
Chapter 8

Inverse Design of Alloys’ Chemistry for

Specified Thermo-Mechanical Properties by

using Multi-objective Optimization

G. S. Dulikravich and I. N. Egorov

Abstract. Inversely designing new alloys for specific applications involves
determining concentrations of alloying elements that will provide, for example,
specified tensile strength at a specified temperature for a specified length of
time. This represents an inverse problem which can be formulated as a multi-
objective optimization problem with a given set of equality constraints. This
chapter describes several such formulations for the multiple objective functions
and comparatively evaluates these models when using optimization to solve this
de facto inverse problem. This approach allows a materials design engineer to
design a precise chemical composition of an alloy that is needed for building
a particular object. This inverse method uses a multi-objective constrained
evolutionary optimization algorithm to determine not one, but a number of
alloys (Pareto front points), each of which will satisfy the specified properties
while having different concentrations of each of the alloying elements. This
provides the user of the alloy with additional flexibility when creating such
an alloy, because he/she can use the chemical composition which is made of
the most readily available and the most inexpensive elements. It should be
pointed out that the inverse problem of determining alloy chemical composition
is different from a direct optimization problem of designing alloys that will have
extreme properties. This alloy design methodology does not require knowledge
of metallurgy or crystallography and is directly applicable to alloys having an
arbitrary number of alloying elements. Examples are presented for Ni-based
steel alloys and bulk metallic glasses, although the method is applicable to
inversely designing chemical concentrations of arbitrary alloys.
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8.1 Introduction

It is well known that thermo-physical properties of alloys depend on the choice
and number of the alloying elements, concentrations of each of the alloying
elements, and thermal and/or mechanical treatment protocol that an alloy is
typically submitted to in an a posteriori fashion. The microstructure of an al-
loy depends on these influencing factors. It represents an intermediate step in
this cause-consequence relationship between chemistry and thermo/mechanical
treatment on one side, and thermo-mechanical properties on another side.
Mathematical modeling of the interdependency of various thermo-physical
properties on each of the influencing factors is either non-existent or based
on empiricism and heuristics. Thus, the general problem of designing new al-
loys is still an art, rather than a science. It involves the designer’s experience
with general metallurgy, personal intuition and an excessively long and expen-
sive experimentation which makes the alloy design process very costly. It does
not currently involve any aspects of chemistry.

Therefore, rather than attempting to develop a new fundamental science of
alloys’ chemistry based on nonlinear thermodynamics and atomistic modeling
of basic structures, which is still restricted to relatively small number of atoms
because of the excessive computing time and memory requirements, it is more
prudent to utilize simple models that do not require detailed elaboration of
microstructure and chemistry. Since such simple meta models linking causes
and consequences can significantly reduce the overall time and cost of the alloy
design process, it is of utmost importance to utilize such computational design
tools that already exist and have been successfully applied in numerous other
fields of science and engineering. Such proven design tools are various design
optimization algorithms that can be used to create alloys with extreme thermo-
physical properties [1–7] or can be used in conjunction with inverse design of
alloys [8, 3, 7] having specified thermo-physical properties. For example, a
designer of a crankshaft in an internal combustion engine needs to use an alloy
that will sustain a very specific maximum stress, at a specific temperature, for
a specific number of hours before it breaks. This would be a typical example of
an inverse design of alloys [8]. The resulting alloys that will meet the desired
specifications are typically considerably less expensive than the optimized alloys
where the properties were extremized via an alloy design optimization process
[1–7]. In this article, we will elaborate on a method that we created for inverse
design of alloys that will have values of their thermo-physical properties as
specified by the designer.

This inverse design method uses a variant of I. N. Egorov’s optimization al-
gorithm known as IOSO [9, 3] to determine not one, but a number of alloys,
each of which is satisfying the specified properties while having different con-
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centrations of each of the alloying elements. This provides the user of the alloy
with increased flexibility when deciding to create such an alloy. In this way, the
customer can choose the inversely determined alloy composition (the alloying
elements to be used in a new alloy) and the inversely determined set of concen-
trations (of these alloying elements) that are the most available and the least
expensive at the moment when it is ordered from the alloy manufacturer. It
should be pointed out that the inverse problem of determining alloy chemical
composition is different from a direct optimization problem [1–7] of designing
alloys that will have extreme properties.

The inverse problem can then be formulated as, for example, a multi-objective
optimization problem with a given set of equality constraints. We have used
IOSO multi-objective optimization algorithm [9] to achieve the solution of this
type of inverse alloy design problem [8, 3, 7].

We have developed eight mathematical formulations and corresponding soft-
ware packages for different ways to achieve inverse determination of chemical
concentrations of alloying elements that simultaneously satisfy several specified
mechanical and cost/availability properties. These different formulations were
then compared and analytically evaluated in an attempt to determine the most
appropriate formulation.

8.2 Multi-Objective Constrained Optimization and

Response Surfaces

The key to the success of the proposed inverse method for design of alloys is
the robustness, accuracy, and efficiency of the multi-objective constrained op-
timization algorithm. This inverse problem solution methodology and results
presented in this chapter are based on a special adaptation of IOSO [9], which
is a robust stochastic multi-objective constrained optimization algorithm. The
IOSO algorithm is of a semi-stochastic type incorporating certain aspects of a
selective search on a continuously updated multi-dimensional response surface.
IOSO can utilize either a weighted linear combination of several objectives
or a true multi-objective formulation option for creating Pareto fronts. The
main benefits of this algorithm are its outstanding reliability in avoiding lo-
cal minima, its computational speed, and a significantly reduced number of
required experimentally evaluated candidate alloys as compared to more tra-
ditional semi-stochastic optimizers such as genetic algorithms. Furthermore,
the self-adapting response surface formulation [10] used in IOSO allows for in-
corporation of realistic non-smooth variations of experimentally obtained data
and provides for accurate interpolation of such data.

One of the advantages of this approach is the possibility of ensuring good
approximating capabilities using a minimum amount of available information.



200 8 Inverse Design of Alloys’ Chemistry

This possibility is based on self-organization and evolutionary modeling con-
cepts [10, 8, 3]. During the optimization process, the approximation function
(multi-dimensional response surface) structure is being continuously improved,
so that it allows successful approximation of the optimized functions and con-
straints having sufficiently complicated topology. The obtained analytical for-
mulations for the response surface approximations can be used by multi-level
optimization procedures with an adaptive change of approximation level accu-
racy for both a single and multiple objectives analysis, and also for the solution
of their interaction problems.

With reference to a particular problem of the creation of alloys with desirable
properties, there will inevitably arise a problem of constraints that need to be
specified on the objective functions. These constraints are absent in a more gen-
eral multi-objective optimization statement. Such objective constraints should
be set by the user (expert) and could be allowed to vary during the solution
process. For example, a minimum acceptable value for the Young’s modulus
of elasticity could be specified as an inequality constraint. Or, a maximum
acceptable percentage for each of the most expensive chemical elements in the
alloy could be specified as a cost objective constraint. Also, the maximum
acceptable manufacturing cost of an alloy could be specified as an inequality
constraint.

The problem of search for a Pareto-optimum solution set in the multi-objec-
tive optimization, while varying concentrations of alloying elements, would be
an unacceptably labor-intensive process. This is because of an extremely large
number of candidate alloys that would need to be created and because several of
the properties of each of these alloys would have to be evaluated experimentally.
In this case, we can speak only about the creation of some rather extensive
database including the information on various properties of alloys for various
combinations of a chemical structure. Such a database could be used for the
solution of particular problems aimed at the creation of alloys with desirable
properties. Unfortunately, inverse problems, as a rule, are difficult to formalize
at the initial stage, since the user does not know initially what values of some
objectives could be physically reached and how the remaining objectives will
vary. That is, the user has very little if any a-priori knowledge of topology
of the objective functions. Hence, it is very difficult to predict the number of
experiments required in the optimization application proposed here.

Therefore, it appears that inverse design of alloys via use of optimization can
be solved only in an interactive mode, when the user during the solution can
modify both objective constraints and objective functions. Actually, in this
case one can speak about optimally controlled experiments. Let us consider
several different scenarios for the solution of optimization problems for these
conditions.
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The first approach is to perform a general multi-objective optimization of the
material properties. Within the frame-work of this strategy, we are to solve the
multi-objective optimization problem (to find the Pareto set) using the general
IOSO algorithm. This strategy is the most accurate, but it requires a very large
number of experiments.

The second approach is an interactive step-by-step optimization of the ma-
terial properties. The first step of this strategy is to create an initial plan of
experiments. This involves formulation of a single (hybrid) optimization objec-
tive by the user. This objective may be the convolution of particular objectives
with different weight coefficients assigned to each of them. Then, one optimiza-
tion step is needed to minimize this composite objective. The result of this
strategy is the single solution that belongs to Pareto-set. However, during such
relatively efficient quasi multi-objective optimization process we can accumu-
late the information about the particular objectives and construct progressively
more accurate response surface models.

Thus, in order to develop and realize the most effective optimization strate-
gies, both of the first and the second kind, we have to perform a thorough
preliminary search for the classes of base functions that will be able to con-
struct the most accurate multi-dimensional response surface models.

The number of experiments that is necessary for true multi-objective op-
timization problem solution depends not only on the dimensionality of the
problem (the number of chemical elements in an alloy); it also depends to a
considerable degree on the topologies of the objective functions. For example,
for the solution of an actual problem in the car industry with 6 variables, we
needed nearly 60 experiments when using a basic IOSO algorithm [11]. How-
ever, for finding the minimum of the classical Rosenbrock test function, having
only 2 variables, it was necessary to perform almost 300 objective function
evaluations.

8.3 Summary of IOSO Algorithm

An extremely important part of the optimization process is the creation and
iterative improvements of a multidimensional response surface (an approxima-
tion of the objective function as an analytical expression relating it to the
design variables-concentrations of different alloying elements). Each iteration
of IOSO, therefore, consists of two steps. The first step is the creation of an ap-
proximation of the objective function(s). The response surface in IOSO is mod-
eled analytically as a tree-structure or a multi-level graph, where each branch
is a quadratic polynomial. Thus, the final analytic expression for a multi-
dimensional response surface is a polynomial-of-a-polynomial-of-a-polynomial-
. . . , where each polynomial is a simple quadratic function. Generally speaking,
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the basic polynomial could be a linear function, a quadratic function, a cubic
function, a quartic function, etc. [11, 12], but the best tradeoff between the
accuracy of the fitting process and the computational cost appears to be the
quadratic polynomial [11].

The second step in IOSO is the optimization of this approximation function.
This approach allows for corrective updates of the structure and the parameters
of the response surface approximation. The distinctive feature of this approach
is an extremely low number of trial points needed to initialize the algorithm.
The obtained response surface functions are used in the multi-level optimiza-
tion, while adaptively utilizing various single and multiple discipline analysis
tools that differ in their level of sophistication.

During each iteration of IOSO, the optimization of the response function
is performed only within the current search area. This step is followed by
a direct call to the mathematical analysis model or an actual experimental
evaluation for the obtained point. During the IOSO operation, the information
concerning the behavior of the objective function in the vicinity of the extremum
is stored, and the response surface function is re-created locally and made
more accurate only for this search area. Thus, during each iteration, a series
of approximation functions for a particular objective of optimization is built.
These functions differ from each other according to both structure and definition
range. The subsequent optimization of these approximation functions allows
us to determine a set of vectors of optimized variables.

During this work, algorithms of artificial neural networks (ANN) [13] were
used that utilized radial-basis functions modified in order to build the response
surfaces. The modifications consisted in the selection of ANN parameters at
the stage of their training that are based on two criteria: minimal curvature of
the response hyper-surface, and provision of the best predictive properties for
a given subset of test points.

In summary, each iteration of IOSO multi-objective optimization applied to
alloy design involves the following:

(1) Building and training ANN1 for a given set of test points.
(2) Conducting multi-objective optimization with the use of ANN1 and ob-

taining a specified number of Pareto optimal solutions P1.
(3) Determining a subset of test points that are maximally close to points

P1 in the space of variable parameters.
(4) Training ANN2 proceeding from the requirement to provide the best

predictive properties for obtained subset of test points.
(5) Conducting multi-objective optimization with the use of ANN2 and ob-

taining a set of Pareto-optimal solutions P2.
In general, the database contains information on experimentally obtained al-

loy properties compiled from different sources and obtained under different ex-
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perimental conditions. As a result, alloys with the same chemical compositions
can have considerable differences between their measured properties. These
differences can be explained as errors due to the particular conditions exist-
ing during the experiments (measurement errors), and by the effect of certain
operating conditions (for example, thermal condition of alloy making). Unless
operating conditions are quantified numerically, their influence is regarded as
an additional chance factor. Therefore, in its simplified form, the alloy design
methodology that takes into account these uncertainties can be presented as
the following set of actions:

(1) Formulation of optimization task, that is, selection of variable parame-
ters, definition of optimization objectives and constraints, and setting initial
(preliminary) ranges of variable parameters’ variations.

(2) Preliminary reduction of the experimental database. At this stage, the
alloys meeting optimization task statement are picked up from the database
so that alloys having chemical composition outside the chosen set of chemical
elements are rejected. Alloys for which there is no data for at least one opti-
mization objective are rejected. In addition, alloys with chemical concentrations
outside the set range of variable concentrations are also rejected.

(3) Final reduction of the experimental database. Since accuracy of the
building of response surfaces substantially depends on uniformity of distribution
of variable parameters in the surveyed area, rejection of experimental data
values appearing significantly outside of the universal set is performed. At the
end of this stage, a final range of variable parameters for optimization is set.

(4) Execution of multi-objective optimization resulting in a specified number
of Pareto optimal solutions.

(5) Analysis of optimization results.
(6) Manufacturing and experimental evaluation of the obtained Pareto opti-

mal alloys to obtain high fidelity values of the optimized objectives and analysis
of the results obtained.

(7) Change of the optimization problem statement (number of simultane-
ous objectives and constraints, the set and range of variable parameters), and
returning to step 2.

(8) Modification of database and returning to step 4.
(9) Stop.

8.4 Mathematical Formulations of Objectives and

Constraints

In particular, the objective of this inverse alloy design task was to determine
concentrations (by weight) of each of the 14 alloying elements (C, S, P, Cr,
Ni, Mn, Si, Mo, Co, Cb, W, Sn, Zn, Ti ) in high temperature steel alloys that
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will have specified (desired) physical properties. No mathematical analysis was
used to evaluate the physical properties of candidate alloys. The evaluations of
properties were performed using classical experiments on candidate alloys. In
other words, we used an existing experimental database [1, 2, 3, 4, 5, 8]. The
ranges of concentrations of these elements were set by finding the minimum
and the maximum values of concentrations for each alloying element in the
existing set of experimental data (Expmini, Expmaxi, where i = 1, . . . , 14).
Then, new minimum and maximum values for concentrations of each of the 14
alloying elements were specified according to the following simple dependencies:
(Mini = 0.9Expmini, Maxi = 1.1Expmaxi, where i = 1, . . . , 14). These ranges
are given in Table 8.1.

Table 8.1. Ranges of variation of design variables (concentrations of alloying ele-
ments).

C S P Cr Ni Mn Si
min 0.063 0.001 0.009 17.500 19.300 0.585 0.074
max 0.539 0.014 0.031 39.800 51.600 1.670 2.150

Mo Co Cb W Sn Zn Ti
min 0.000 0.000 0.000 0.000 0.000 0.001 0.000
max 0.132 0.319 1.390 0.484 0.007 0.015 0.198

The inverse problem can be then formulated as, for example, a multi-objective
optimization problem with a given set of equality constraints. This optimization
was formulated as a multi-objective statement with three simultaneous objec-
tives: minimize the difference between the specified and the actual stress, min-
imize the difference between the specified and actual maximum temperature,
and minimize the difference between the specified and actual time to rupture
at the specified temperature and stress. One additional objective (minimizing
the cost of the raw material used in the alloy) was also considered. Eight differ-
ent mathematical formulations of this constrained optimization problem were
created (Table 8.2) and implemented using IOSO algorithm.

In the case of inversely determining concentrations of each of the 14 alloy-
ing elements in steel alloys when using the eight mathematical formulations
for the objective function(s) and constraints on the range of design variables
(Table 8.1), IOSO optimization algorithm offered consistently high accuracy in
satisfying the specified stress (Figure 8.1), operating temperature (Figure 8.2),
time-until-rupture (Figure 8.3) and an overall combined accuracy (Figure 8.4).

Overall performance evaluation of the various inverse alloy design formula-
tions was then developed that was based on an ad hoc analytical formulation
summarized in equations (8.4.1) through (8.4.8).
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Objectives Constraints

(minimize) (minimize)

Model Number of Stress Operating Time until Low cost

number objectives temperature rupture alloy

1 3 (σ − σspec)
2 (T − Tspec)

2 (H −Hspec)
2

2 1 (σ − σspec)
2 + (T − Tspec)

2 + (H −Hspec)
2

3 3 (σ − σspec)
2 (T − Tspec)

2 (H −Hspec)
2

(σ − σspec) < ǫ

(σ − σspec) < ǫ

(T − Tspec) < ǫ

(H −Hspec) < ǫ

4 1 (σ − σspec)
2 + (T − Tspec)

2 + (H −Hspec)
2

(σ − σspec) < ǫ

(T − Tspec) < ǫ

(H −Hspec) < ǫ

5 1 (σ − σspec)
2

(T − Tspec) < ǫ

(H −Hspec) < ǫ

6 1 (T − Tspec)
2

(σ − σspec) < ǫ

(H −Hspec) < ǫ

7 1 (H −Hspec)
2

(σ − σspec) < ǫ

(T − Tspec) < ǫ

8 10 (σ − σspec)
2 (T − Tspec)

2 (H −Hspec)
2

Ni, Cr,

Nb, Co,

Cb, W, Ti
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Figure 8.1. Comparison of accuracy of satisfying the specified stress for eight inverse
design formulations.

Figure 8.2. Comparison of accuracy of satisfying the specified temperature for eight
inverse design formulations.

Figure 8.3. Comparison of accuracy of satisfying the specified time-to-rupture for
eight inverse design formulations.
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Figure 8.4. Comparison of combined accuracies of satisfying the specified values for
eight inverse formulations.

∆σ = (σ − σspec) /σspec, (8.4.1)

∆T = (T − Tspec) /Tspec, (8.4.2)

∆H = (H −Hspec) /Hspec, (8.4.3)

EPS =
∑[

(∆σ)2 + (∆T )2 + (∆H)2
]−1

, (8.4.4)

K1 = 10 Nobjectives +Nconstraints +Nvariables, (8.4.5)

K2 = 100 (1− ∆σ) + (1− ∆T ) + (1− ∆H), (8.4.6)

K3 = Ncalls/NPareto, (8.4.7)

Maximize: SCORE =
K1K2

K3

exp(EPS). (8.4.8)

When the suggested eight formulations were evaluated using this ad hoc
evaluation procedure, only a few formulations appear to offer an overall superior
performance (Figure 8.5).

Figure 8.5. The values of overall performance (SCORE) for eight formulations for
inverse design of alloys.



208 8 Inverse Design of Alloys’ Chemistry

Table 8.3 presents a summary of accuracies in satisfying each of the con-
straints, number of the constraints, number of simultaneous objectives, num-
ber of Pareto points generated, number of optimization algorithm calls required,
and the final performance scores of the eight design formulations with formu-
lation number 8 being the best.

It is also highly educational to visualize the fact that the inverse design of
alloys gives results that are not unique. That is, the same objectives and con-
straints can be met by using different concentrations of alloying elements. For
example, if the designer specifies the desired stress level of 230N mm−2 at the
desired temperature of 975 C for the desired time of 5000 hours until rupture,
the optimization algorithm can be asked to generate 50 possible combinations
of Ni and Cr concentrations that will all provide life expectancy of 5000 hours
at the desired stress level and the desired temperature. If the life expectancy is
specified by the designer to be 6000 hours for the same stress and temperature
levels, the allowable range of possible combinations of Ni and Cr concentra-
tions will decrease. This becomes more noticeable as the specified time until
the rupture is increased to 7000 hours and eventually to 8000 hours (Figure 8.6).
Notice the reduction in the range of the acceptable variations of concentrations
of the alloying elements as the specified alloy life expectancy increases.

Figure 8.6. Allowable ranges of Ni and Cr concentrations for a specified level of
stress at a specified temperature for different specified times until rupture.

Thus, the presented methodology for inversely designing chemical compo-
sitions of alloys offers a significant freedom to the designer to choose from a
relatively large number of possible chemical concentration sets that satisfy the
same specified physical properties. This is very attractive in cases when certain
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EPSσ EPST EPSH EPSsum Nconstr NObj NPareto Ncalls Score
Prob. 1 .408e−19 .356e−06 .536e−06 .297e−06 0 3 50 417 0.590
Prob. 2 .269e−08 .267e−07 .172e−08 .104e−07 3 1 1 703 0.246
Prob. 3 .897e−10 .143e−09 .134e−12 .777e−10 3 3 50 445 0.817
Prob. 4 .434e−13 .289e−12 .244e−18 .111e−12 3 1 1 1020 0.246
Prob. 5 .413e−13 .139e−05 .549e−06 .646e−06 2 1 1 601 0.239
Prob. 6 .954e−06 .576e−15 .980e−04 .646e−06 2 1 1 774 0.180
Prob. 7 .408e−10 .515e−10 .299e−12 .309e−10 2 1 1 776 0.256
Prob. 8 .714e−09 .928e−09 .127e−10 .552e−09 3 10 46 834 1.000
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alloying elements are becoming hard to obtain or too expensive in which case
the optimized alloys with the lowest concentrations of such alloys can be used.

It is also highly educational to visualize the intrinsic nonlinearities of the
unknown relationships between the concentrations of the alloying elements and
the multiple properties of the alloys. Figure 8.7 shows that although concen-
trations of Ni and Cr in the 50 inversely designed alloys vary smoothly (Figure
8.6), concentrations of other alloying elements in these alloys have highly non-
smooth variations, suggesting that even small variations of concentrations of
certain alloying elements can cause significant variations in properties of alloys.
Figure 8.7 was obtained using inverse design formulation number 3 with the fol-
lowing prescribed alloy properties: maximum stress = 4000 kpsi, temperature
at which this stress is applied = 1800 F, time-until-rupture at the prescribed
stress and the prescribed temperature = 5000 hours.

Figure 8.7. Variations of concentrations of several alloying elements corresponding
to inversely designed alloys.

The results of this multiple simultaneous least-squares constrained minimiza-
tion problem cannot be visualized for more than two alloying elements at a time.
For example, when concentrations of only two alloying elements such as Ni and
Cr are visualized, and temperature and life expectancy are unconstrained (un-
specified), the optimization will result in a fairly large domain of acceptable
variations of the concentrations of Cr and Ni [8]. However, as the constraints
on temperature level are introduced and progressively increased, the feasible
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domain for varying Cr and Ni will start to shrink (Figure 8.8). Similar general
trends can be observed when the time until rupture is specified and progres-
sively increased (Figure 8.9). The iso-contours in these plots depict the constant
stress levels as functions of concentrations of Cr and Ni in these alloys.

Figure 8.8. Effect of increasing specified temperature alone on allowable concentra-
tions of Ni and Cr.

Finally, when temperature level and time until rupture are specified simul-
taneously and then progressively increased simultaneously, the feasible domain
for concentrations of Cr and Ni reduces rapidly (Figure 8.10). Similar trends
could be observed when looking at any other pair of alloying elements.
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Figure 8.9. Effect of increasing specified time until rupture alone on allowable con-
centrations of Ni and Cr.

8.5 Determining Names of Alloying Elements and

Their Concentrations for Specified Properties of

Alloys

A more realistic (and considerably more complex) problem of inverse design
of alloys is to actually determine which chemical elements to use in an alloy,
while simultaneously determining the appropriate concentrations for each of
the candidate elements. It is best to illustrate this inverse alloy design process
by analyzing details presented in Figure 8.11. In this example, a maximum of
17 candidate alloying elements were considered (Cr, Ni, C, S, P, Mn, Si, Cu,
Mo, Pb, Co, Cb, W, Sn, Al, Zn, Ti). The following three desired properties
of the alloys were specified: stress = 4000 kpsi, temperature = 1800 F, time
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Figure 8.10. Effect of simultaneously increasing specified temperature and specified
time until rupture on allowable concentrations of Ni and Cr.

until rupture = 6000 hours. These specified alloy properties were then treated
as three equality constraints (satisfy accuracy of the three specified properties
to within one percent) and the entire alloy design problem was formulated
as a constrained multi-objective minimization problem (minimize Cr and Ni
concentrations simultaneously in order to minimize cost of the raw material).

Results of this multi-objective constrained optimization task are given in
Figure 8.11 by presenting five Pareto optimized alloys on the left hand side
in terms of their concentrations of Ni and Cr, and the concentrations of the
remaining 15 candidate alloying elements for each of the five Pareto optimized
alloys given on the right hand side. Each of the five Pareto optimized alloys
satisfies the three specified alloy properties while providing Pareto-optimized
minimum use of Ni and Cr. It is fascinating to realize that optimized concen-
trations of some of the remaining 15 candidate alloying elements were found
to be negligible although they are currently widely used in such alloys, thus
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Figure 8.11. An example of simultaneously determining alloying elements and their
concentrations for alloys with specified properties.

eliminating these elements as potential candidates for forming these types of
steel alloys. Consequently, the number of alloying elements that actually needs
to be used to create an alloy with the three specified properties could be as
low as 7 instead of 15 (in addition to Ni and Cr). This is highly attractive
for practical applications where regular supply, storage, and application of a
large number of different pure elements are considered impractical, costly and
financially risky.

This methodology of inversely designing chemical compositions of alloys of-
fers a significant freedom to the designer to choose from a relatively large num-
ber of possible chemical compositions that satisfy the same specified physical
properties. This is very attractive in cases when certain alloying elements are
becoming hard to obtain or too expensive in which case the optimized alloys
with the lowest concentrations of such alloys can be used.

8.6 Inverse Design of Bulk Metallic Glasses

Besides inverse design of Ni-based steel alloys, this alloy inverse design method-
ology can readily be used when designing arbitrary alloys including bulk metal-
lic glasses (BMGs). For example, this inverse design method utilizing an op-
timization algorithm offers a capability to design a number of BMG alloys [7]
with the same multiple properties, but having different chemistries that will
make their availability, cost and utility more affordable. To demonstrate this,
we created an initial data set of properties of 53 published experimentally eval-
uated Zr-based BMGs (Table 8.4) and then used IOSO optimization algorithm
to determine chemical concentrations of 7 alloying elements (Zr, Cu, Al, La,
(Cu, Ni), Pd, Si) in such BMGs that will all have glass transition temperature
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Tg = 680K for several prescribed values of BMGs’ liquidus temperature, Tl
(1000K, 1100K, 1200K, 1240K). Results of such inverse design procedures
utilizing optimization are depicted in Figures 8.12–8.15 in the form of concen-
trations of the alloying elements.

Figure 8.12. Results of an inverse design problem for Zr-based BMGs (specified
Tg = 680 K and several specified values of Tl [7]) showing inversely determined con-
centrations of Cu and Zr for these conditions.

Figure 8.13. Results of an inverse design problem for Zr-based BMGs (specified
Tg = 680 K and several specified values of Tl [7]) showing inversely determined con-
centrations of La and Al for these conditions.

8.7 Open Problems

The entire concept of inverse design of alloys is new and no other attempts to
achieve the same have been found in the open literature. Since mathematical
models linking the design variables (names and concentrations of the alloying
elements) and the objectives (the specified multiple thermo-physical properties
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Table 8.4. Experimental data for 53 Zr-based BMGs collected from open literature
[7].

# Tl(K) Tg(K) Tg/Tl Zr% Cu% Al% La% (Cu,Ni)% Pd% Si%
1 1188 724 0.609428 50 36 14 0 0 0 0
2 1170 722 0.617094 50 38 12 0 0 0 0
3 1176 714 0.607143 50 40 10 0 0 0 0
4 1181 703 0.595258 50 43 7 0 0 0 0
5 1184 704 0.594595 49 44 7 0 0 0 0
6 1186 708 0.596965 48 45 7 0 0 0 0
7 1187 704 0.593092 49 45 6 0 0 0 0
8 1192 706 0.592282 48 46 6 0 0 0 0
9 1195 701 0.586611 49 46 5 0 0 0 0
10 1208 697 0.576987 49 47 4 0 0 0 0
11 1178 717 0.608659 45 49 6 0 0 0 0
12 1185 714 0.602532 45 50 5 0 0 0 0
13 1189 719 0.604710 44 51 5 0 0 0 0
14 1188 720 0.606061 45 48 7 0 0 0 0
15 1195 722 0.604184 45 47 8 0 0 0 0
16 1193 711 0.595977 46 49 5 0 0 0 0
17 1204 704 0.584718 47 49 4 0 0 0 0
18 1190 692 0.581513 54 38 8 0 0 0 0
19 1212 685 0.565182 56 36 8 0 0 0 0
20 1163 705 0.606191 52 38 10 0 0 0 0
21 1176 698 0.593537 54 36 10 0 0 0 0
22 1216 684 0.562500 54 40 6 0 0 0 0
23 759 403 0.530962 0 0 12.4 70 17.6 0 0
24 742 407 0.548518 0 0 13.2 68 18.8 0 0
25 674 405 0.600890 0 0 14 66 20 0 0
26 696 414 0.594828 0 0 14.6 64.6 20.8 0 0
27 699 420 0.600858 0 0 15.2 63.1 21.7 0 0
28 722 422 0.584488 0 0 15.7 62 22.3 0 0
29 729 426 0.584362 0 0 15.9 61.4 22.7 0 0
30 727 423 0.581843 0 0 16.3 60.5 23.2 0 0
31 743 426 0.573351 0 0 16.6 59.6 23.8 0 0
32 764 431 0.564136 0 0 17 58.6 24.4 0 0
33 783 435 0.555556 0 0 17.5 57.6 24.9 0 0
34 813 440 0.541205 0 0 17.9 56.5 25.6 0 0
35 844 436 0.516588 0 0 18.4 55.4 26.2 0 0
36 930 435 0.467742 0 0 20.5 50.2 29.3 0 0
37 763 404 0.529489 0 0 14 70 16 0 0
38 724 405 0.559392 0 0 14 68 18 0 0
39 674 405 0.600890 0 0 14 66 20 0 0
40 715 411 0.574825 0 0 14 64 22 0 0
41 738 417 0.565041 0 0 14 62 24 0 0
42 773 422 0.545925 0 0 14 59 27 0 0
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(Continued)

# Tl(K) Tg(K) Tg/Tl Zr% Cu% Al% La% (Cu,Ni)% Pd% Si%
43 815 427 0.523926 0 0 14 57 29 0 0
44 1097.3 633 0.576871 0 2 0 0 0 81.5 16.5
45 1086 635 0.584715 0 4 0 0 0 79.5 16.5
46 1058.1 637 0.602022 0 6 0 0 0 77.5 16.5
47 1135.9 645 0.567832 0 8.2 0 0 0 75 16.8
48 1153.6 652 0.565187 0 10.2 0 0 0 73 16.8
49 862.7 428 0.496117 0 36 14 50 0 0 0
50 785.6 404 0.514257 0 26 14 60 0 0 0
51 731 395 0.540356 0 20 14 66 0 0 0
52 792.7 391 0.493251 0 14 14 72 0 0 0
53 825.5 361 0.437311 0 10 14 76 0 0 0

Figure 8.14. Results of an inverse design problem for Zr-based BMGs (specified
Tg = 680 K for several specified values of Tl [7]) showing inversely determined con-
centrations of Pd and (Cu, Ni) for these conditions.

Figure 8.15. Results of an inverse design problem for Zr-based BMGs (specified
Tg = 680 K and several specified values of Tl [7]) showing inversely determined con-
centrations of Si and Pd for these conditions.
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of alloys) are non-existent, one might be inclined to use a heuristic interpo-
lation algorithm (such as artificial neural networks (ANNs) [13]) to search an
existing large data set of a similar class of alloys and try to interpolate these
data in order to obtain a set of concentrations that will most closely provide for
a specified set of alloy’s properties. However, ANNs require an unacceptably
large “training” data set of experimentally obtained multiple thermo-physical
properties for each class of alloys studied. In addition, ANNs are strictly inter-
polation algorithms that cannot themselves perform constrained optimization
nor can they extrapolate outside the initial data set with any confidence.

When testing samples of actual alloys, there is always a certain level of mea-
surement error due to the finite accuracy of the testing equipment. This level of
expected accuracy can now be specified and the results of the alloy composition
optimization will automatically be modified to reflect this degree of uncertainty.
Furthermore, during the manufacturing (melting and casting/solidification) of
each new alloy, there is always a degree of uncertainty if the resulting alloy will
have precisely the chemical composition that was expected when preparing and
measuring the alloying components’ masses. The level of this uncertainty de-
pends on the level of sophistication of the alloy manufacturing process. Now, we
have incorporated this feature in our alloy optimization software, whereby the
materials designer can specify the accuracy level of the manufacturing process
and the optimizer will automatically and appropriately modify the predicted
quantities.

8.8 Conclusions

A new concept has been developed for designing alloys having specified mul-
tiple physical properties. The design variables are concentrations of the alloy-
ing elements and the names of the alloying elements themselves. This inverse
method was formulated as a constrained multi-objective optimization problem
and solved using a robust evolutionary optimizer of IOSO type. As a result,
multiple choices are obtained for combinations of concentrations of alloying el-
ements whereby each of the combinations corresponds to another Pareto front
point and satisfies the specified physical properties. This inverse alloy design
methodology does not require knowledge of metallurgy or crystallography and
is directly applicable to alloys having an arbitrary number of alloying elements.
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