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Markus Neumayer3, Daniel Watzenig3, and
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This article aims at the acceleration of an inverse heat transfer problem solution within the

Bayesian framework. The physical problem involves a spatially varying heat flux, which can

reach very large magnitudes in small regions, such as in the heating imposed by high-power

lasers. The inverse problem of estimating the imposed heat flux is solved by using the

Markov chain Monte Carlo method, with simulated transient temperature measurements.

The solution of the inverse problem is based on a reduced model, which consists of an

improved lumped formulation of a linearized version of the original nonlinear problem.

Two different priors are considered for the sought heat flux, including a total variation

density and a Gaussian density. The Gaussian prior is based on the physics of the heat

conduction problem. Parameters appearing in both priors are also estimated as part of

the inference problem in hyperprior models. The Delayed Acceptance Metropolis-Hastings

(DAMH) Algorithm and the Enhanced Approximation Error Model (AEM) are applied

with the objective to improve the accuracy of the inverse problem solution.

INTRODUCTION

Despite the fact that the inverse problem of estimating a boundary heat flux
in a heat conduction problem has been dealt with for a long time through different
solution techniques, it still remains a very challenging problem. Such is, especially,
the case when fast transients are involved and=or the flux is imposed on small spots,
thus presenting large spatial variations. For example, this is the situation when high
power lasers are used to heat bodies and the imposed heat flux needs to be accurately
quantified and=or controlled.

Received 5 May 2012; accepted 8 May 2013.

This work was supported by CNPq, CAPES and FAPERJ, Brazilian agencies for the fostering of

science.

Address correspondence to Helcio R. B. Orlande, Department of Mechanical Engineering-

POLI=COPPE, Federal University of Rio de Janeiro UFRJ, Cid. Universit�aaria, Cx. Postal: 68503, Rio

de Janeiro, RJ 21941-972, Brazil. E-mail: helcio@mecanica.coppe.ufrj.br

Numerical Heat Transfer, Part A, 65: 1–25, 2014

Copyright # Taylor & Francis Group, LLC

ISSN: 1040-7782 print=1521-0634 online

DOI: 10.1080/10407782.2013.812008

1

D
ow

nl
oa

de
d 

by
 [

In
st

itu
to

 d
e 

E
co

no
m

ia
 -

 U
FR

J]
, [

H
el

ci
o 

R
. B

. O
rl

an
de

] 
at

 0
9:

14
 1

4 
O

ct
ob

er
 2

01
3 



In this article, we examine the use of the Markov chain Monte Carlo (MCMC)
method within the Bayesian framework [1–7], for the estimation of a spatially
varying heat flux. The inverse problem is then recast in the form of statistical
inference from the posterior probability density, which is the model for the
conditional probability distribution of the unknown parameters given the measure-
ments. The measurement model incorporating the related uncertainties is called
the likelihood, that is, the conditional probability of the measurements given the
unknown parameters. The model for the unknowns, that reflects all the uncertainty
of the parameters without the information conveyed by the measurements, is called
the prior model [1]. The formal mechanism to combine the new information
(measurements) with the previously available information (prior) is known as the
Bayes’ theorem. Therefore, the term Bayesian is often used to describe the statistical
inversion approach, which is based on the following principles [1]: 1.) All variables
included in the model are modeled as random variables; 2.) the randomness describes
the degree of information concerning their realizations; 3.) the degree of information
concerning these values is coded in probability distributions; and 4.) the solution of
the inverse problem is the posterior probability distribution, from which distribution
point estimates and other statistics can be computed.

The physical problem examined here involves three-dimensional transient heat
conduction in a plate with temperature dependent properties. Therefore, the compu-
tation of the direct problem solution, needed for the solution of the inverse problem,
is very time-consuming. Limitations are then imposed on the number of states of the

NOMENCLATURE

a,b,c dimensions of the plate

C volumetric heat capacity

C
�

volumetric heat capacity evaluated at

temperature T
�

D total number of measurements

i index of volumes along the x direction

I number of volumes along the x direction

j index of volumes along the y direction

J number of volumes along the y direction

k thermal conductivity

k
�

thermal conductivity evaluated at

temperature T
�

P vector of parameters

q spatially dependent imposed heat flux at

the surface z¼ c

qest estimated heat flux at the surface z¼ c

qexa exact heat flux at the surface z¼ c

T approximate temperature obtained with

the reduced model, Eqs. (7a) and (7b).

t time

T vector of estimated temperatures
�TTc average temperature across the plate,

obtainedwith the completemodel, Eq. (2)

�TT approximate average temperature across

the plate, obtained with the surrogate

model given by Eqs. (3a)–(3f)

Tc solution of the complete model given by

Eqs. (1a)–(1h)

TV total variation, Eq. (11b)

W covariance matrix for the likelihood
~WW covariance matrix for the modified

likelihood in the approximation error

model

x,y,z Cartesian spatial variables

Y vector of measurements

a parameter for the total variation prior,

Eq. (11a)

a0, c0 centers of the Rayleigh distributions

for a and c, respectively
e model error
�ee mean of the model error

C covariance matrix for the Gaussian

prior

c parameter for the Gaussian prior,

Eq. (13)

l vector of means for the Gaussian prior

2 H. R. B. ORLANDE ET AL.
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Markov chain that can be computed within a feasible time, which can make the use
of the standard MCMC method impractical for the present application where the
number of unknowns is large. One possible way to overcome such difficulties is to
use model reduction or surrogate techniques, instead of the complete model, for
the computation of the direct problem solution at each state of the Markov chain,
like in references [8, 9]. Other examples of inverse problem solutions dealing with
complicated mathematical formulations of the physical problems, as well as with
reduced or surrogate models, can be found in references [10–18].

In this article, a reduced model is used for the solution of the inverse problem,
which is based on a linear formulation and on partial lumping across the thickness
of the plate, which is assumed to be sufficiently thin. The classical lumped formulation,
where temperature gradients are neglected across the thickness of the plate, was shown
to provide accurate results for several practical problems [19–24]. On the other hand,
for cases dealing with large imposed fluxes and short transients, such as the one under
analysis in this work, the temperature gradients across the thickness of the plate can-
not be fully neglected. For such cases, the reduced model based on the improved
lumped approach [25, 26], where temperature gradients are not neglected but taken
into account in an approximate form, can provide quite accurate results [27].

Since reduced or surrogate models do not exactly reproduce the associated
complete models, different approaches have been developed in order to improve
the solution of inverse problems obtained with approximate forms of the original
mathematical formulation. Among such approaches, we have the delayed acceptance
Metropolis-Hastings (DAMH) algorithm [28] and the approximation error model
(AEM) [1, 29–33]. In theDAMHalgorithm, theMetropolis-Hastings (MH) algorithm
[1–7] is regularly applied with the reduced model. If a proposal state is accepted with
the reduced model, another test of Hastings is performed with the complete model, to
finally decide if such proposal should be accepted or not. In this sense, the DAMH can
be seen as two nested MH algorithms, where the outer MH loop acts as a filter to
pre-evaluate proposal candidates with the reduced model. In the AEM approach,
the statistical model of the approximation error is constructed from prior information
and then represented as additional noise in the measurement model, for the solution of
the inverse problem. It should be noted that there is a principle difference between
the DAMH and the AEM approaches, as the AEM uses the posterior modified by
the error of the reduced model, whereas the DAMH generates samples from the
correct posterior. Such two approaches are examined here, with two prior distribu-
tions for the sought heat flux. A noninformative total variation prior is considered,
as well as a Gaussian prior based on the physics of the problem. For both cases,
hyperparameters modeled in terms of Rayleigh distributions are estimated as part
of the inference problem [1]. These two priors, as well as the delayed acceptance
Metropolis-Hastings algorithm and the approximation error model, are compared
for three different spatial distributions of the imposed heat flux, as described next.
Input data for the inverse analysis is obtained by means of numerical simulations.

PHYSICAL PROBLEM AND MATHEMATICAL FORMULATION

The physical problem examined here involves three-dimensional transient heat
conduction in a plate with temperature dependent thermal conductivity, k(T), and

ESTIMATION OF HEAT FLUX IN A CONDUCTION PROBLEM 3
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volumetric heat capacity, C(T), initially at a uniform temperature, T0. The thickness
of the plate, c, is assumed to be much smaller than its width, a, and length, b, so that
heat transfer is neglected through the lateral boundaries. The plate bottom surface is
assumed insulated, while a nonuniform heat flux q(x,y) is imposed on its top surface
(see Figure 1).

The mathematical formulation of this problem is given by the following.

CðTcÞ
qTcðx; y; z; tÞ

q t
¼ q

q x
kðTcÞ

qTc

q x

� �
þ q
q y

kðTcÞ
qTc

q y

� �
þ q
q z

kðTcÞ
qTc

q z

� �
in 0 < x < a; 0 < y < b; 0 < z < c; for t > 0

ð1aÞ

qTc

q x
¼ 0 at x ¼ 0 and x ¼ a; 0 < y < b; 0 < z < c; for t > 0 ð1b; cÞ

qTc

q y
¼ 0 at y ¼ 0 and y ¼ b; 0 < x < a; 0 < z < c; for t > 0 ð1d; eÞ

qTc

q z
¼ 0 at z ¼ 0; 0 < x < a; 0 < y < b; for t > 0 ð1f Þ

kðTcÞ
qTc

q z
¼ qðx; yÞ at z ¼ c; 0 < x < a; 0 < y < b; for t > 0 ð1gÞ

Tc ¼ T0 for t ¼ 0; in 0 < x < a; 0 < y < b; 0 < z < c ð1hÞ

Where the subscript c refers to the complete model, defined here as the one that
perfectly reproduces all the phenomena of the physical problem, which is assumed
to be exact within the accuracy of the numerical method used for its solution.

The average temperature across the thickness of the plate is defined by the
following.

Figure 1. Physical problem.

4 H. R. B. ORLANDE ET AL.
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�TTcðx; y; tÞ ¼
1

c

Z c

z¼0

Tcðx; y; z; tÞ dz ð2Þ

REDUCED MODEL FOR THE DIRECT PROBLEM

In this section, we introduce the reduced model used to approximate the physi-
cal problem described above. The reduced model involves partial lumping [19–27]
along the z direction, since the plate is assumed to be thin, that is, c�a and c�b.
In addition, the reduced model is based on a linear approximation of problem
(1a)–(1h), where the physical properties are evaluated at a temperature T

�
. At this

temperature, representative values C
�
and k

�
are obtained for the volumetric heat

capacity and thermal conductivity within the plate, respectively. The solution of
the linearized version of problem (1a)–(1h) is denoted T(x, y, z, t).

By operating on Eqs. (1a)–(1e) and (1h) with 1
c

R c
z¼0 ð�Þ dz, making use of the

boundary conditions (1f) and (1g), at z¼ 0 and z¼ c, respectively, and assuming con-
stant thermophysical properties, the following problem is obtained for the

computation of the approximate average temperature �TTðx; y; tÞ.

C� q �TTðx;y; tÞ
q t

¼ q
qx

k�
q �TT

qx

� �
þ q
qy

k�
q �TT

qy

� �
þ qðx;yÞ

c
in 0< x< a; 0< y< b; for t> 0

ð3aÞ

q �TT

qx
¼ 0 at x¼ 0 and x¼ a; 0< y< b; for t> 0 ð3b;3cÞ

q �TT

qy
¼ 0 at y¼ 0 and y¼ b; 0< x< a; for t> 0 ð3d;3eÞ

�TT ¼ T0 for t¼ 0; in 0< x< a; 0< y< b ð3f Þ

where

�TTðx;y; tÞ ¼ 1

c

Z c

z¼0

Tðx;y;z; tÞdz ð4Þ

Surface temperature measurements are assumed to be available for the inverse
analysis, as will be further discussed below. Therefore, from the first level of

approximation, where the temperature �TTðx; y; tÞ is obtained as a solution of problem

(3a)–(3f) and used in place of the actual average temperature �TTcðx; y; tÞ, several
reduced models can be derived. These reduced models differ in terms of how
�TTðx; y; tÞ relates to the surface temperatures at z¼ 0 and z¼ c.

In the classical lumped formulation [19–27], temperature gradients across the
thickness of the plate are fully neglected. Therefore, the surface temperatures become
equal to the average temperature; that is,

ESTIMATION OF HEAT FLUX IN A CONDUCTION PROBLEM 5
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Tðx; y; 0; tÞ ¼ Tðx; y; c; tÞ ¼ �TTðx; y; tÞ ð5a; bÞ

In the improved lumped formulation based on the coupled integral equations
Approach [25–27], the temperature gradients across the thickness of the plate are
not neglected, but taken into account in an approximate form, which can involve
different degrees of accuracy. Here, we use the so-called H1,1=H0,0 approximation
[25], where the Hermite’s formulae H1,1 and H0,0 are applied to approximate the

average temperature �TTðx; y; tÞ and the integral of the temperature gradient along
the z direction, respectively. TheH1,1 formula (corrected trapezoidal rule), as applied
to the definition of the approximate average temperature (4), is given by the
following [25].

�TTðx; y; tÞ � 1

2
Tðx; y; 0; tÞ þ Tðx; y; c; tÞ½ � þ c

12

qT
q z

����
z¼0

�qT
q z

����
z¼c

� �
ð6aÞ

The H0,0 formula (trapezoidal rule) is now applied to the integral of the tem-
perature gradient [25]; that is,

Z c

z¼0

qTðx; y; z; tÞ
q z

dz ¼Tðx; y; c; tÞ � Tðx; y; 0; tÞ � c

2

qT
q z

����
z¼0

þqT
q z

����
z¼c

� �
ð6bÞ

Equations (6a), and (6b) are then solved, together with boundary conditions
(1f), and (1g) with constant thermophysical properties, to yield the following rela-
tions between the surface temperatures and the approximate average temperature.

Tðx; y; 0; tÞ ¼ �TTðx; y; tÞ � c

6k�
qðx; yÞ ð7aÞ

Tðx; y; c; tÞ ¼ �TTðx; y; tÞ þ c

3k�
qðx; yÞ ð7bÞ

We note from Eqs. (5) and (7) that the computational efforts for the classical
and for the improved lumped formulations are practically the same. Differences
between these efforts are limited to algebraic operations required to compute T(x,
y, 0, t) and T(x, y, c, t) with Eqs. (7a), and (7b), which can actually be done as
post-processing to the solution of problem (3a–f). On the other hand, much more
accurate solutions are indeed obtained with the improved lumped formulation for
the kind of physical problem examined here [27], since the temperature gradients
are not neglected as in the classical lumped formulation.

INVERSE PROBLEM

The inverse problem of interest in this paper is concerned with the estimation
of the boundary heat flux q(x,y), by using transient temperature measurements taken
at the bottom surface, z¼ 0. The measurements are assumed to be taken with an
infrared camera. Such measurement technique is quite powerful, because it can pro-
vide accurate nonintrusive measurements, with fine spatial resolutions and at large
frequencies [7, 19–24, 26].

6 H. R. B. ORLANDE ET AL.
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For the inverse analysis, the unknown function q(x,y) is discretized spatially at
the plate surface. The discretized flux is considered uniform over a grid with center
points (xi, yj), where xi¼ iDx, yj¼ jDy, i¼ 1, . . ., I, j¼ 1, . . ., J, and with grid spacing
given by Dx¼ a=I and Dy¼ b=J. Therefore, the function is estimated in terms of its
local values, which are suitably arranged in a vector of unknown parameters here
denoted as P. For the sake of simplicity, the transient temperature measurements
are also assumed to be available over this same grid. Therefore, the local measure-
ments may actually result from some spatial averaging of the readings obtained
with the infrared camera, if it is capable of providing a resolution more refined than
that used in the domain discretization. The transient measurements at each grid
point (xi, yj) and each time step are also arranged in a vector, here denoted as Y.

We apply the Markov chain Monte Carlo (MCMC) method to obtain esti-
mates of the posterior distribution of the unknown heat flux components, within
the Bayesian framework [1–7]. Bayes’ theorem is stated as follows [1–7].

pposteriorðPÞ ¼ pðP Yj Þ ¼ pðPÞpðY Pj Þ
pðYÞ ð8Þ

Where pposterior(P) is the posterior probability density, p(P) is the prior density,
p(YjP) is the likelihood function, and p(Y) is the marginal probability density of
the measurements, which plays the role of a normalizing constant.

The most common MCMC algorithm is the one due to Metropolis and
Hastings [1–7]. The implementation of the Metropolis-Hastings algorithm starts with
the selection of a proposal distribution p(P

�
, P(t� 1)) which is used to draw a new can-

didate state P
�
, given the current state P(t� 1) of the Markov chain. Once this jump-

ing distribution has been selected, the Metropolis-Hastings algorithm can be
implemented by repeating the following steps.

Step 1. Sample a candidate point P
�
from a proposal distribution p(P

�
, P(t� 1)).

Step 2. Calculate the acceptance factor:

a ¼ min 1 ;
pðP�jYÞ pðPðt�1Þ;P�Þ

pðPðt�1ÞjYÞ pðP�;Pðt�1ÞÞ

" #
ð9Þ

Step 3. Generate a random value U that is uniformly distributed on ]0,1[.
Step 4. If U� a, set P(t)¼P

�
; otherwise, set P(t)¼P(t� 1).

Step 5. Return to Step 1.

In this way, a sequence is generated to represent the posterior distribution
and inference on this distribution is obtained from inference on the samples {P(1),
P(2), . . . , P(n)}. We note that values of P(i) must be ignored while the chain has not
converged to equilibrium (the burn-in period).

By assuming that the measurement errors are Gaussian random variables, with
zero means and known covariance matrix W and that the measurement errors are
additive and independent of the parameters P, the likelihood function can be
expressed as follows [1–7].

ESTIMATION OF HEAT FLUX IN A CONDUCTION PROBLEM 7
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pðY Pj Þ ¼ ð2pÞ�D=2
Wj j�1=2exp � 1

2
½Y� TðPÞ�TW�1½Y� TðPÞ�

� �
ð10Þ

Where D is the total number of measurements, and T(P) is the solution of the direct
problem at the specific times and locations of each measurement. Here, the direct
problem solution is obtained from the improved lumped formulation described
above, with known P.

Two different prior densities are examined for the spatially distributed
heat flux. One of these densities is a total variation non-informative prior [1].
It is a Markov random field, capable of accurately estimating the sought spatially
distributed function [1]. The total variation prior is given in the following form:

pðPÞ / exp �aTVðPÞ½ � ð11aÞ

Where, for the present case,

TVðPÞ ¼
XI�1

i¼2

XJ�1

j¼2

Dy qðxi; yjÞ � qðxiþ1; yjÞ
�� ��þ qðxi; yjÞ � qðxi�1; yjÞ

�� ��� �
þ

þ Dx qðxi; yjÞ � qðxi; yjþ1Þ
�� ��þ qðxi; yjÞ � qðxi; yj�1Þ

�� ��� � ð11bÞ

The other prior density examined in this work is Gaussian and based on
a model of very low accuracy that still takes into account the physics of the problem.
In order to generate the prior, we consider a finite control volume at the same grid
used for the heat flux, that is, with grid spacing given by Dx¼ a=I and Dy¼ b=J, as
illustrated by Figure 2. It is assumed that the temperature inside such control volume
is uniform, that is, the lumped formulation is valid. If heat transfer is neglected
through all the boundaries of this discrete control volume, except through the top
surface where the heat flux q(xi, yj) is imposed, the following relation results from
the energy balance.

Figure 2. Finite control volume used to obtain the Gaussian prior.

8 H. R. B. ORLANDE ET AL.
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qðxi; yjÞ ¼ C�c
d Tðxi; yjÞ

d t
ð12Þ

That is, the local imposed heat flux is proportional to the local rate of temperature
increase. Clearly, if the local rate of temperature increase can be somehow estimated,
an estimate can be obtained for q(xi, yj) that might be appropriate to be used as prior
information for the sought heat flux. In order to generate this physically motivated
Gaussian prior, and at the same time not violate the Bayesian principle that the prior
is the information for the unknowns (coded in the form of probability distribution
functions) that is available before the measurements are taken, we assume here that
another kind of measurements is also available. Such other kind of measurements is
only used to generate the prior, and is considered independent of the temperature
measurements used in the inverse analysis, that is, for the computation of the likeli-
hood. This other type of measurement (let us say, V) is related to the local tempera-
ture increase through some linear relation DV/DT, where D denotes variation, so
that the local heat flux can be calculated with Eq. (12), at each time step. The local
Gaussian distributions were then based on the means and variances of the heat fluxes
calculated at each time step. Anyhow, the linear dependences of such means and
variances of the applied heat flux and of the measurements were neglected, for the
application of the MCMC method.

Let us denote the vector containing the means of each local heat flux as l and the
associated covariance matrix as C. The Gaussian prior is then given by the following.

p Pð Þ ¼ cIJ=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2pÞIJ Cj j

q exp � 1

2
c P� lð ÞTC�1 P� lð Þ

� �
ð13Þ

Where the parameter cwas introduced in Eq. (13) in order to take into account that the
means l and the covariance matrix C are poorly known, since they were obtained with
the very simplified model used to the generate the Gaussian prior, as described above.

The parameters a and c, appearing in the total variation and Gaussian priors,
respectively, are treated in this work as hyperparameters; that is, they are estimated
as part of the inference problem in a hierarchical model [1]. The hyperprior densities
for these parameters are taken in the form of Rayleigh distributions. Therefore, the
posterior distributions, based on the total variation and Gaussian priors, are given,
respectively, by the following.

pða;P Yj Þ / a exp � 1

2
½Y� TðPÞ�TW�1½Y� TðPÞ� � aTVðPÞ � 1

2

a
a0

	 
2
( )

ð14aÞ

pðc;P Yj Þ / cðIJþ2Þ=2 exp �1

2
½Y�TðPÞ�TW�1½Y�TðPÞ��1

2
c P�mð ÞTC�1 P�mð Þ�1

2

c
c0

	 
2
( )

ð14bÞ
Where a0> 0 and c0> 0 are the center points of the Rayleigh distributions.

Since the reduced model, given by the improved lumped formulation of
Eqs. (7a) and (7b), does not exactly reproduce the solution of the complete model
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given by Eqs. (1a–1h), two approaches are used here in an attempt to improve the
accuracy of the inverse problem solution. Such approaches are described next.

DELAYED ACCEPTANCE METROPOLIS-HASTINGS ALGORITHM

In the delayed acceptance Metropolis-Hastings (DAMH) algorithm [28], the
regular Metropolis-Hastings algorithm, presented in the section above, is applied
with the reduced model for the computation of the likelihood function. If a proposal
state is accepted, then another test of Hastings is performed with the complete
model, to finally decide if such proposal should be accepted or not. The DAMH
algorithm can be summarized as follows [28].

Step 1. Sample a candidate point P
�
from a proposal distribution p(P

�
, P(t� 1)).

Step 2. Calculate the acceptance factor with the reduced model.

a ¼ min 1 ;
pðP�jYÞ pðPðt�1Þ;P�Þ

pðPðt�1ÞjYÞ pðP�;Pðt�1ÞÞ

" #
ð15aÞ

Step 3. Generate a random value U that is uniformly distributed on]0,1[.
Step 4. If U� a, proceed to step 5. Otherwise, return to step 1.
Step 5. Calculate a new acceptance factor with the complete model.

ac ¼ min 1 ;
pcðP�jYÞ pðPðt�1Þ;P�Þ

pcðPðt�1ÞjYÞ pðP�;Pðt�1ÞÞ

" #
ð15bÞ

Step 6. Generate a new random value Uc which is uniformly distributed on]0,1[.
Step 7. If Uc� ac, set P

(t)¼P
�
. Otherwise, set P(t)¼P(t� 1).

Step 8. Return to Step 1.

Where p(PjY)and pc(PjY) are the posterior distributions with the likelihoods
computed with the reduced model and with the complete model, respectively.

With the DAMH algorithm, it is expected to take advantage of the fast
computations of the reduced model in order to find, in step 4, possible candidates
to be accepted with the complete model, in step 7. The DAMH algorithm can be
quite effective, especially in the case of a low acceptance ratio of the MH algorithm.
Therefore, depending on how fast the solution of the reduced model is as compared
to that of the complete model, as well as on the acceptance ratio, the use of the
DAMH algorithm might result in significant reductions in computational times,
as compared to those from the regular MH algorithm applied to the complete model.

APPROXIMATION ERROR MODEL

In the approximation error model (AEM) approach, the statistical model of the
approximation error is constructed and then represented as additional noise in the
measurement model [1, 29–33]. With the hypotheses that the measurement errors
are additive and independent of the parameters P, one can write the following.

10 H. R. B. ORLANDE ET AL.
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Y ¼ TcðPÞ þ e ð16Þ

Where Tc(P) is the sufficiently accurate solution of the complete model given by
Eqs. (1a)–(1h). The vector of measurement errors, e, are assumed here to be
Gaussian, with zero mean and known covariance matrix W, so that the likelihood
function is given by Eq. (10).

In this article, the solution of the reduced model, T(P), given by Eqs. (3a)–(3f),
(7a), and (7b), is used for the solution of the inverse problem, in place of the solution
of the complete model, Tc(P). Thus, Eq. (16) becomes the following.

Y ¼ TðPÞ þ ½TcðPÞ � TðPÞ� þ e ð17Þ

By defining the error between the complete and the reduced model solutions as,

eðPÞ ¼ ½TcðPÞ � TðPÞ� ð18Þ

Eq. (17) can be written as follows.

Y ¼ TðPÞ þ gðPÞ ð19Þ

where,

gðPÞ ¼ eðPÞþe ð20Þ

One difficult with such an approach is to model the error g(P), which includes
the direct problem solution errors, e(P), as well as the experimental errors, e.
A simple, but very effective approximation error approach, is to model such an error
as a Gaussian variable [1, 29–33]. Another important point for the implementation
of the approximation error model is that the statistics of g(P), like its mean and
covariance matrix, are based on the prior distribution [1, 29–33]. Since smoothness
priors, such as the total variation prior given by Eqs. (11a) and (11b), are improper;
that is, their variances are unbound, only the Gaussian prior given by Eq. (13) is then
used in this paper for the approximation error model approach [1, 29–33].

Therefore, with the approximation error model approach, the posterior
Eq. (14b) is rewritten as follows [29].

~ppðc;P Yj Þ/cðIJþ2Þ=2 exp �1

2
½Y�TðPÞ� �gg�T ~WW�1½Y�TðPÞ� �gg��1

2
c P�lð ÞTC�1 P�lð Þ�1

2

c
c0

	 
2
( )

ð21Þ

where,

�gg ¼ �eeþ �eeþ CgPC
�1ðP� lÞ ð22aÞ

~WW ¼ We þW� CgPC
�1CPg ð22bÞ

�ee and �ee are the means of e and e, respectively, while We is the covariance of e, and
CgP is the covariance of g and P, respectively. Equations (22a) and (22b) give the
complete error model [29]. We note that, with the standard hypotheses regarding
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the measurement errors made above, �ee ¼ 0. By further neglecting the dependency of
g and P, that is, CgP¼ 0, Eqs. (22a) and (22b) simplify to the so-called enhanced
error model that is used here, given by the following [29].

�gg � �ee ð23aÞ

~WW � We þW ð23bÞ

RESULTS AND DISCUSSIONS

For all cases examined below, the plate was assumed to be made of stainless
steel with dimensions a¼ 0.12m, b¼ 0.12m, c¼ 0.003m, and with the following
properties.

CðTÞ ¼ 1; 324:75T þ 3; 557; 900 ð24aÞ

kðTÞ ¼ 12:45þ 0:014T þ 2:517x10�6T2 ð24bÞ

Where the units of temperature, volumetric heat capacity and thermal conductivity
in Eqs. (24a) and (24b) are K, Jm�3K�1 and Wm�1K�1, respectively. The plate was
assumed to be initially at the uniform temperature T0¼ 300K.

The components q(xi, yj) of the discretized heat flux were sought over a grid
with Dx¼Dy¼ 0.005m, that is, I¼ J¼ 24. The solutions of the complete model,
given by Eqs. (1a)–(1h), and of the reduced model, given by Eqs. (3a)–(3f), were
obtained by finite volumes. The complete model was discretized with Dx¼Dy¼
0.005m and Dz¼ 0.0005m, while the reduced model was discretized with Dx¼Dy¼
0.005m. For the two models, the systems resulting from the finite volume discreti-
zation were integrated explicitly in time, with a time step Dt¼ 0.01 s. The final time
was fixed at 2 s. The constant thermophysical properties used in the reduced model
were obtained from Eqs. (15a) and (15b) at T

� ¼ 600K.
Computational times in this work were obtained using the Matlab platform,

on a computer with an Intel i5 CPU and 4 GB of RAM. In general, the direct
problem solution with the complete model took around 7.2 s, while the solution with
the reduced model in the form of the improved lumped approach given by Eqs. (7a)
and (7b), took around 0.09 s of computational time. This clearly demonstrates
the necessity of a reduced model for the solution of the inverse problem with the
MCMC method in the present case. In fact, if we consider 100,000 states of the
Markov chain, the solution of the direct problem alone with the complete model
would require at least eight days of computation. On the other hand, with the
reduced model the required computational time reduces to around 2.5 h.

Three different heat flux functions were examined in this work, involving sharp
discontinuities and heat fluxes of large magnitudes; they were selected in order to
challenge the inverse problem solution procedure with each prior distribution, as
well as with either the delayed acceptance Metropolis-Hastings algorithm (DAMH)
algorithm or the approximation error model (AEM) approach. These functions are
denoted as flux A (with two small heating spots), flux B (with one single small
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heating spot), and flux C (with one single large heating spot). They are defined as
follows.

FluxA: qðxi; yjÞ ¼
107 Wm�2 ; for 8 � i � 10 and 8 � j � 10
107 Wm�2 ; for 18 � i � 20 and 18 � j � 20
0 elsewhere

8<
: ð25aÞ

FluxB: qðxi; yjÞ ¼ 107 Wm�2 ; for 8 � i � 10 and 8 � j � 10
0 elsewhere

�
ð25bÞ

FluxC: qðxi; yjÞ ¼ 107 Wm�2 ; for 8 � i � 15 and 8 � j � 15
0 elsewhere

�
ð25cÞ

where 1� i� I¼ 24 and 1� j� J¼ 24.
Figures 3a–3c present the temperature distributions at the bottom (z¼ 0) and

top (z¼ c) surfaces computed with the complete model given by Eqs. (1a)–(1h), at
time t¼ 1.9 s, for heat fluxes A–C, respectively. These figures clearly show the very
large temperature gradients across the plate, as well as along the x and y directions,
resulting from the large magnitudes of the applied heat flux at small spots.

For the solution of the inverse problem, the simulated temperature measure-
ments were given at z¼ 0, also over the grid with Dx¼Dy¼ 0.005m, at every Dt¼
0.01 s. The simulated measurements were generated from the solution of the
complete model given by Eqs. (1a)–(1h). Uncorrelated errors with a Gaussian
distribution, zero mean and two different levels of a constant standard deviation
were then added to the solution of the complete model to simulate actual measure-
ments. The two standard deviations applied for the simulated measurements were
0.02K and 1.25K. The lower value of the standard deviation is typical of nowadays
accurate infrared cameras, which are mainly used in laboratory measurements [7,
19–24]. The larger value of the standard deviation was selected to challenge the tech-
niques examined in this paper, in special for field applications where low-accuracy
infrared cameras are commonly used.

The test cases examined here, involving the different priors and approaches to
improve the accuracy of the inverse problem solution that were described above, are
summarized in Table 1. The TV prior was used for test cases 1–6. The regular
Metropolis-Hasting algorithm was applied for test cases 1–3 by using the reduced
model for the direct problem, but the delayed acceptance Metropolis-Hasting algor-
ithm was applied for test cases 4–6. Test cases 7–12 are based on the Gaussian prior.
While the regular Metropolis-Hastings algorithm based only on the reduced model
was used for test cases 7–9, the enhanced error model approach was used for test
cases 10–12.

For the AEM approach (cases 10–12), the parameters of the Gaussian distri-
bution that is proposed for the modeling error (see Eqs. (19)–(23), were quantified
as follows. The local heat flux was calculated with Eq. (12) at each time step, by using
the local temperature increase rate computed with the second set of measurements v,
as discussed above. This other type of measurements used to generate the prior was
simulated with larger standard deviations for their errors, that is, the equivalent of
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2K. On the other hand, the temperature measurements actually used in the inverse
analysis, for the computation of the likelihood, were supposed to be more accurate,
with standard deviations of 0.02K or 1.25K. From the means and variances of
the local heat fluxes at each time step, 100 samples from a Gaussian distribution
were generated for the spatially varying heat flux. The solutions of the complete
and reduced models were then computed, in order to calculate the modeling

Figure 3. Temperatures at the bottom and top surfaces at t¼ 1.9 s for (a) heat flux A, (b) heat flux B, and

(c) heat flux C (color figure available online).
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error e(P)¼ [Tc(P)�T(P)], for each of these samples. Hence, the mean �ee and the
covariance matrix We were computed, to be used in the enhanced error model given
by Eqs. (23a) and (23b).

In the inverse analysis, the numbers of states used in the Markov chains were
100,000 with 50,000 burn-in states and the proposal distribution p(P

�
, P(t-1)) was

taken as Gaussian, with a standard deviation of 2� 10�3P(t-1). For the hyperpriors,
the center points of the Rayleigh distributions were taken as a0¼ 5� 10�4 mW�1 for
the TV prior and c0¼ 5� 10�4 for the Gaussian prior. Such quantities were selected
based on numerical experiments and resulted in fast convergence of the Markov
chains for all cases considered. This behavior is illustrated in Figure 4, which pre-
sents the evolution of the Markov chains of the heat fluxes at four different locations
for case 3 with r¼ 0.02K. Note in this figure, that the chains converged for the
actual values of the heat fluxes; that is, 107 Wm�2 for positions i¼ j¼ 9 and
i¼ j¼ 12, and 0 Wm�2 for the other positions.

Figure 4. States of the Markov chains for four heat fluxes in test case 3 with r¼ 0.02K.

Table 1. Test cases

Test case Flux Prior Approach

1 A TV –

2 B TV –

3 C TV –

4 A TV DAMH

5 B TV DAMH

6 C TV DAMH

7 A Gaussian –

8 B Gaussian –

9 C Gaussian –

10 A Gaussian AEM

11 B Gaussian AEM

12 C Gaussian AEM

ESTIMATION OF HEAT FLUX IN A CONDUCTION PROBLEM 15
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The computational times for each of the test cases examined, together with the
acceptance ratios and the RMS errors of the estimated heat fluxes, are presented
in Table 2 for measurements with standard deviation of r¼ 0.02K. Similar results
are presented in Table 3 for r¼ 1.25K. Both the acceptance ratios in the first test
of Hastings with the reduced model (steps 2–4) and the second test of Hastings with
the complete model (steps 5–7) are presented for cases 4–6, where the DAMH
algorithm was applied. These ratios refer to the total number of states; that is,
100,000. The RMS error is defined as follows.

RMSerror ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

IJ

XI
i¼1

XJ
j¼1

qexaðxi; yjÞ � qestðxi; yjÞ
� �2vuut ð26Þ

Table 2 shows that the ratios of accepted states ranged between 9% and 12.8%,
except for cases 4–6. For these cases, where the DAMH algorithm was used,
the ratio of accepted states in the first test of Hastings was between 40% and 47%.

Table 2. CPU times, acceptance ratios, and RMS errors for measurements with standard

deviation of r¼ 0.02K

Test case CPU time (h) Acceptance ratio (%) RMS error (W=m2)

1 2.7 10.9 9.3� 104

2 2.8 9.0 6.6� 104

3 2.6 9.9 1.1� 105

4 114.2 46.7� 5.3 9.8� 104

5 113.0 47.9� 4.2 5.9� 104

6 98.3 40.8� 5.9 1.4� 105

7 2.6 11.3 9.3� 104

8 2.8 9.3 6.6� 104

9 2.7 10.2 1.1� 105

10 44.5 12.8 4.1� 104

11 44.2 11.0 2.6� 104

12 42.5 11.2 8.5� 104

Table 3. CPU times, acceptance ratios, and RMS errors for measurements with standard

deviation of r¼ 1.25K

Test case CPU time (h) Acceptance ratio (%) RMS error (W=m2)

1 2.6 9.1 1.1� 106

2 2.6 7.5 1.0� 106

3 2.6 9.1 1.8� 106

4 98.7 41.9� 6.8 1.1� 106

5 93.5 44.6� 5.7 6.9� 105

6 64.5 34.6� 5.4 1.4� 106

7 2.7 9.1 1.1� 106

8 2.6 8.3 9.8� 105

9 2.6 9.4 1.3� 106

10 42.9 9.8 1.2� 106

11 43.3 11.9 1.2� 106

12 43.1 8.7 2.0� 106
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However, around 90% of such accepted states were rejected in the second test of
Hastings, when the complete model was applied. A comparison of test cases 1–3 with
test cases 4–6 shows that the DAMH algorithm increased the acceptance ratio in the
first test of Hastings, because samples accepted with the complete model better repre-
sented the actual components of the heat flux. On the other hand, the computational
times substantially increased when the DAMH algorithm was used (cases 4–6),
instead of the regular MH algorithm (cases 1–3), because the solution of the com-
plete model for the direct problem needed to be computed for 40%–47% of the total
states. Still, the computational times for the cases where the DAMH algorithm was
used were approximately 50% of that expected if only the complete model was used
for the inverse analysis; that is, 192 h. We also note that a further speed improvement
could be done by an adaptive incorporation of knowledge about the approximation
error in the DAMH algorithm, as demonstrated in reference [34]. The computational
times were independent of the prior distribution, when only the reduced model was
used in the inverse analysis (see cases 1–3 and 7–9). Similarly, the acceptance ratios
were not significantly affected by the choice of the prior distribution. On the other
hand, we also note a general increase on the computational times when the AEM
approach was used (cases 10–12), as compared to the cases involving only the
Gaussian prior (cases 7–9). This behavior resulted from matrix operations required
for the computation of the posterior distribution with the AEM approach. An analy-
sis of Table 2 reveals that the RMS errors were not affected by the choice of the prior
distributions examined in this work, for measurements with standard deviation of
r¼ 0.02K. Furthermore, the use of the DAMH algorithm (cases 4–6) did not
improve the accuracy of the solution as compared to the regular MH algorithm
(cases 1–3), but the use of the AEM approach (cases 10–12) reduced by approxi-
mately 50% the RMS errors with respect to cases 7–9, where only the Gaussian prior
was applied with the reduced model.

The results obtained for measurements with standard deviation of r¼ 1.25K
are summarized in Table 3. Similar conclusions to those discussed above for measure-
ments with standard deviation of r¼ 0.02K (Table 2) can be drawn from the analysis
of Table 3, with respect to the computational times and the acceptance ratios. On the
other hand, it is interesting to note from the RMS errors in Table 3 that the accuracy
of the inverse problem solution was not significantly improved or deteriorated, when
the DAMH algorithm or the AEM approach were used instead of the reduced model.
This behavior was due to the large standard deviations assumed for the measurements
used in the cases presented in Table 3. Indeed, the RMS errors increased by around
two orders of magnitude when the standard deviation of the measurement errors were
increased from r¼ 0.02K to r¼ 1.25K. Anyhow, the locations and the magnitudes
of the applied heat fluxes can still be very well estimated even with such extremely
large measurement errors, as will be apparent below.

A comparison of the estimated means and the exact applied heat fluxes is
presented in Figures 5 and 6, for measurements with standard deviations of
r¼ 0.02K and r¼ 1.25K, respectively. The results presented in Figure 5 were
obtained with the AEM approach (cases 10–12), while the results presented in
Figure 6 were obtained with the DAMH algorithm (cases 4–6). Such figures illustrate
the accuracy of these two techniques as applied to the solution of the present inverse
problem. For the results obtained with measurements of small standard deviation,
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we note that both the locations and the magnitudes of the applied heat fluxes were
extremely well estimated, as depicted by Figure 5. Such is the case, despite the fact
that a poor Gaussian prior, generated with measurements of large uncertainty as
described above, was used for the results presented in this figure. An analysis of the
results presented by Figure 6, which were obtained with measurements containing

Figure 5. Estimated and exact heat fluxes for (a) case 10, (b) case 11, and (c) case 12 with r¼ 0.02K

(color figure available online).
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errors of standard deviation r¼ 1.25K by using the DAMH algorithm, shows that
this technique was capable of accurately estimating the regions of the applied heat
fluxes. Although oscillations can be observed within the regions where the heating
was imposed, the estimated heat fluxes were stable and practically null, as expected,
in regions where heat transfer was neglected (outside the heating spots). Such quite

Figure 6. Estimated and exact heat fluxes for (a) case 4, (b) case 5, and (c) case 6 with r¼ 1.25K

(color figure available online).
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accurate results were obtained despite the very large measurement errors and
with a prior that does not provide any information regarding the sought function,
which is given in these cases by the total variation function.

Figure 7. Residuals for (a) case 1 and (b) case 4 with r¼ 0.02K (color figure available online).
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Although the use of the DAMH algorithm did not result on significant changes
on the accuracy of the estimated quantities (see Tables 2 and 3), we note that
this algorithm actually samples from the correct complete model, thus providing
a reduction on the temperature residuals. The residuals are defined as the difference
between measured and estimated temperatures, where the last ones were calculated
here with the complete model by using the estimated heat fluxes. Indeed, small
and uncorrelated residuals are expected for the solution of inverse problems
obtained with models that appropriately represent the physical phenomena of the

Figure 8. Residuals for (a) case 7 and (b) case 10 with r¼ 0.02K (color figure available online).
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problem. Figure 7 presents the residuals at time t¼ 1.9 s for cases 1 and 4, respect-
ively, for measurements with r¼ 0.02K. The time t¼ 1.9 s was selected for this
analysis since it is close to the final time, where the residuals are larger than for small
times. We note in this figure that the larger residuals take place at the edges of the
regions where the heat flux was applied for case 4 (DAMH algorithm); while for
case 1, which involves only the MH algorithm, the residuals are more evenly distrib-
uted within the heating regions and of larger magnitude. A reduction of the magni-
tude of the residuals was also noticed when the AEM approach was used, instead of
only the reduced model with the Gaussian prior, as presented in Figure 8. Figure 8a
shows the residuals for case 7 and Figure 8b shows the residuals for case 10, both for
measurements with r¼ 0.02K, at time t¼ 1.9 s. It is interesting to note that
Figures 7a and 8a present similar residuals when only the reduced model was used
in the inverse analysis, for the two prior distributions examined in this paper. On
the other hand, Figure 8b shows that the AEM approach was capable of significantly
reducing the magnitude of the residuals and making them less correlated, for
measurements with r¼ 0.02K, but such was not the case when the DAMH algor-
ithm was applied (see Figure 7b). In fact, for measurements with r¼ 0.02K, the
AEM approach also resulted in the smallest RMS errors as depicted by Table 2.
The behavior of the residuals for measurements with r¼ 1.25K was practically
not affected by the kind of prior distribution used for the inverse analysis; it was also
not affected by the use of the DAMH algorithm or of the AEM approach, as a result
of the extremely large standard deviation used for the simulated measurements
in these cases. Such conclusions were already expected, based on the analysis of
the RMS errors presented in Table 3.

CONCLUSION

In this article, the inverse problem dealt with the estimation of a boundary
heat flux from transient measurements taken at the opposite surface, in a thin
plate with temperature-dependent properties. The solution of the inverse three-
dimensional nonlinear heat conduction problem was obtained with the Markov
chain Monte Carlo method. A reduced model was used in this work, based on an
improved lumped formulation of a linearized version of the complete model, in order
to accelerate the inverse problem solution. Two prior distributions, as well as two
approaches that aimed at improving the accuracy of the inverse problem solution
with the reduced model, were examined in the paper. The priors analyzed for the
heat flux included a total variation noninformative one, as well as a Gaussian
that was modeled in terms of the physics of the problem. The approaches aimed
at improving the accuracy of the inverse problem included the delayed Metrop-
olis-Hastings (DAMH) algorithm and the approximation error model (AEM),
in the form of the enhanced error model. Additive, Gaussian and uncorrelated
simulated measurements were used in the inverse analysis, with two different levels
of measurement errors. The solution of the inverse problem was examined for three
different functional forms of the applied heat flux.

The two prior distributions examined here resulted on estimations of similar
accuracy, for both levels of measurement errors, when only the reduced model
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was used in the inverse analysis. For measurements with a large standard deviation,
the behaviors of the residuals and of the RMS errors were practically not affected by
the use of the DAMH algorithm or of the AEM approach. Anyhow, the locations
and the magnitudes of the applied heat fluxes were very well estimated with large
measurement errors, because of the careful selections of the prior distributions
and of an accurate reduced model to replace the complete model. For measurements
with small standard deviation, the AEM approach was capable of reducing the RMS
errors of the estimated heat fluxes and resulting on less correlated residuals of smal-
ler magnitudes. Although the DAMH algorithm did not effectively reduced the RMS
errors for those measurements with smaller magnitudes, its residuals were also smal-
ler and less correlated than those obtained with the sole application of the reduce
model. In terms of the computational time, the DAMH algorithm resulted in a sub-
stantial increase as compared to the cases that dealt only with the reduced model,
because the solution of the complete model needed to be computed for about 50%
of the total states. Still, the computational times for the cases where the DAMH
algorithm was used were approximately 50% of that expected if only the complete
model was used in the analysis. An increase on the computational times was
observed when the AEM approach was used, as compared to those obtained only
with the reduced model, but the speed-up was of the order of four with respect to
the solution of the inverse problem with the complete model.

This article demonstrates the importance of carefully selecting the reduced
model for the solution of the direct problem, as well as the prior distributions for
the unknown quantities, for an inverse analysis based on the Markov chain Monte
Carlo method. For the cases examined herein, the use of the DAMH algorithm did
not result in significant changes of the accuracy of the estimated quantities, although
this algorithm actually samples from the correct complete model. On the other hand,
the AEM approach, which uses the posterior modified by the error of the reduced
model, allowed for an improvement on the accuracy of the inverse problem solution,
for small experimental errors. Such was the case despite the fact that the AEM
approach was based on a poor Gaussian prior, generated with a second set of mea-
surements with large uncertainty.
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