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Inverse determination of unsteady temperatures and
heat fluxes on inaccessible boundaries

Brian H. Dennis and George S. Dulikravich

Abstract. The direct measurement of temperatures and heat fluxes may be difficult or
impossible on boundaries that are inaccessible, such as internal cavities, or exposed to
harsh environmental conditions that would destroy the thermal sensors. In such circum-
stances, one may inversely determine the temperature and heat fluxes on these unknown
boundaries by using over-specified conditions on boundaries where such information can
be readily collected. This assumes the geometry and material properties of the domain
are known. Algorithms for solving these problems, such as those based on finite differ-
ence, finite element, and boundary element, are well known for the case where measured
boundary conditions are not a function of time. In this work, we demonstrate an inverse
finite element method that effectively solves this inverse heat conduction problem using
over-specified temperatures and heat fluxes that are time varying. The material properties
may be highly heterogeneous and non-linear. A boundary regularization method is used
to stabilize the method for cases involving errors in temperature and heat flux measure-
ments. Several three-dimensional examples are given using simulated measurements with
and without measurement errors, to demonstrate the accuracy of the method.
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1 Introduction

Many practical engineering applications require monitoring of surface tempera- Note 1:
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2010

tures and heat fluxes, but in some situations it may be difficult and even impossible
to place probes on the desired surface of a solid body. This can be either due to
its small size, geometric inaccessibility, or because of exposure to a hostile envi-
ronment that may destroy the probe. With an appropriate inverse method, these
unknown boundary values on the desired surface can be deduced from additional
information available at a finite number of points within the body and/or on some
other surfaces of the solid body. In the case of heat conduction, the objective of
an inverse boundary condition determination problem is to compute the tempera-
tures and heat fluxes on any surfaces or surface elements where such information
is unknown [1].
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The inverse approach for determining unknown boundary conditions in heat
conduction is a well-studied problem for steady heat conduction in simplified do-
mains with linear materials [1, 3–6, 8].

However, many real world applications involve complex geometries with non-
linear and heterogeneous material properties and require the determination of un-
steady temperature boundary conditions.

For inverse problems, the unknown boundary conditions on parts of the bound-
ary can be determined by overspecifying the boundary conditions (enforcing both
Dirichlet and Neumann type boundary conditions) on at least some of the remain-
ing portions of the boundary, and providing either Dirichlet or Neumann type
boundary conditions on the rest of the boundary. It is possible, after a series of al-
gebraic manipulations, to transform the original system of equations into a system
which enforces the overspecified boundary conditions and includes the unknown
boundary conditions as a part of the unknown solution vector. This approach has
been used successfully for steady heat conduction [1,3,6]. In this paper, we present
the extension of this method to unsteady heat conduction problems.

2 FEM formulation for heat conduction

The temperature field distribution throughout the domain can be found by solving
the heat equation for unsteady thermal conduction (2.1). The material properties
may be spatially varying and may depend on temperature. The density, �, specific
heat capacity, Cp, and thermal conductivity coefficient, k, as well as the objects’
geometry are assumed to be known. The effect of heat sources and sinks, such
as latent heats due to chemical reactions or phase changes or Joule heatings, can
be incorporated with a distributed heat source function, S . We note that these
quantities may be functions of time, space, and temperature,
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Applying the method of weighted residuals to (2.1) over an element results in the
following functional equation:

� D

Z
�e

v

�
�Cp

@T

@t
� r � .krT / � S

�
d�e (2.2)

where v is a non-zero weight function. Integrating (2.2) by parts once reduces the
required continuity for functions representing T over each element and eliminates
the need to differentiate the krT product,
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Variation of the temperature and the weight function across an element with m
nodes can be expressed by
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where the functions Ni for ve and T e are chosen to be the same. The functions
ve and T e are substituted into (2.3) leading to a discrete weak statement. The dis-
crete weak statement functional is then made stationary with respect to the weight
function coefficients vi resulting in a system of non-linear ordinary equations for
the element. These equations can be expressed in matrix form as
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The time derivative is then discretized using a straightforward � -method time
marching approach resulting in (2.11). In addition, the system can be linearized
using values of k, Cp, �, and S from the previous time step or iteration. Alter-
natively, inner iteration using Picard’s or Newton’s method each time step can be
used to linearize the system. Our previous experience has shown that these heat
conduction problems are not highly non-linear and require only a few iterations to
converge each time step. In most cases, linearization in time without inner iteration
is sufficient�
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The value of � dictates whether the scheme is implicit or explicit, and first or
second order accurate in time. We use 0:5 � � � 1:0 for both forward and inverse
analysis, thus requiring the simultaneous solution of the system of equations each
time step. This approach requires knowledge of the initial temperature to start the
marching process.

The element matrices and vectors are determined for each element in the domain
and then assembled into the global system of linear algebraic equations

ŒK.T n/�¹T nC1
º D ¹Q.T n/º: (2.12)

This system is solved each time step for both forward and inverse problems. Both
require knowledge of the boundary and initial conditions to start the time marching
process.

3 Direct and inverse formulations

The above equations for unsteady heat conduction were discretized by using a
Galerkin finite element method. The system is typically large, sparse, symmetric,
and positive definite. Once the global system has been formed, the boundary con-
ditions are applied. For a well-posed analysis (forward) problem, the boundary
conditions must be known on all boundaries of the domain. For heat conduction,
either the temperature, Ts; or the heat flux, Qs; must be specified at each point of
the boundary.

Here we use series of algebraic manipulations to transform the original system
of linear equations into an alternate system that represents the inverse problem.
The modified system enforces the over-specified boundary conditions while in-
cluding the unknown boundary conditions as a part of the unknown solution vec-
tor. As an example, consider the linear system for heat conduction on a tetrahedral
finite element with boundary conditions given at nodes 1 and 4266664
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As an example of an inverse problem, one could specify both the temperature, Ts;

and the heat flux,Qs; at node 1, flux only at nodes 2 and 3, and assume the bound-
ary conditions at node 4 as being unknown. The original system of equations (3.1)
can be modified by adding a row and a column corresponding to the additional
equation for the over-specified flux at node 1 and the additional unknown due to
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the unknown boundary flux at node 426666664
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The resulting systems of equations will remain sparse, but will be unsymmetric
and possibly rectangular depending on the ratio of the number of known to un-
known boundary conditions. We note that this procedure is repeated each time
step for the unsteady inverse analysis.

4 Regularization

It is well known that ill-conditioned problems, such as many inverse problems, are
very sensitive to error. The error may come from round-off due to finite precision
calculations, or from input data, such as when actual experimental data is used. In
either case, introduction of error can cause spurious non-physical results to appear.
To make the approach robust against error, we apply a regularization method to the
inverse finite element method.

Tikhonov regularization [10] method is the most widely used approach. How-
ever, our previous research has shown that higher-order regularization methods
result in more accurate solutions to inverse boundary condition problems [1, 3].

The general form of a regularized system is given as (see [7]) Note 2:
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indicate
major
changes.
Please
check them
carefully.

"
K

ƒD

#
¹T º D

´
Q

0

µ
(4.1)

where the traditional Tikhonov regularization is obtained when the damping ma-
trix, ŒD�, is set equal to the identity matrix. Solving (4.1) in a least squares sense
minimizes the following error function:

error.T / D kŒK�¹T º � ¹Qºk22 C kƒŒD�¹T ºk
2
2: (4.2)

This is the minimization of the residual plus a penalty term. The form of the damp-
ing matrix determines what penalty is used and the damping parameter,ƒ, weights
the penalty for each equation. These weights should be determined according to
the measurement error associated with the respective equation. The Tikhonov ap-
proach clearly drives the solution to zero as the damping parameter increases. For
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this reason, we avoid using the Tikhonov regularization method in inverse bound-
ary detection problems.

The method used here is essentially a Laplacian smoothing of the unknown
temperatures on the boundaries where the boundary conditions are unknown. This
method could be considered a “second order” Tikhonov method. A penalty term
can be constructed such that curvature of the solution on the unspecified boundary
is minimized along with the residual

kr
2Tubk

2
2 ! min: (4.3)

Equation (4.3) is discretized using the method of weighted residuals to deter-
mine the damping matrix, ŒD�,

kŒD�Tubk
2
2 D kŒK�Tubk

2
2: (4.4)

In three-dimensional problems, ŒK� is computed by integrating over surface
elements on the inaccessible boundaries. So the damping matrix represents an as-
sembly of boundary elements that compose the inaccessible boundary. The stiff-
ness matrix for each boundary element is formed by using a Galerkin weighted
residual method that ensures the Laplacian of the solution is minimized over the
unknown boundary surface. The main advantage of this method is its ability to
smooth the solution vector without necessarily driving the components to zero and
away from the true solution.

5 Numerical results

The finite element inverse formulation was shown previously to be both accurate
and efficient for several three-dimensional test problems in steady heat conduc-
tion [2, 3].

Following a similar approach, the proposed unsteady inverse finite element
method was applied to some three-dimensional test problems to demonstrate ac-
curacy of the method.

The method has been implemented in an object-oriented finite element code
written in C++. The software uses sparse matrix storage that allows 3-D problems
to be solved on a multi-core personal computer in less than a few minutes. Ele-
ments used in the calculations were hexahedra with tri-linear interpolation func-
tions.

In general, the resulting FEM systems for inverse finite element problems are
sparse, unsymmetric, and often rectangular. These properties make the process
of finding a solution to the system very challenging. One possible approach is to
use iterative methods suitable for least squares problems. One such method is the
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LSQR method [9], which is an extension of the well-known conjugate gradient
(CG) method. The LSQR method and other similar methods such as the conjugate
gradient for least squares (CGLS) solve the normalized system, but without ex-
plicit computation of ŒK�ŒK�T . These methods need only matrix-vector products
at each iteration and therefore only require the storage of the solution vectors if the
products are computed on an element-by-element basis. This makes the iterative
approach attractive for large sized models. In addition, the matrix-vector product
is naturally parallel, and thus is easily applied to massively parallel computing re-
sources. The linear system for the cases shown here are solved with a sparse LSQR
solver.

For the first test case, we consider heat conduction in an insulated carbon steel
rod with time varying temperature applied on the bottom end. We note that this
problem is a relatively simple test case with linear properties, a spatially one-
dimensional solution, and has no measurement errors included.

The test geometry and boundary conditions are illustrated in Figure 1. The
rod has a length of 50:0 cm and a square cross-section with a width of 10:0 cm.
Constant material properties of � D 7800:0 kg=m3, Cp D 500:0 J=kg �K, and
k D 40:0W=m �K were used. The rod was meshed with ten uniformly spaced
hexahedral elements.

Figure 1. Boundary conditions for rod test problem.

A forward problem was created by specifying an initial condition of

T .x; y; z/ D 0:0oC

and the boundary condition Tb D 20:0 sin.2�t=10:0/C50:0. All other boundaries
were insulated. A time step size �t D 0:5s was used. The computed temperature
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and heat flux on the top of the rod were stored in a file in double precision at each
time step. This data was then used for simulated measurements for the inverse test
problem discussed below.

For the inverse problem, Tb and the corresponding heat flux are considered
unknown, while the simulated measurements obtained from the forward problem
were overspecified on the opposite end of the rod. The same geometry, material
properties, initial temperature, and time step size used for the forward problem
were also used for the inverse case. A damping coefficient ƒ D 1:0 � 10�30 was
used.

Figure 2 compares the results for Tb for the inverse and forward problems.
The inverse method predicts temperature that is within 1.0% of the forward solu-
tion. More importantly, the error does not appear to grow with time, indicating the
method is both accurate and stable for this test case.

Time (s)

T
em

p
er

at
u

re
(O

C
)

0 2 4 6 8 10
30

35

40

45

50

55

60

65

70

Inverse
Forward

Figure 2. Predicted boundary temperature Tb for forward and inverse cases.

The second test case is a slightly more complex demonstration. This case in-
volves the time varying surface heat flux applied to a three-dimensional plate. The
plate geometry and mesh are shown in Figure 3. The mesh is composed of 2116
hexahedral elements. The boundary conditions for the forward problem are shown
in Figure 4. The carbon steel plate material has the properties � D 7800:0 kg=m3,
Cp D 500:0 J=kg �K, k D 40:0W=m �K.

A time varying temperature function was created to simulate a directed energy
beam moving diagonally across the top of the plate as shown in Figure 5. Note that
the temperature is non-dimensionalized according to

T D 100:0
Tcomputed � Tmin

Tmax � Tmin
: (5.1)
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Figure 3. Plate geometry and mesh for second test case.
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Figure 4. Boundary conditions for second test case forward problem.

Figure 5. Time varying temperature on the plate top for forward problem.
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As in the first case, the forward problem is solved while storing temperatures
and fluxes on the bottom surface of the plate. The stored double precision data
was then used as simulated measurements for the inverse case. A time step size
�t D 0:012s was used for generating these simulated measurements.

The inverse case was constructed by over-specifying the simulated data on the
top of the plate while leaving the bottom of the plate with no specified bound-
ary conditions. The edges remained insulated. A time step size of �t D 0:012 s
and a damping parameterƒ D 1:0 � 10�9 was used. Figure 6 shows the predicted
temperature on the plate bottom for the forward and inverse cases at two different
time instances. The average error for the reconstructed temperature field is approx-
imately 1.0%.

Figure 6. Plate bottom temperatures for forward and inverse cases with no measure-
ment errors.

The above problem was then repeated using over-specified boundary conditions
with random measurement errors added. Random errors in the known boundary
temperatures and fluxes were generated using the following equations [6]:

T D Tbc ˙
p

�2 N�2 lnR; (5.2)

Q D Qbc ˙
p

�2 N�2 lnR (5.3)

where R is a uniform random number between 0.0 and 1.0 and N� is the standard
deviation. Equations (5.2)–(5.3) were used to generate errors in both the known
boundary heat fluxes and temperatures obtained from the forward solution.
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The inverse problem was repeated after random errors were added to the sim-
ulated data. The average temperature measurement error in this case is 1.5%.
A larger damping parameter ofƒ D 6:0 � 10�4 was used. A comparison between
the inverse and forward temperatures on the bottom surface is shown in Figure 7.
Results show that the inverse solution qualitatively matches the forward solution
and has an average error in the predicted temperature field of 11%. More regular-
ization is needed to smooth the predicted temperature distribution.

Increasing the damping parameter to ƒ D 6:0 � 10�2 reduces the average er-
ror to 8% and results in a smoother temperature field (Figure 8) compared to the
previous case. We note that increasing the parameter further results in an overly
smooth temperature field and increased error in the predicted temperature. There-
fore, there is an optimal damping parameter for this case, though it is not known
a priori. The determination of the optimal parameter is a topic for further research.

Figure 7. Plate bottom temperatures for forward and inverse cases with 1.5% average
measurement error and ƒ D 6:0 � 10�4.

6 Conclusions

A formulation for the inverse determination of unknown unsteady boundary condi-
tions in heat conduction for three-dimensional problems has been presented. This
formulation has been successfully applied to the inverse detection of temperature
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Figure 8. Plate bottom temperatures for forward and inverse cases with 1.5% average
measurement error and ƒ D 6:0 � 10�2.

distributions on inaccessible boundaries for a rod and a plate. Simulated measure-
ments were generated by solving a forward problem with known boundary con-
ditions. This method computes the temperature distribution with high accuracy
when no measurement errors were present in the over-specified boundary condi-
tions. This method requires regularization when measurement errors are added to
the boundary conditions. However, it was demonstrated that a high-order regular-
ization method successfully prevented the amplification of the errors as a function
of time step.
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