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10 In this article, the modified Noether’s theorem is established in general form.
Then, the inverse theorem is used in nonlinear micropolar continua in order to
derive one-parameter family of transformations under which the corresponding
functional is invariant. Next, the conservation laws are written. They include, as a
special case, the conservation laws of micropolar elastostatics, the balance laws of

15 elastodynamics and elastostatics. We do not analyse any of these special cases,
because they may be obtained very easily.

Keywords: inverse Noether’s theorem; nonlinear micropolar continua; family of
transformations; conservation laws
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20 1. Introduction

In a paper by Knowles and Sternberg [1], it was shown that the conservation law, known
as J-integral, that is,

JðGÞ ¼ e �

Z
G

Wn� rxTT
� �

dS, ð1Þ

(where G denotes any smooth non-self intersecting closed surface ‘path of integration
surrounding the crack’, n is the unit outward normal vector on G, e is unit vector in the

25 direction of the crack propagation, T is stress tensor, W is the strain-energy density at the
point x; generally by ‘�’, r and T we shall denote the inner product, gradient and
transpose, respectively, of corresponding quantities), follows from an application of
Noether’s theorem [1] on invariant variational principles to the principle of minimum
potential energy in elastostatics. Roughly speaking, Noether’s theorem states that if a

30 given set of differential equations can be identified as the Euler-Lagrange equations
corresponding to a variational principle which remains invariant under an n-parameter
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group of infinitesimal transformations, then there exists an associated set of n conservation

laws satisfied by all solutions of the original differential equations. Moreover, this

procedure yields two additional conservation laws stated in their Theorem 4.1.

35 Let D be a domain in E and let [u, �, �] be a finite elastic state on D, corresponding to the

elastic potential �. Let W be the strain-energy density associated with �. Then, for every

surface S, with the outward unit normal vector n, that is the boundary of a regular subregion

on D, Z
S

Wni � sjuj,i
� �

da ¼ 0 ð2Þ

where s is Piola traction vector on S defined by si¼ �ij nj on S. If [u, �, �] is isotropic, then
40 also Z

S

eijk Wxknj þ sjuk � spup,jxk
� �

da ¼ 0: ð3Þ

Here, u, � and � represent displacement field, its associated infinitesimal strain and

stress field, respectively; eijk is the permutation symbol.

Knowles and Sternberg [1] also stated:

The completeness issue associated with the two conservation laws supplied by Theorem 4.1
45 appears to be more complicated then the analogous question in the linearized theory, which is

answered by (their) Theorem 3.2.

Noether’s theorem on variational principles invariant under a group of infinitesimal

transformations was used also by Fletcher [2] to obtain a class of conservation laws

associated with linear elastodynamics. These laws represent dynamical generalizations of

50 path-independent integrals in elastodynamics. It is shown that the conservation laws

obtained are the only ones obtainable by Noether’s theorem from invariance under a

reasonably general group of infinitesimal transformations.
In the mechanics of micropolar continua, this procedure was first used in [3]. In both

papers, [2] and [3], the completeness of their results was established under certain

55 conditions. It was done by the use of inverse Noether’s theorem by which they were able to

find a group of infinitesimal transformations. The procedures to find this group in those

two papers are completely different. From the mathematical point of view, it is a real

challenge and a more important part of Noether’s theorem. In Fletcher’s case it reads:

Suppose an elastic material under consideration is isotropic, and let the Lagrangian be given as

L½w� ¼

Z�
0

Z
D

L rw, _wð Þdxdt ð4Þ

60 where D is a bounded regular region in E3, and where

L ¼
1

2
cijklwi, jwk,l �

1

2
% _wi _wi, ð5Þ

2 J.P. Jarić et al.
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cijkl is elasticity tensor and % is mass density. Then, L[w] is infinitesimally invariant at w under
transformations of the form

�� ¼ �ð�,wð�Þ; "Þ, w� ¼ �ð�,wð�Þ; "Þ, � ¼ x1, x2, x3, tð Þ ð6Þ

for every w satisfying the Euler-Lagrange equations of motion for every D if and only if �
and � satisfy

�ð�,wð�Þ; "Þ ¼ � þ "’ð�Þ þ oð"Þ, �ð�,wð�Þ; "Þ ¼ wþ " ð�,wð�ÞÞ þ oð"Þ, ð7Þ

65 as "! 0, where the components of ’ and  are given by

’i ¼ �xi þ "ijkbjxk, ’4 ¼ �tþ c,

 i ¼ ��wi þ "ijkbjwk þ "ijkajxk þ di, ð8Þ

and �, c, bi, ai and di are arbitrary constants.

Note that dot over a quantity denotes time derivative.
We remark that the ‘infinitesimal part’ of the transformation �! �*, w!w* is

determined by the above transformations. This is all that is required for the corresponding
70 conservation laws. In this way, we are able to see that six conservation laws are also valid

in finite elasticity. Moreover, these conservation laws contain the principle of equivalence
between conservation and invariance stated by Toupin [4] as:

Linear momentum, angular momentum, and energy are conserved in perfectly elastic medium
if and only if the action density L is invariant under the group of Euclidean displacements.

75 Toupin did not use inverse Noether’s theorem to derive the group of Euclidean
displacements, but postulated them. Therefore, two important problems are left for the
investigation:

(i) How to extend the use of Noether’s theorem, and more important by the inverse
Noether’s theorem to a very general class of non-linear micropolar continuum,

80 and
(ii) How to show that the completeness issue associated with the conservation laws we

derived making use of inverse Noether’s theorem, is not more complicated than
the analogous question in the linear theory.

These topics will be the main purpose of this article.
85 This article is structured as follows: In Section 2, the notation to be used in the

remainder and mathematical preliminaries of this article are introduced. In Section 3, the
version of Noether’s theorem appropriate for present purposes is stated. Section 4 contains
a brief review of nonlinear micropolar continuum. Section 5 contains the principal results
of inverse Noether’s theorem that we discussed. The proof of the theorem is original. This

90 theorem provides us with the generators of group of infinitesimal transformations. Then,
in Section 6, the completeness of conservation laws is established. The conclusion is
followed by the appendices. We point out the importance of Appendix C.

2. Mathematical preliminaries

Let n�, �¼ 1, 2, . . . , n be rectangular Cartesian coordinates in n-dimensional Euclidean
95 space En, and let R be a bounded, closed regular region in En. With n(��), we denote a

point in R�En. Let ) ¼ )
�

� �
, ð� ¼ 1, 2, . . . , kÞ, be a set of tensor fields, defined and

Inverse Problems in Science and Engineering 3
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differentiable on R. Given the point n(��)�R and )�C2, define a one-parameter � family

of transformations ðn,)ðnÞÞ ) ð�n, �)ð�nÞÞ as

�n ¼ �nðn,)ðnÞ, �Þ, �) ¼ �)ðn,)ðnÞ, �Þ ð9Þ

For �¼ 0 these transformations are required to reduce to the identity

�n
��
�¼0
¼ n, �)

��
�¼0
¼ ): ð10Þ

100 Hence, the infinitesimal transformations corresponding to (9) are given by

�n ¼ nþ u�þOð�2Þ, u ¼
def @�n

@�

 !
�¼0

,

�) ¼ )þ(�þOð�2Þ, ( ¼
def @ �)

@�

� �
�¼0

ð11Þ

We shall distinguish the partial derivative @n ¼
def @

@��

� �
¼ ð@�Þ from the total derivative

r ¼
def
ð,�Þ with respect to n. Also, by D ¼ r �n ¼ @ ���

@�	

			 			 and D¼det D we denote the Jacobian

of transformation ‘n) �n’ and its determinant, respectively. From (11)1, we obtain

D ¼ Iþ ðruÞ�þOð�2Þ: ð12Þ

Then

D�¼0 ¼ 1, ð13Þ

105 and, since

d

d�
D ¼ Tr ð@ �r �nDÞ

d

d�
ðr �nÞ


 �
¼ DTr ðr �nÞ

d

d�
ðr �nÞ


 �

¼ DTr D�1r
d�n

d�

 !" #
, ð14Þ

where D�1 is inverse matrix of matrix D, then

d

d�
D

� �
�¼0

¼ r � u: ð15Þ

The following sets

Y ¼ ð),rnÞðnÞ, ð16Þ

@Y ¼ ð@), @rnÞðnÞ ð17Þ

will be used in the sequel.

4 J.P. Jarić et al.
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110 3. Restricted version of Noether’s theorem

Suppose that a real function L(n,Y) is defined and differentiable for all values of its

arguments. Now, let � be the functional defined by

�ð)Þ ¼

Z
R

Lðn,YÞdn: ð18Þ

Definition

(a) The functional � is said to be invariant at ) under one-parameter family of
115 transformations (9) if Z

R

Lð�n, �YÞ d�n ¼

Z
R

Lðn,YÞ dn ð19Þ

for all sufficiently small values of �.
(b) If, for a given value ),

d

d�

Z
R

Lð�n, �YÞ d�n

0
@

1
A
�¼0

¼ 0, ð20Þ

then � is said to be infinitesimally invariant at ).

Evidently, if � is invariant at ), then � is infinitesimally invariant at ). On the basis
120 of the introduced notations, it is possible to state a restricted version of Noether’s theorem,

as follows:

THEOREM 3.1 If ) satisfies the Euler-Lagrange equations

r � @r)L� @)L ¼ 0 ð21Þ

then � is an infinitesimally invariant at ) under transformations (9) iff ) defined in R, too,

satisfies

r � Luþ ð@r)LÞ½(� ðu � rÞ)�
� 


¼ 0: ð22Þ

125 If @R is the boundary of R, and if its unit outward normal vector is N, then (22) can be written

in the form Z
@R

Luþ ð@r)LÞ½(� ðu � rÞ)�
� 


�NdS ¼ 0: ð23Þ

Proof First, by r � @r) we denote the composition with respect to r, that is

r � @r) ¼
@ ð�Þ

@),�

� �
,�

obviously ðu � rÞ) ¼ ),�’�: ð24Þ

We are going to prove the part ‘if’ of the theorem. Then (20) holds. It may be written in

an equivalent form

d

d�

Z
R

Lð�n, �YÞDdn

0
@

1
A
�¼0

¼ 0, ð25Þ

Inverse Problems in Science and Engineering 5
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130 from which we obtain, in view of (13) and (15),

D
d

d�
Lð�n, �YÞ þ Lð�n, �YÞ

d

d�
D


 �
�¼0

¼ 0 ð26Þ

or

d

d�
Lð�n, �YÞ�¼0 þ Lðn,YÞr � u ¼ 0: ð27Þ

However,

d

d�
Lð�n, �YÞ�¼0 ¼ @�nLð

�n, �YÞ �
d

d�
�n


 �
�¼0

þ @ �YLð
�n, �YÞ �

d

d�
�Y


 �
�¼0

¼ @nLðn,YÞ � uþ @YLðn,YÞ �
d

d�
�Y

� �
�¼0

: ð28Þ

Now,

d

d�
�Y

� �
�¼0

¼
d

d�
�),

d

d�
�r �)

� �
�¼0

¼ ), r)� ðruÞr)½ �, ð29Þ

since

d

d�
�)

� �
�¼0

¼
d

d�
½ðr �)ÞD�1�

� �
�¼0

¼ r)� ðruÞr) ð30Þ

135 because D�1�¼0 ¼ I and d
d�

D�1
� �

�¼0
¼ �r � u in view of (13). It is instructive to write

(ru)r) in more explicit form (which is also useful to clarify the notation), i.e. in the

from (ru)r)¼ (), 	’	,�). Also,

r � ðLuÞ ¼ ðrLÞ � uþ Lr � u ¼ @nL � uþ u � ðrYÞ@YLþ Lr � u

¼ @nL � uþ ðu � rÞY � @YLþ Lr � u, ð31Þ

so that

r � ðLuÞ þ
d

d�
�Y

� �
�¼0

�ðu � rÞY

" #
� @YL

¼ r � ðLuÞ þ @)L � (� ðu � rÞ)½ � þ @r)L � r (� ðu � rÞ)½ �, ð32Þ

or

Luþ ð@r)LÞ (� ðu � rÞ)½ �
� 


þ ð@)L� r � @r)LÞ (� ðu � rÞ)½ � ¼ 0: ð33Þ

140 From this expression we obtain (22) taking into account (21). #

Remark 1 The part ‘only if’ of the theorem is known as the inverse Noether’s theorem

and depends on the form of conservation laws. This will be considered in the case of

micropolar continua.

6 J.P. Jarić et al.
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Remark 2 It may happen that there exist some fields, say x ¼ x
�

� �
, �¼ 1, 2, . . . ,
, under

145 which

�ð),xÞ ¼

Z
R

Lðn,YÞ dn, Y ¼ ð),x,r),rxÞðnÞ, ð34Þ

is infinitesimally invariant, but otherwise does not satisfy Euler-Lagrange equations. Then,

we shall speak of one-parameter family of transformations

T� : ðn,),xÞ ) ð�n, �), �xÞ,

and, in addition to (11) (depending now also on x), we shall have

�x ¼ xþ 1�þOð�2Þ, 1 ¼
d �x

d�

� �
�¼0

: ð35Þ

If this is the case (33) has to be modified

r � Luþ ð@r)LÞ½(� ðu � rÞ)� þ ð@rxLÞ½1� ðu � rÞx�
� 

þ ð@)L� r � @r)LÞ½(� ðu � rÞ)� þ @xL� r � @rxLð Þ 1� ðu � rÞx½ � ¼ 0: ð36Þ

150 Then, we may state the modified Noether’s theorem, as follows:

THEOREM 3.2 If ) satisfies the Euler-Lagrange equations (21) then �, defined by (34), is

infinitesimally invariant at (), x) under extended transformations (11) and (35) if (), x)

defined in R satisfies also

r � Luþ ð@r)LÞ½(� ðu � rÞ)� þ ð@rxLÞ½1� ðu � rÞx�
� 


þ @xL� r � @rxLð Þ 1� ðu � rÞx½ � ¼ 0: ð37Þ

If @R is the boundary of R, and if its unit outward normal is n, then (37) can be written as
155 follows Z

@R

Luþ ð@r)LÞ½(� ðu � rÞ)� þ ð@rxLÞ½1� ðu � rÞx�
� 


n dS

þ

Z
R

@xL� r � @rxLð Þ 1� ðu � rÞx½ �dV ¼ 0: ð38Þ

Proof The proof of the theorem is straightforward. For further references, we shall write

(36) in the following form

@nL � uþ Lr � uþ @)L �(þ @xL � 1

þ @r)L � ½r(� ðruÞr)� þ @rxL � ½r1� ðruÞrx� ¼ 0, ð39Þ

or

@L

@��
’,� þ L’�,� þ @)L �(@xL � 1

þ @),�
L � ð(,� �),	 ’	,�Þ þ @x,�

L � ð1,� � x,	 ’	,�Þ ¼ 0: ð40Þ

This expression represents the starting point of the inverse Noether’s theorem.

Inverse Problems in Science and Engineering 7
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160 As an important example in considering the part of inverse Noether’s theorem we shall
deal with the micropolar continua. The advantage of micropolar continua and main
difference between it and classical continua is given below.

4. Micropolar elastic continuum

Classical continuum theories assume that stress at a material point is dependent on, for
165 example, temperature, strain, strain rate and strain history at the same point. Due to the

lack of information on neighbouring material points, these models are called local.
However, when the microscopic and macroscopic length scales are comparable, the
assumption is questionable as the material behavior at a point is influenced by the
deformation of neighbouring points. To incorporate the scale of the microstructure of a

170 heterogeneous material within the continuum framework, a number of phenomenological
remedies have been proposed that involve the relaxation of the local action hypothesis of
classical continuum mechanics.

In the micropolar or ‘Cosserat’ continuum models, independent rotational degrees of
freedom are introduced at the point of the continuum in addition to the displacement field.

175 In this manner, curvatures and couple stresses account for the effect of neighbouring
material points. The general theory of simple micropolar-elastic solids has been
formulated by Eringen and Suhubi [5]. Here, we recall certain results from the theory of
finitely deformed homogeneous and isotropic elastic solids in the absence of body forces
and body couples, we are going to use.

180 The space of events is E3. For the sake of generality, here we use the spatial x
k and the

material coordinates XK, respectively, whereby all quantities are expressed as functions of
XK and time t.

The motion of micropolar continuum is described by

xk ¼ xk XK, t
� �

, ð41Þ

�kK ¼ �
k
K XK, t
� �

, ð42Þ

185 where orthogonal tensor �kK – is microrotation tensor.
The material forms of the balance laws of momentum, moment of momentum and

energy are, respectively,

TKk
;K ¼ %0 €xk, ð43Þ

"klm MKL
k;L � SK

k

� �
�mK ¼ %0 _�l, ð44Þ

�%0 _"þ TK
k _xk ;K þ SK

k _�kK þMKL
k _�kK;L ¼ 0, ð45Þ

190 where %0 – mass density in the reference configuration, TKk – stress tensor, MKL
k – couple

stress tensor, " – internal energy density, �k – spin density, "klm – permutation symbol, and

SK
k ¼ TLlxk;L�

K
l þ

1

2
"klmM

Ll�mK
;L, ð46Þ

8 J.P. Jarić et al.
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MLl ¼ "klmMKL
k�mK, MKL

k ¼
1

2
"klmM

Ll�mK, ð47Þ

�k ¼ jkl�l, JKL ¼ jkl�
k
K�

l
L, jkl ¼ JKL�kK�

l
L, ð48Þ

�k ¼ �
1

2
"klm�

lm, �kl ¼ _�kK�
K
l , "klm�

k
K�

l
L�

m
M ¼ "KLM: ð49Þ

195 The constitutive equations of micropolar elastic material are [5]

TK
k ¼ %0

@"

@xk;K

, ð50Þ

SK
k ¼ %0

@"

@�k
K

, ð51Þ

MKL
k ¼ %0

@"

@�k
K;L

: ð52Þ

5. The inverse Noether’s theorem

200 It is easy to see that (43) can be written as

@�

@xk;K

 !
;K

� %0 €xk ¼ 0, ð53Þ

where �¼ %0".
Further on, for the sake of simplicity and clarity, we shall use Cartesian coordinates.

Then, we may write eklm instead of "klm. Also, if we state

�� ¼
XK for � ¼ K ¼ 1, 2, 3,
t for � ¼ 4,

�
ð54Þ

we may write concisely

ðxk,�Þ ¼ ðxk,K, _xkÞ, ð55Þ

205
ð�k�Þ ¼ ð�kK, _�kKÞ: ð56Þ

Let

L ¼ ��
1

2
%0 _xk _xk �

1

2
%0jkl�k�l: ð57Þ

So defined function L dependents on the set of variables (xk,�, �kK, �kK,�), i.e. L¼L(xk,�,
�kK, �kK,�). Then,

@L
@��
¼ 0. With this definition of function L, (53) can be written more

elegantly and simply as Euler-Lagrange equations

@L

@xk;�

� �
;�

¼ 0: ð58Þ

Inverse Problems in Science and Engineering 9
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210 Generally, this is not true for the balance laws of moment of momentum (44) and

energy (45), i.e. they can not be written in the form of Euler-Lagrange equations. This

suggests that we should try to apply modified Noether’s theorem in order to find the

family of transformations under which functional (34) defined by function (57) should be

invariant. If so, we have to deal with (40). Then, the following identifications are necessary

) ¼ xðxkÞ, r) ¼ rxðxk;�Þ, x ¼ vð�kKÞ, rx ¼ rvð�kK,�Þ ð59Þ

215 in view of which (40) becomes

L’�,� þ
@L

@xk;�
�k,� � xk,	 ’	,�
� �

þ
@L

@�kK
�kK

þ
@L

@�kK,�
�kK,� � �kK,	 ’	,�
� �

¼ 0: ð60Þ

From this equation, under certain conditions we are going to impose, we shall try to find

the generators of infinitesimal transformations ’�, �k, �kK. In fact, these conditions are

imposed by the principle of material objectivity, which must be satisfied by all material,

and the principle of material invariance [6]. Because of this, the functional form of the
220 internal energy " or function � cannot be arbitrary. More precisely, if we impose the

condition that the form of � must satisfy material objectivity, but otherwise remains

arbitrary, we must have

"klm
@�

@xk,K
xl,K þ

@�

@�kK
�lK þ

@�

@�kK,M
�lK,M þ

@�

@�kM,K
�kM,L

� �
¼ 0: ð61Þ

If the material is initially isotropic, according to the principle of material invariance, " or
function �, in addition to (61), must satisfy the conditions

"KLN
@�

@xk,K
xk,L þ

@�

@�kK
�kK þ

@�

@�kK,M
�kL,M þ

@�

@�kM,K
�kM,L

� �
¼ 0: ð62Þ

225 These two set of conditions are of great importance in deriving the appropriate family of

transformations under which the functional � is invariant. We proceed to find their

generators explicitly.
We state explicitly, for simple homogeneous micropolar-elastic solids in the absence of

body forces and body couples, the following

230 THEOREM 5.1 The functional �, given by (34) for L defined by (57), is infinitesimally

invariant at (x, v)(n) if

’K ¼ "KLMXLAM þ CK,

’4 ¼ A,

(

�k ¼ "klmxl am þ ck,

�kK ¼ "klm�lK am,

ð63Þ

where A, AK, CK, ak and ck are arbitrary constants.

10 J.P. Jarić et al.
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Proof The proof is based on Lagrange multipliers method. We start with (60), i.e. with

L ’�,� þ
@L

@xk,K
�k,K � xk,	 ’	;K

� �
þ
@L

@ _xk
_�k � xk,	 _’	
� �

þ
@L

@�kK
�kK,L þ

@L

@�kK
�kK,L � �kK,	 ’,L
� �

þ
@L

@ _�kK
_�kK � �kK,	 _’L
� �

¼ 0: ð64Þ

From (57) we calculate

@L

@xk,K
¼

@�

@xk,K
,

@L

@ _xk
¼ �%0 _xk,

@L

@�kK,L
¼

@�

@�kK,L
: ð65Þ

235 However,

@L

@�kK
¼

@�

@�kK
�
1

2
%0
@jpq�p�q
@�kK

and
@L

@ _�kK
¼ �

1

2
%0
@jpq�p�q
@ _�kK

: ð66Þ

After some lengthy calculations (Appendix A) we find that

@jpq�p�q
@�kK

¼ �p �pK�k þ �kK�p
� �

¼ �p 2�pK�k � "prk _�rK
� �

ð67Þ

and

@jpq�p�q
@ _�kK

¼ "prk�p�rK: ð68Þ

Then

@L

@�kK
¼

@�

@�kK
�
1

2
%0�p �pK�k þ �kK�p

� �
and

@L

@ _�kK
¼ �

1

2
%0"prk�p�rK: ð69Þ

Hence, in the view of (61) and (62), (64) can be written in the form

L’�,� þ
@�

@xk,K
�k,K � xk,	 ’,K
� �

� %0 _xk _�k � xk,	 _’	
� �

þ
@�

@�kK
�
1

2
"0�p 2�pK�k � "prk _�rK

� �
 �
�kK

þ
@�

@�kK,L
�kK,L � �kK,	 ’	,L
� �

�
1

2
%0"prk�p�rK _�kK � �kK,	 _’	

� �
� lm"klm

@�

@xk,K
xl,K þ

@�

@�kK
�lK þ

@�

@�kK,L
�lK,L

� �

��N "KLN
@�

@xk,K
xl,L þ

@�

@�kK
�kL þ

@�

@�kK,M
�kL,M þ

@�

@�kM,K
�kM,L

� �
¼ 0 ð70Þ

240 where 
m and �M are Lagrange multipliers and generally may depend on the set of

variable (xk,K, �kK, �kK,L).
Now we come to the main point of our work. We postulate that (70) must be satisfied

for arbitrary

�,
@�

@xk,K
,
@�

@�kK
,

@�

@�kK,L
: ð71Þ

Inverse Problems in Science and Engineering 11
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As a consequence of this postulate, it follows that the coefficients of these quantities in (70)
245 must be zero. Thus,

�: ’�,� ¼ 0, ð72Þ

@�

@xk,K
: �k,K � xk,	 ’	,K � 
m"klm xl,K ��N "KLN xk,L ¼ 0, ð73Þ

@�

@�kK
: �kK � lm "klm �lK ��N "KLN �kL ¼ 0, ð74Þ

@�

@�kK,L
: �kK,L � �kK,	 ’	,L � lm "klm �lK,L

��N "KMN �kM,L ��N "LMN �kK,M ¼ 0, ð75Þ

and (70) reduces to

_xk _�k � xk,	 _’	
� �

þ
1

2
�p 2�pK�k � "prk _�rK
� �

�kK

þ
1

2
"prk�p�rK _�kK � �kK,	 _’	

� �
¼ 0: ð76Þ

250 Next, we write explicitly expressions for ’�,	, �l,�, �kK,�, i.e.

’�,	 ¼
@’�
@�	
þ
@’�
@xk

xk,	 þ
@’�
@�kK

�kK,	, ð77Þ

�l,	 ¼
@�l

@�	
þ
@�l

@xk
xk,	 þ

@�l

@�kK
�kK,	 ð78Þ

�kK,	 ¼
@�kK
@�	
þ
@�kK
@xk

xk,	 þ
@�kK
@�lL

�lL,	: ð79Þ

We require that (72)–(76) hold for any value of xk,	, �kK,	.

(1) Then it results from (72) that

@’�
@��
¼ 0,

@’�
@�kK

¼ 0, i:e: ’� ¼ ’�ð�	Þ ð80Þ

255 so that

@’�
@��
¼ 0: ð81Þ

(2) From (74) we have trivially

�kK ¼ lm"klm �lK þ�N"KLN�kL: ð82Þ

(3) Equation (76) gives two equations

_xk _�k � xk,	 _’	
� �

¼ 0, ð83Þ

12 J.P. Jarić et al.
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�p 2�pK�k � "prk _�rK
� �

�kK þ "prk�p�rK _�kK � �kK,	 _’	
� �

¼ 0: ð84Þ

260 We write (83) as

_xk
@�k

@t
þ
@�k

@xl
_xl þ

@�k

@�lK
_�lK � xk,K _’K � _xk _’4

� �
¼ 0: ð85Þ

From this, we obtain that

_’K ¼ 0)’K ¼ ’KðXLÞ, ð86Þ

in the view of (82). Also

@�k

@t
¼ 0,

@�k

@�lK
¼ 0, ð87Þ

and

@�ðk
@xl Þ
¼
@’4
@t
�kl, ð88Þ

where ( ) designates the symmetrization of the indices k and l.
265 We shall analyse (84) later.

(4) We proceed with (73), i.e. with

@�k

@XK
þ
@�k

@xl
xl,K þ

@�k

@�lL
�lL,K � xk,L’L,K � _xk

@’4
@XK

� lm "klmxl,K ��N"KLNxk,L ¼ 0, ð89Þ

which reduces to

@�k

@XK
þ
@�k

@xl
xl,K � xk,L’L,K � _xk

@’4
@XK
� lm"klmxl,K ��N"KLNxk,L ¼ 0: ð90Þ

Because of (87), from the above equations, it follows that:

@�k

@XK
¼ 0)�k ¼ �kðxl Þ, ð91Þ

@’4
@XK
¼ 0)’4 ¼ ’4ðtÞ, ð92Þ

270 and

@�k

@xl
� lm"klm

� �
xl,K � ’L,K þ�N"KLN

� �
xk,L ¼ 0: ð93Þ

But, this is equivalent to

@�k

@xl
� lm "klm � ’L,K þ�N"KLN

� �
xk,LXK,l ¼ 0, ð94Þ

Inverse Problems in Science and Engineering 13
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from which we obtain

@�ðk
@xl Þ
� lm "klm � ’L,K þ�N "KLN

� �
XK,ðlxkÞ,L ¼ 0: ð95Þ

Substituting (88) into it, we get

@’4
@t
�kl � ’L,K þ�N"KLN

� �
XK,ðlxkÞ,L ¼ 0, ð96Þ

from which we obtain

@’4
@t
¼ 0)’4 ¼ A: ð97Þ

275 But, then (88) reads

@�ðk
@xl Þ
¼ 0, ð98Þ

from which we have

�k ¼ "klmxlam þ ck, ð99Þ

where am and ck are arbitrary constants. From (99) and (93) we get

ðam � lmÞ"klmxl,K � ’L,K þ�N"KLN
� �

xk,L ¼ 0, ð100Þ

and from this

’ðK,LÞ ¼ 0) ’K ¼ "KLMXLAM þ CK, ð101Þ

where AK and CK are arbitrary constants. Then, in view of this, the above equations can be
280 written as

ðam � lmÞ"klmxl,K ¼ �N � ANð Þ"KLNxk,L ¼ 0, ð102Þ

and obviously this is satisfied if

lm ¼ am and �N ¼ AN: ð103Þ

(5) Now, we pass our investigation to (75), i.e. to

@�kK
@XL
þ
@�kK
@xl

xl,K þ
@�kK
@�lM

�lM,L � �kK,M’M,L � _�kK’4,L

�lm"klm�lK,L ��N"KMN�kM,L ��N"LMN�kK,M ¼ 0, ð104Þ

which is reduced to

@�kK
@�lM

�lM,L � �kK,M’M,L � lm"klm�lK,L

��N"KMN�kM,L ��N"LMN�kK,M ¼ 0, ð105Þ

since

@�kK
@XL
¼ 0,

@�kK
@xl
¼ 0, ð106Þ

285 and ’4,L¼ 0 due to (97). This residual equality is identity in view of (82) and (101).
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Therefore, the only condition which is left for the investigation is (84). It reduces to

�p 2�pK�k � "prk _�rK
� �

�kK þ "prk�rK _�kK
� �

¼ 0 ð107Þ

by means of (101). After very lengthy calculations (Appendix B), making use of the
previous results, we are able to write it as

AM�p _�pM ¼ 0, ð108Þ

so that

AM�p ¼ 0 ð109Þ

290 must hold. Thus, AM¼ 0 and

�kK ¼ lm"klm�lK: ð110Þ

Remark 1 The condition AM�p _�pM ¼ 0 is obviously satisfied when _�pM ¼ 0)
�p¼ 0) �p¼ 0. Then, we have to modify our theorem, i.e. in this case

’K ¼ "KLMXLAM þ CK,

’4 ¼ A,

(

�k ¼ "klmxlam þ ck

�kK ¼ am"klm�lK þ AM"KLM�kL,

ð111Þ

since there is no restriction on the value of AM. Moreover, L satisfies Euler-Lagrange
equations which are nothing else but (44) (Appendix C).

295
6. Conservation laws

Now, we proceed to write the integral form of the conservation law (38) of micropolar
continuum in the absence of external body force density and external body couple density
having in mind that (��)¼ (Xm, t) and L is defined by (57). The other quantities we have to
use are given by (59). Further, it is convenient to write (63) in the form

u ¼
f ¼ X ^ Aþ C,
’4 ¼ A,

�
ð112Þ

300 ( ¼ x ^ aþ c ð113Þ

f ¼ v ^ a: ð114Þ

We shall use (36) for further reference. Then,

d

dt

Z
V

L’4 þ @ _xL (� ðu � rÞ)½ � þ @_v f� ðu � rÞu½ �
� 


dV

þ

Z
S

Lfþ @GradxL½(� u � rð Þ)� þ @GradvL½f� ðu � rÞu�
� 


�NdS

þ

Z
V

@vL� r � @GradvL
� �

f� ðu � rÞf½ �
� 


dV ¼ 0 ð115Þ
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where Grad denotes a gradient with respect to XK. In component form it reads

d

dt

Z
V

L’4 þ
@

@ _xk
L �k � xk,�’�
� �

þ
@

@ _�kK
L �kK � �kK,�’�
� �
 �

dV

þ

Z
S

LfK þ
@

@xk,K
L �k � xk,�’�
� �

þ
@

@�kl,K
L �kL � �kL,�’�
� �
 �

NKdS

þ

Z
V

@L

@�kK
�

@L

@�kK,	

� �
,	

 !
�kK � �kL,�’�
� �" #

dV ¼ 0: ð116Þ

In the view of the expressions for stress and couple stress tensors, this may be written as

d

dt

Z
V

L’4 � %0 _xk �k � xk,�’�
� �

�
1

2
%0"prk�p�rK �kK � �kK,�’�

� �
 �
dV

þ

Z
S

LfK þ TKk �k � xk,�’�
� �

þMLKk �kL � �kL,�’�
� �� �

NKdS

�

Z
V

%0�p�p�kK �kK � �kK,�’�
� �� �

dV ¼ 0: ð117Þ

305 since

@�kKL� @�kK,�L
� �

,�
¼ �%0�p�p�kK ð118Þ

(Appendix C). This may be further simplified to

d

dt

Z
V

L’4 � %0 _xk �k � xk,�’�
� �

�
1

2
%0"prk�p�rK �kK � �kK,�’�

� �
 �
dV

þ

Z
S

LfK þ TKk �k � xk,�’�
� �

þMLKk �kL � �kL,�’�
� �� �

NKdS ¼ 0, ð119Þ

taking into account that �kK�kK,�¼ 0 and �kK�kK¼ 0 (Appendix B).
By taking all of the arbitrary constants a, c, A, A, C in (112)–(114) to be zero except

one, in turn, we obtain the corresponding conservation law. There are five transformations
310 under which the corresponding functional � is infinitesimally invariant.

6.1. Spatial invariance

(I) Under translation

( ¼ c, u ¼ 0, f ¼ 0 ð120Þ

gives balance of momentum

d

dt

Z
V

%0xkdV ¼

Z
S

TKkNKdS: ð121Þ
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315 (II) Under rotation

( ¼ x ^ a, f ¼ v ^ a, u ¼ 0 ð122Þ

gives balance of moment of momentum

d

dt

Z
V

%0 "klmxl _xm þ �kð ÞdV ¼

Z
S

"klmxlTKm þMKkð ÞNKdS: ð123Þ

6.2. Shift of time

Conditions

’4 ¼ A, f ¼ 0, ( ¼ 0, f ¼ 0 ð124Þ

give the balance of energy

d

dt

Z
V

Lþ %0 _xk _xk þ
1

2
%0"prk�p�rK _�kK

� �
dV

¼

Z
S

TKk _xk þMLKk _�kLð ÞNKdS: ð125Þ

320 However, by virtue of Appendix A and definition of MKk, this expression reduces to

d

dt

Z
V

%0 "þ
1

2
_xk _xk þ

1

2
�k�k

� �
dV ¼

Z
S

TKk _xk þMKk�kð ÞNKdS: ð126Þ

6.3. Material invariance

(I) Under translation (homogeneous material)

f ¼ C, ’4 ¼ 0, ( ¼ 0, f ¼ 0 ð127Þ

325 gives conservation of linear material momentum

d

dt

Z
V

%0 _xkxk,L þ
1

2
"prk�p�rK�kK,L

� �
dV

þ

Z
S

L�KL � TKkxk,L �MMKk�kM,L

� �
NKdS ¼ 0: ð128Þ

(II) Under rotation (isotropic material)

fK ¼ "KLMXLAM, ’4 ¼ 0, ( ¼ 0, �kK ¼ 0 ð129Þ
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we have the following integral

d

dt

Z
V

fM%0 _xkxk,M þ
1

2
"prk�p�rK�kK,M

� �
dV

þ

Z
S

fM L�KM � TKkxk,M �MLKk�kL,M
� �

NKdS ¼ 0, ð130Þ

from which we obtain conservation of angular material momentum.

d

dt

Z
V

%0"MPQXP _xkxk,M þ
1

2
"prk�p�rK�kK,M

� �
dV

þ

Z
S

"MPQXP L�KM � TKkxk,M �MLKk�kL,M
� �

NKdS ¼ 0 ð131Þ

(III) In a special case when

�kK ¼ "KLM�kLAM, fK ¼ "KLMXLAM, ’4 ¼ 0, ( ¼ 0, ð132Þ

330 the function L, given by (57), must be modified, i.e.

L ¼ ��
1

2
%0 _xk _xk: ð133Þ

Then, the following integral is obtained

d

dt

Z
V

fM%0 _xkxk,MdV

þ

Z
S

fM L�KM � TKkxk,M �MLKk�kL,M
� �

þMMKk�kM
� �

NKdS ¼ 0, ð134Þ

or, finally,

d

dt

Z
V

%0"MPQXP _xkxk,MdV

þ

Z
S

"MPQXP L�KM � TKkxk,M �MLKk�kL,M
� �

þMKp�pQ
� �

NKdS ¼ 0: ð135Þ

7. Conclusion

A rigorous framework for the Noether’s theorem has been presented. This framework is
335 sufficiently general to be applied for different classes of materials from the view point of

continuum mechanics. We emphasize the importance of the inverse Noether’s theorem in
order to derive family of transformations under which the functional � is invariant. In
fact, once we know the family of transformations under which functional � is invariant, it
is easy to obtain conservation laws. Therefore, the more important and more challenging

340 part of Noether’s theorem is the inverse Noether’s theorem.
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It is fully demonstrated in the theory of micropolar continuum.
Among six conservation laws so derived, last three of them constitute new material

balance laws in a sense they depend on the family of transformations given in reference
configuration. They include, as a special case, the conservation laws of micropolar

345 elastostatics, and the balance laws of elastodynamics as well as elastostatics (see [2,7,8]).
We do not analyse any of these special cases because they may be obtained very easily.
These laws find the applications in fracture mechanics.

The application of the inverse Noether’s theorem in micropolar continuum also
clarifies the difference between necessity and sufficiency of Noether’s theorem and the

350 completeness issue associated with the conservation laws we derived.
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Appendix A

First, from

�p ¼ �
1

2
eprk _�rK�kK ðA1Þ

375 we have

@�p
@�kK

¼ �
1

2
eprk _�rK: ðA2Þ

However,

�kl ¼ _�kK�lK ¼ �eklm�m ðA3Þ
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and hence

_�kK ¼ �eklm�m�lK, ðA4Þ

so that

eprk _�rK ¼ �pK�k � �kK�p: ðA5Þ

Thus,

@�p
@�kK

¼
1

2
�pK�k � �kK�p
� �

: ðA6Þ

380 Further,

jpq ¼ JPQ�pP�qQ and JPQ ¼ jpq�pP�qQ, ðA7Þ

so that

@jpq
@�kK

�p�q ¼ JPQ
@�pP�qQ
@�kK

�p�q ¼ 2�p�pK�k: ðA8Þ

Now, it is easy to see that

@jpq�p�q
@�kK

¼
@jpq
@�kK

�p�q þ 2�p
@�p
@�kK

�p 2�pK�k � eprk _�rK
� �

¼ �p �p�kK þ �k�pK
� �

, ðA9Þ

which is (67).
Next, from

@�p
@ _�kK

¼ �
1

2
epkr�rK ðA10Þ

385 we obtain

@jpq�p�q
@ _�kK

¼ 2�p
@�p
@ _�kK

¼ eprk�p�rK, ðA11Þ

which is (68).

Appendix B

We calculate in detail

�rK�kK ¼ �rK am"klm�lK þ AM"KLM�kLð Þ

¼ am"klm�lK�rK þ AM"KLM�rK�kL

¼ am"krm þ AMerkm�mM ¼ erkm AM�mM � amð Þ: ðB1Þ

Obviously

�kK�kK ¼ 0 ðB2Þ

390 and

_�rK�kK ¼ erkmAM _�mM: ðB3Þ

Also,

eprk
_�rK�kK ¼ eprkerkmAM _�mM ¼ 2AM _�pM: ðB4Þ

20 J.P. Jarić et al.
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Now,

�p 2 �pK�k � "prk _�rK
� �

�kK þ "prk�rK _�kK
� �

¼ 0 ðB5Þ

may be written as

�p 2 �pK�k � "prk _�rK
� �

�kK þ "prk�rK _�kK
� �

¼ 0, ðB6Þ

or

�p 2 �pK�kK
� �

�p þ 2AM _�pM
� �

¼ 0, ðB7Þ

395 and finally

AM�p _�pM ¼ 0, ðB8Þ

which is nothing but (108).

Appendix C

We write

@�kKL� @�kK,�L
� �

,�
¼ @�kKL� @�kK,LL

� �
,L
�

_@�kKL

¼ @�kK�� @�kK,L�
� �

,L
�
1

2
%0�p 2�pK�p � eprk _�rK

� �
þ
1

2
%0eprk _�p�rK

¼ @�kK�� @�kK,L�
� �

,L
þ
1

2
%0eprk _�p�rK � %0�p �pK�p � eprk _�rK

� �
¼ @�kK�� @�kK,L�

� �
,L
þ
1

2
%0eprk _�p�rK � %0�p�pK�p

¼ SKk �MKLk,L þ
1

2
%0eprk _�p�rK � %0�p�kK�p: ðC1Þ

However, as shown in [5]

eklm MKLk,L � SKk

� �
�mK ¼ %0 _�l: ðC2Þ

400 Multiplying both sides of this expression by eplm, we have

SKk �MKLk,L þ
1

2
%0eprk _�p�rK ¼ 0: ðC3Þ

Substituting this in the expression above, we finally obtain Lagrange equations of the second kind

@�kKL� @�kK,�L
� �

,�
¼ �%0�p�p�kK, ðC4Þ

which is (118).
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