM Akademia Nauk SSSR, No. 40,

Moscow, Russia, 1976.

[33] More, J.J., Gabow, B.S. and Hillstrom, K.E.:

Testing Unconstrained Optimization Software.

ACM AQ13, Transactions on Mathematical

Software, pp. 17–41, 1981.

[34] IOSO NM Version 1.0, User’s Guide, IOSO

Technology Center, Moscow, Russia, 2003.

[35] Inclan, E.J. and Dulikravich, G.S.: Effective

Modifications to Differential Evolution

Optimization Algorithm, International Conference

on Computational Methods for Coupled Problem in

Science and Engineering, (eds.: Idelsohn, S.,

Papadrakakis, M., Schrefler, B.), Santa Eulalia,

Ibiza, Spain, June 17-19, 2013.

[36] Inclan, E.J. and Dulikravich, G.S.: A Hybrid

Optimization Algorithm with Search Vector Based

Automatic Switching, World Congress of

Multidisciplinary Optimization, (eds.: Kim, N.-H.,

Haftka, R.), Orlando, FL, USA, May 15-19, 2013.

FME Transactions VOL. 41, No 3, 2013 179

[37] Ahrari, A., Shariat-Panahi, M. and Atai, A.A.:
GEM: A Novel Evolutionary Optimization Method
with Improved Neighborhood Search. Applied
Mathematics and Computation, Vol. 210, no. 2, pp.
376–386, 2009.

[38] Deb, K.: Multi-Objective Optimization using
Evolutionary Algorithms. Chichester: Wiley &
Sons, 2009.

[39] Inclan, E.J., Dulikravich, G.S. and Yang, X.-S.:
Modern Optimization Algorithms and Particle
Swarm Variations, Symposium on Inverse
Problems, Design and Optimization-IPDO2013,
(eds.: Fudym, O., Battaglia, J.-L.), Albi, France,
June 26-28, 2013.

[40] Sun, J., Lai, C.H., Xu, W., and Chai, Z.: A Novel
and More Efficient Search Strategy of Quantum-
Behaved Particle Swarm Optimization. ICANNGA
'07 Proceedings of the 8th international conference
on Adaptive and Natural Computing Algorithms,
pp. 394 – 403, 2007.

[41] Fan, H.-Y., Lampinen, J. and Dulikravich, G. S.:
Improvements to Mutation Donor of Differential
Evolution. EUROGEN2003 - International
Congress on Evolutionary Methods for Design,
Optimization and Control with Applications to
Industrial Problems, (eds: G. Bugeda, J. A-
Désidéri, J. Periaux, M. Schoenauer and G.
Winter), CIMNE, Barcelona, Spain, September 15-
17, 2003.

[42] Yang, X.-S. and Deb, S.: Engineering Optimisation
by Cuckoo Search. International Journal
Mathematical Modelling and Numerical
Optimisation, Vol. 1, No. 4, pp. 330-343, 2010.

[43] Schittkowski, K.: More Test Examples for

Nonlinear Programming Codes. Berlin: Springer-

Verlag, 1987.

[44] Schittkowski, K. and Hock, W.: Test Examples for

Nonlinear Programming Codes - All Problems from

the Hock-Schittkowski-Collection. Bayeruth:

Springer, 1981.

-

George S. Dulikravich, Thomas J. Martin, Marcelo

J. Colaco, Eric J. Inclan

,

 ,

. ,

 .

 -

 1997.

