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Application of Two Bayesian
Filters to Estimate Unknown
Heat Fluxes in a Natural
Convection Problem1

Sequential Monte Carlo (SMC) or particle filter methods, which have been originally intro-
duced in the beginning of the 1950s, became very popular in the last few years in the statis-
tical and engineering communities. Such methods have been widely used to deal with
sequential Bayesian inference problems in the fields like economics, signal processing, and
robotics, among others. SMC methods are an approximation of sequences of probability
distributions of interest, using a large set of random samples, named particles. These par-
ticles are propagated along time with a simple Sampling Importance distribution. Two
advantages of this method are: they do not require the restrictive hypotheses of the Kalman
filter, and they can be applied to nonlinear models with non-Gaussian errors. This paper
uses two SMC filters, namely the SIR (sampling importance resampling filter) and the ASIR
(auxiliary sampling importance resampling filter) to estimate a heat flux on the wall of a
square cavity encasing a liquid undergoing natural convection. Measurements, which con-
tain errors, taken at the boundaries of the cavity were used in the estimation process. The
mathematical model as well as the initial condition are supposed to have some errors,
which were taken into account in the probabilistic evolution model used for the filter. Also,
the results using different grid sizes and patterns for the direct and inverse problems were
used to avoid the so-called inverse crime. In these results, additional errors were consid-
ered due to the different location of the grid points used. The final results were remarkably
good when using the ASIR filter. [DOI: 10.1115/1.4006487]

Keywords: particle filter, Bayesian inference, inverse problems, natural convection

Introduction

State estimation problems, also designated as nonstationary
inverse problems [1], are of great interest in innumerable practi-
cal applications. In such kinds of problems, the available meas-
ured data are used together with prior knowledge about the
physical phenomena and the measuring devices, in order to
sequentially produce estimates of the desired dynamic variables.
This is accomplished in such a manner that the error is mini-
mized statistically [2]. For example, the position of an aircraft
can be estimated through the time-integration of its velocity
vector components since departure. However, it may also be
measured with a global positioning system (GPS) and an altime-
ter. State estimation problems deal with the combination of the
model prediction (integration of the velocity components that
contain errors due to the velocity measurements) and the GPS
and altimeter measurements that are also uncertain, in order to
obtain more accurate estimations of the system variables (air-
craft position).

State estimation problems are solved with the so-called Bayesian
filters [1,2]. In the Bayesian approach to statistics, an attempt is
made to utilize all available information in order to reduce the
amount of uncertainty present in an inferential or decision-making
problem. As new information is obtained, it is combined with previ-

ous information to form the basis for statistical procedures. The for-
mal mechanism used to combine the new information with the
previously available information is known as Bayes’ theorem [1,3].

The most widely known Bayesian filter method is the Kalman
filter [1,2,4–9]. However, the application of the Kalman filter is
limited to linear models with additive Gaussian noises. Extensions
of the Kalman filter were developed in the past for less restrictive
cases by using linearization techniques [1,3,6–8]. Similarly,
Monte Carlo methods have been developed in order to represent
the posterior density in terms of random samples and associated
weights. Such Monte Carlo methods, usually denoted as particle
filters among other designations found in the literature, do not
require the restrictive hypotheses of the Kalman filter. Hence, par-
ticle filters can be applied to nonlinear models with non-Gaussian
errors [1,4,8–17].

Hammersley and Hanscomb [18] presented a technique that
used recursive Bayesian filters, together with Monte Carlo simula-
tions, known as sequential importance sampling (SIS). In this
approach, the key idea was to represent the posterior probability
function as a set of random samples associated with some weights,
in order to calculate the estimates based on such samples and
weights. Gordon et al. [19] added an extra step, named resam-
pling, into the SIS method to avoid the problem known as degen-
eration of particles. This filter is known as SIR filter. In 2008,
Orlande et al. [20] presented an application of the SIR filter to a
nonlinear heat conduction problem.

In order to overcome some difficulties of SIR filter, Pitt and
Shephard [21] introduced the auxiliary particle filter (APF). In
2006, Del Moral et al. [16] presented an alternative to improve the
SIR filter, named sequential Monte Carlo samplers, introducing a
method for the evolution of the particles and also an artificial
delayed kernel.
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Another well-known filter is the combined parameter and state
estimation in simulation-based filtering, proposed by Liu and
West [22], which uses a combination of the artificial evolution
method (where the problem related with the loss of information is
avoided) and the smoothness kernel proposed by West [23], which
improves the choice of the particles. In 2007, Sisson et al. [24]
presented a new filter technique, where the sequential Monte
Carlo method was coupled with the approximate Bayesian compu-
tation, named sequential Monte Carlo without likelihoods.

In this paper, the SIR and the ASIR algorithms were applied to
estimate an unknown heat flux at a top wall of a square cavity
undergoing a natural thermal convection process. Two different
heat flux profiles were estimated with very good results. Also, the
influence of the number of particles used as well as the frequency
of the measurements were analyzed.

Physical Problem

The physical problem under consideration in this paper involves
the transient laminar natural convection of a fluid inside a two-
dimensional square cavity. The fluid is initially at rest and at the
uniform temperature, Tc. At time zero, the bottom and top surfaces
are subjected to time-dependent heat fluxes q1(t) and q2(t), respec-
tively. The left and right surfaces are subjected to constant temper-
atures Tc and Th, respectively. The fluid properties are assumed
constant, except for the density in the thermal buoyancy term,
where we consider Boussinesq’s approximation valid [25].

The mathematical formulation for this physical problem can be
written in vector form in terms of the following conservation
equation in Cartesian coordinates:

@ quð Þ
@t
þ @ uquð Þ

@x
þ @ vquð Þ

@y
¼ r � C/ � ru

� �
þ S/ (1)

The general conservation variable as well as the diffusion coeffi-
cient and the source term for the mass, momentum, and energy
conservation equations are given in vector form, respectively, as

C/ ¼

0 0 0 0

0 l 0 0

0 0 l 0

0 0 0
k

CP

2
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3
7775 (2a)

u ¼

1
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775 (2b)

S/ ¼

0
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� @p x; y; tð Þ
@y

� qg 1� b T x; y; tð Þ � Tref½ �f g
0

2
666664

3
777775

(2c)

We note in the Eq. (2c) that the positive y-axis in the physical do-
main is supposed to be aligned with the opposite direction of the
gravitational acceleration vector. These equations are solved, sub-
ject to the following boundary and initial conditions:

T ¼ Tc at x ¼ 1; 1 < y < H; for t > 0 (3a)

T ¼ Th at x ¼ W; 1 < y < H; for t > 0 (3b)

u¼ v¼ 0 at x¼ 1 and x¼W;1< y<H; for t> 0 (3c)

u¼ v¼ 0 at y¼ 1 and y¼H;1< x<W; for t> 0 (3d)

k
@T

@y
¼ �q1 tð Þ at y ¼ 1; 1 < x < W; for t > 0 (3e)

k
@T

@y
¼ q2 tð Þ at y ¼ H; 1 < x < W; for t > 0 (3f )

u ¼ v ¼ 0 for t ¼ 0 in the region (3g)

T ¼ Tc for t ¼ 0 in the region (3h)

The above equations were transformed from the physical Carte-
sian (x,y) coordinates to the computational coordinate system
(n,g) and solved by the finite volume method [26]. The SIMPLEC
(semi-implicit method for pressure-linked equations, consistent)
method [27] was used to solve the velocity-pressure coupling
problem. The weighted upstream differencing scheme (WUDS)
interpolation scheme [28] was used to obtain the values of u, v,
and T as well as their derivatives at the interfaces of each control
volume. The resulting linear system was solved by the GMRES
(generalized minimal residual) method [29]. For details on the so-
lution procedure, as well as the verification of the code against
results published in the literature, the reader is advised to consult
Refs. [30–37].

Inverse Problem

The solution of the inverse problem within the Bayesian frame-
work is recast in the form of statistical inference from the poste-
rior probability density, which is the model for the conditional
probability distribution of the unknown parameters given the
measurements. The measurement model incorporating the related
uncertainties is called the likelihood, that is, the conditional proba-
bility of the measurements given the unknown parameters. By
assuming that the measurement errors are Gaussian random varia-
bles, with zero means and known covariance matrix W and that
the measurement errors are additive and independent of the pa-
rameters P, the likelihood function can be expressed as
[1,3,38–42]

pðY Pj Þ ¼ ð2pÞ�D=2
Wj j�1=2

exp � 1

2
½Y� TðPÞ�TW�1½Y� TðPÞ�

� �

(4)

where Y is the measurements and T(P) is the solution of the direct
(forward) problem. Such solution is obtained from the mathemati-
cal formulation of the heat transfer problem under analysis with
known P.

The model for the unknowns that reflects all the uncertainty of
the parameters without the information conveyed by the measure-
ments is called the prior model [1,3,38–42].

The formal mechanism to combine the new information (meas-
urements) with the previously available information (prior) is
known as the Bayes’ theorem [1,3,38–42]. Therefore, the term
Bayesian is often used to describe the statistical inversion
approach, which is based on the following principles [1]:

(1) All variables included in the model are modeled as random
variables.

(2) The randomness describes the degree of information con-
cerning their realizations.

(3) The degree of information concerning these values is coded
in probability distributions.

(4) The solution of the inverse problem is the posterior proba-
bility distribution, from which distribution point estimates
and other statistics are computed. Therefore, this approach
relies fundamentally on the principles of the Bayesian sta-
tistics to obtain the solution of inverse problems. Recent
works on the application of Bayesian techniques to inverse
heat transfer problems include Refs. [43–56].

Bayes’ theorem is stated as [1,3,38–42]

pposteriorðPÞ ¼ pðP Yj Þ ¼ pðPÞpðY Pj Þ
pðYÞ (5)

where pposterior(P) is the posterior probability density, p(P) is the
prior density, p(YjP) is the likelihood function, and p(Y) is the

092501-2 / Vol. 134, SEPTEMBER 2012 Transactions of the ASME

Downloaded 02 Sep 2012 to 62.28.152.229. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



marginal probability density of the measurements, which plays
the role of a normalizing constant.

State Estimation

State estimation problems, also designated as nonstationary
inverse problems [1], are of great interest in innumerable practical
applications. In such kinds of problems, the available measured
data are used together with prior knowledge about the physical phe-
nomena and the measuring devices, in order to sequentially produce
estimates of the desired dynamic variables. This is accomplished in
such a manner that the error is minimized statistically [2].

Consider a model for the evolution of the state variables x in
the form

xk ¼ fk xk�1; vkð Þ (6)

where f is, in the general case, a nonlinear function of x and of
the state noise or uncertainty vector given by vk [ R

n. The vector
xk [ Rn is called the state vector and contains the variables to
be dynamically estimated. This vector advances in time in
accordance with the state evolution model (6). The subscript
k¼ 1, 2, 3, …, denotes a time instant tk in a dynamic problem.

The observation model describes the dependence between the
state variable x to be estimated and the measurements z through
the general, possibly nonlinear, function h. This can be repre-
sented by

zk ¼ hk xk; nkð Þ (7)

where zk [ R
nz are available at times tk, k¼ 1, 2, 3, …. Equation

(7) is referred to as the observation=measurement model. The vec-
tor nk [ Rnz represents the measurement noise or uncertainty.

As per Eqs. (6) and (7), the evolution and observation models
are based on the following assumptions [1,2,4–9,56]:

(a) The sequence xk for k¼ 1, 2, 3, …, is a Markovian pro-
cess, that is

p xk x0; x1; …; xk�1jð Þ ¼ p xk xk�1jð Þ (8a)

(b) The sequence zk for k¼ 1, 2, 3, …, is a Markovian pro-
cess with respect to the history of xk, that is

p zk x0; x1; …; xkjð Þ ¼ p zk xkjð Þ (8b)

(c) The sequence xk depends on the past observations only
through its own history, that is

p xk xk�1; z1; z2;…; zk�1jð Þ ¼ p xk xk�1jð Þ (8c)

where p(ajb) denotes the conditional probability of a
when b is given.

For the state and observation noises, the following assumptions
are made [1,2,4–9,56]:

(a) For i= j, the noise vectors vi and vj, as well as ni and nj,
are mutually independent and also mutually independent
of the initial state x0.

(b) The noise vectors vi and nj are mutually independent for
all i and j.

Different problems can be considered for the evolution-
observation models described above, such as [1,2,4–9,56]

(i) The prediction problem, when the objective is to obtain
p(xkjz1:k�1).

(ii) The filtering problem, when the objective is to obtain
p(xkjz1:k).

(iii) The fixed-lag smoothing problem, when the objective is to
obtain p(xkjz1:kþp), where p� 1 is the fixed lag.

(iv) The whole-domain smoothing problem, when the objective
is to obtain p(xkjz1:K), where z1:K¼fzi, i¼ 1, …, Kg is the
complete set of measurements.

We consider here the filtering problem. By assuming that
p(x0jz0)¼p(x0) is available, the posterior probability density
p(xkjz1:k) is then obtained with Bayesian filters in two steps
[1,2,4–9]: prediction and update, as illustrated in Fig. 1.

The most widely known Bayesian filter method is the Kalman
filter [1,2,4–17,20,56–58]. However, the application of the Kal-
man filter is limited to linear models with additive Gaussian
noises. Extensions of the Kalman filter were developed in the past
for less restrictive cases by using linearization techniques. Simi-
larly, Monte Carlo methods have been developed in order to rep-
resent the posterior density in terms of random samples and
associated weights. Such Monte Carlo methods, usually denoted
as particle filters among other designations found in the literature,
do not require the restrictive hypotheses of the Kalman filter.
Hence, particle filters can be applied to nonlinear models with
non-Gaussian errors [1,2,4–17,20,57,58].

The main idea in the particle filter is to represent the required
posterior density function by a set of random samples with associ-
ated weights and to compute the estimates based on these
samples and weights [1,8–17,20,57,58]. Let fxi

0:k; i ¼ 0; :::;Ng
be the particles with associated weights fwi

k ; i ¼ 0; :::;Ng and
x0:k¼fxj, j¼ 0, …, kg be the set of all states up to tk, where N is
the number of particles. The weights are normalized, so thatP

i wi
k ¼ 1. Then, the posterior density at tk can be discretely

approximated by

pðx0:k z1:kÞj �
XN

i¼1

wi
k d x0:k � xi

0:k

� �
(9)

Fig. 1 Prediction and update steps [1]
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where d(.) is the Dirac delta function. Similarly, its marginal
distribution, which is of interest for the filtering problem, can be

approximated by pðxk z1:kÞj �
PN

i¼1 wi
k d xk � xi

k

� �
.

A common problem with the particle filter method is the degen-
eracy phenomenon, where after a few states all but one particle
may have negligible weight. The degeneracy implies that a large
computational effort is devoted to updating particles whose contri-
bution to the approximation of the posterior density function is
almost zero. This problem can be overcome by increasing the
number of particles. In addition, the use of the resampling tech-
nique is recommended to avoid the degeneracy of the particles
[1,8–17,20,57,58].

Resampling generally involves a mapping of the random mea-
sure fxi

k;w
i
kg into a random measure fxi�

k;N
�1g with uniform

weights. It can be performed if the number of effective particles
with large weights falls below a certain threshold number. Alter-
natively, resampling can also be applied indistinctively at every
instant tk, as in the SIR algorithm [8,9]. This algorithm can be
summarized in the steps presented in Table 1, as applied to the
system evolution from tk�1 to tk.

Although the resampling step reduces the effects of the degen-
eracy problem, it may lead to a loss of diversity and the resultant
sample can contain many repeated particles. This problem, known
as sample impoverishment, can be severe in the case of small evo-
lution model noise. In this case, all particles collapse to a single
particle within few instants tk. Another drawback of the particle
filter is related to the large computational cost due to the Monte
Carlo method, which may limit its application only to fast com-
puting problems. Different algorithms for the implementation of
the particle filter can be found in Ref. [58], including those that
permit the simultaneous estimation of constant parameters appear-
ing in the model and the transient states.

In addition, in the SIR algorithm the state space is explored
without the information conveyed by the measurements, that is,
the particles at each time instant are generated through the sole
application of the transition prior pðxi

k

��xi
k�1Þ (see step 1 in Table

1). With the ASIR algorithm an attempt is made to overcome
these drawbacks, by performing the resampling step at time
tk�1, with the available measurement at time tk [9]. The resam-
pling is based on some point estimate �i

k that characterizes
pðxkjxi

k�1Þ, which can be the mean of pðxkjxi
k�1Þ or simply a

sample of pðxkjxi
k�1Þ. If the state evolution model noise is

small, pðxkjxi
k�1Þ is generally well characterized by �i

k, so that
the weights wi

k are more even and the ASIR algorithm is less
sensitive to outliers than the SIR algorithm. On the other hand,
if the state evolution model noise is large, the single point esti-
mate �i

k in the state space may not characterize well pðxkjxi
k�1Þ

and the ASIR algorithm may not be as effective as the SIR algo-
rithm. The ASIR algorithm can be summarized in the steps pre-
sented in Table 2, as applied to the system evolution from tk�1

to tk [8,9]. According to Ref. [8], the advantage of the ASIR fil-
ter over the SIR algorithm is that it naturally generates points
from the sample at k� 1, which, conditioned on the current
measurement, are most likely to be close to the true state. Yet
as described in Ref. [8], ASIR can be viewed as resampling at
the previous time step, based on some point estimates �i

k that
characterize pðxkjxi

k�1Þ.

Results and Discussions

In this paper, we applied the SIR and ASIR filters to estimate a
time-varying heat flux applied to the top wall of a square cavity
filled with air (q¼ 1.19 kg m�3, k¼ 0.02624 W m�1 K�1, Cp

¼ 1035.0222Jkg�1 K�1, l¼ 1.8� 10�5 kgm�1 s�1, b¼ 0.00341 K�1).

Table 1 SIR algorithm [8,9]

Step 1
For i¼ 1, …, N, draw new particles xi

k from the prior density pðxkjxi
k�1Þ and then use the likelihood density to calculate the correspondent weights

wi
k ¼ pðzkjxi

kÞ
Step 2
Calculate the total weight t ¼

P
i wi

k and then normalize the particle weights, that is, for i¼ 1, …, N let wi
k ¼ t�1wi

k

Step 3
Resample the particles as follows:
Construct the cumulative sum of weights (CSW) by computing ci ¼ ci�1 þ wi

k for i¼ 1, …, N, with c0¼ 0
Let i¼ 1 and draw a starting point u1 from the uniform distribution U[0,N�1]
For j¼ 1, …, N

Move along the CSW by making uj¼ u1þN�1(j� 1)
While uj> ci make i¼ iþ1
Assign sample xj

k ¼ xi
k

Assign sample wi
k ¼ N�1

Table 2 ASIR algorithm [8,9]

Step 1
For i¼ 1, …, N, draw new particles xi

k from the prior density pðxkjxi
k�1Þ and then calculate some characterization of xk, given xi

k�1, as for example the
mean �i

k ¼ E½xkjxi
k�1�. Then, use the likelihood density to calculate the correspondent weights wi

k ¼ pðzkj�i
kÞwi

k�1

Step 2
Calculate the total weight t ¼

P
i wi

k and then normalize the particle weights, that is, for i¼ 1, …, N let wi
k ¼ t�1wi

k

Step 3
Resample the particles as follows:
Construct the CSW by computing ci ¼ ci�1 þ wi

k for i¼ 1, …, N, with c0¼ 0
Let i¼ 1and draw a starting point u1 from the uniform distribution U[0,N�1]
For j¼ 1, …, N

Move along the CSW by making uj¼ u1þN�1(j� 1)
While uj> ci make i¼ iþ1
Assign sample xj

k ¼ xi
k

Assign sample wj
k ¼ N�1

Assign parent ij¼ i
Step 4
For j¼ 1, …, N, draw particles x

j
k from the prior density pðxkjxij

k�1Þ, using the parent ij, and then use the likelihood density to calculate the correspondent
weights w j

k ¼ pðzkjxj
kÞ=pðzkjmij

k Þ
Step 5
Calculate the total weight t ¼

P
j wj

k and then normalize the particle weights, that is, for j¼ 1, …, N let w j
k ¼ t�1w j

k
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The bottom wall of the cavity was kept thermally insulated and the
left and right walls were subjected to constant temperatures equal
to 2 	C and 12 	C, respectively. The width and height of the cavity
were equal to 0.045841 m, which resulted in a Rayleigh (Ra) num-
ber equal to 105, where

Ra ¼ q2Cpgb Th � Tcð ÞH3

lk
(10)

The state estimation problem consists thus in predicting the
behavior of the state variable q2(t) at the top wall of the cavity.
However, since the heat flux affects the temperature field through
the energy equation and also the mass and momentum equations
through the buoyancy source term, Eqs. (1)–(3), the state vector x

appearing in Eq. (6) is composed of the discrete heat flux q2(t) at
each time step, plus all velocity components and temperature at
each finite volume inside the cavity. Due to the excessive amount
of computational resources required for the solution of this prob-
lem, in the first part of this paper we used a very coarse finite vol-
ume grid (10� 10 volumes) both to the generation of the
simulated measurements and to the solution of the inverse prob-
lem, in order to compare the two particle filters (SIR and ASIR)
used in this work. At the end of this paper, in order to avoid the
so-called inverse crime, a grid with 110� 110 volumes was used
in the direct problem and a grid with 20� 20 volumes was used in
the inverse problem. The use of different grid sizes for the direct
and inverse problems also introduces additional errors, since the
location of the measurement points is not the same for the two
grids used. More details on this will be addressed below.

Table 3 Test cases analyzed

Case Heat flux Particles Frequency
Grid size for the generation

of measurements
Grid size for the inverse

problem

1

q2(t)¼ 0.01t (W m�2)

10 1 Hz
2 10 Hz

3 100 1 Hz
4 10 Hz 11� 11

5 10 1 Hz
6 10 Hz

7 100 1 Hz
8 q2(t)¼ 0 W m�2 for t< 500 s 10 Hz

9 q2(t)¼ 5 W m�2 for t> 500 s 10 1 Hz
10 10 Hz 111� 111 21� 21

11 100 1 Hz
12 10 Hz

Fig. 2 Estimated heat flux with the linear profile
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Fig. 3 Real and estimated temperature profiles with the linear heat flux profile (ASIR filter)

Fig. 4 Real and estimated streamlines with the linear heat flux profile (ASIR filter)
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The total number of state variables for the grid with 10� 10
volumes are thus 1 for the heat flux q2(t), 11� 11 for the u compo-
nent of the velocity field, 11� 11 for the v component of the ve-
locity field, and 11� 11 for the temperature T, resulting in 364
state variables. For the case with 20� 20 volumes, the total num-
ber of state variables was 1324. Thus, different sizes of the state
variable vectors were also compared in this paper.

In the framework of the particle filters, two auxiliary models
are needed: (i) an evolution model, given by Eq. (6); and (ii) an
observation model, given by Eq. (7). For the evolution model, we
used two submodels: (i.i) an evolution model for the velocity and
temperature fields, given by the discretization of mass, momen-
tum, and energy equations, Eqs. (1)–(3), where the state noise v,
appearing in Eq. (6), was supposed to be equal 1% of the state
variable values, that is

xk ¼ xk þ re)
uðtÞ ¼ uðtÞ 1þ 0:01e½ �
vðtÞ ¼ vðtÞ 1þ 0:01e½ �
TðtÞ ¼ TðtÞ 1þ 0:01e½ �

(11)

where e is a random variable with Gaussian distribution and zero
mean; and (i.ii) an evolution model for the heat flux q2(t) which
was taken as a random walk model

q2ðtÞ ¼ q2ðt� DtÞ þ rqe (12)

where rq varied automatically between 10% and 100% of the
value of q2(t�Dt). Such variation was based on the likelihood of
all particles. If the likelihood function was equal to zero for all
particles, then rq was increased in intervals of 10% for the next
time steps until at least one of the particles had a non-null value of
the likelihood function. Then, rq was reduced again in intervals of
10% for the next time steps.

For the observation model, we used simulated temperature
measurements, where an experimental error with standard devia-
tion equal to 1% of the local value of the temperature was used.
Such measurements were taken at the top and bottom walls of the
cavity at 11 points equally spaced at each wall for the grid with
11� 11 points and at 21 points equally spaced at each wall for the
grid with 21� 21 points.

Two different profiles were tried for the heat flux q2(t). Also,
two different numbers of particles and two frequencies of obser-
vations were analyzed. Table 3 summarizes the test cases

Fig. 5 Estimated heat flux with the step profile

Table 4 Location of the sensors for the direct and inverse
problems for test cases 9–12

Direct problem (x) Inverse problem (x) Error %

0.00103246 0.00109145 5.7
0.00309736 0.00327436 5.7
0.00516227 0.00545726 5.7
0.00764017 0.00764017 0.0
0.00970508 0.00982307 1.2
0.01177 0.012006 2.0
0.0138349 0.0141889 2.6
0.0163128 0.0163718 0.4
0.0183777 0.0185547 1.0
0.0204426 0.0207376 1.4
0.0225075 0.0229205 1.8
0.0249854 0.0251034 0.5
0.0270503 0.0272863 0.9
0.0291152 0.0294692 1.2
0.0315931 0.0316521 0.2
0.033658 0.033835 0.5
0.0357229 0.0360179 0.8
0.0377879 0.0382008 1.1
0.0402657 0.0403837 0.3
0.0423307 0.0425666 0.6
0.0443956 0.0447495 0.8
Average error 1.6
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analyzed. For all test cases, the initial state for the heat flux was
Gaussian, with mean equal to zero and a unity standard
deviation.

Initially, the results for the scarce grid will be presented to com-
pare both filters. At the end, results with a fully converged grid for
the measurements and a scarce grid for the inverse problems will
be shown for the best filter.

Figure 2 shows the estimated values of q2(t) with the linear pro-
file (test cases 1–4) using the SIR and ASIR filters. The average
values at each time are shown by the symbols with error bars cor-
responding to a 99% confidence interval.

For the case with 10 particles and a measurement frequency
equal to 1 Hz, there was an initial delay on both filters of almost

200 s in the estimation of such heat flux. However, when the
number of particles was increased to 100, with the same mea-
surement rate of 1 Hz, both particle filters were able to fully
recover the unknown heat flux. From the analysis of Fig. 2, how-
ever, it can be verified that the results for the ASIR filter present
less deviation to the exact heat flux than the results obtained by
the SIR filter.

When more particles were used, the error bars were more
uniform during the time periods analyzed, whereas for 10 par-
ticles there was a fluctuation in the error bars as can be seen in
Fig. 2. One interesting result has to do with the frequency of
measurements. From Fig. 2, one can see that when the fre-
quency was increased from 1 Hz to 10 Hz the results became

Fig. 6 Estimated heat flux with the step profile using different grids to generate the measurements and to the solution of the
inverse problem (ASIR filter)

Fig. 7 Estimated u, v, and T with the step profile using different grids to generate the measurements and to the solution of
the inverse problem (ASIR filter)
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worse, with a large fluctuation of the average heat flux and
larger values of the error bars. Although this has to be further
investigated, we note that higher frequencies amplify the errors,
while lower frequencies tend to smooth them out. The SIR filter
presented a very large delay for the case with 10 particles and a
frequency of measurements equal to 10 Hz, taking almost 600 s
to start recovering the unknown heat flux. This initial delay was
not verified in the ASIR filter and, for this reason, only results
for this filter will be presented for temperature profiles and
streamlines.

Figure 3 shows the real and recovered temperature profiles,
while Fig. 4 shows the real and recovered streamlines, obtained
by the ASIR filter, where one can notice the excellent estimates of
the temperature and velocity fields. From Fig. 4, one can see that
the streamlines at 100 s for the test case with 10 particles and a
measurement frequency equals to 1 Hz were not very well cap-
tured, since the filter presented an initial delay of approximately
200 s to estimate such heat flux as discussed previously.

Figure 5 shows the estimated heat flux with the step profile (test
cases 5–8) obtained by the particle filter methodology. Again, for
10 particles with a measurement rate equal to 1 Hz there was a
delay to estimate the discontinuity at 500 s. When the number or
particles was increased to 100, such delay was decreased. Also,
the spread of the average value of the heat flux was less pro-
nounced when more particles (100 instead of 10) were used. Once
again, the error bars increased when the frequency of the measure-
ment increased from 1 Hz to 10 Hz. It can also be observed that
the deviation of the estimated results, compared to the exact ones,
is lower for the ASIR filter, when compared to the SIR filter.

Once the superiority of the ASIR filter was demonstrated, a
final result is presented, where we used a fully converged grid,
with 110� 110 finite volumes, to generate the measurements.
Those measurements were also subjected to an experimental error
with standard deviation equal to 1% of the local value of the tem-
perature. Also, in order to explore the sensitivity of the particle fil-
ter with respect to the number of state variables, a grid with
21� 21 volumes was used to the inverse problem, thus increasing
the number of state variables from 364 to 1324, as discussed
above. Since the grid points of those two grids were not the same,
an additional error was present due to the position of the sensors.
Table 4 presents the locations of the sensors for both grids. For
this test case, we used the same step profile used in test cases 5–8.
From Table 4, it can be seen that an average error or 1.64% is
included in the location of the sensors.

Figure 6 shows the exact and estimated heat flux profiles for the
test cases 9–12 using different grids for the direct and inverse
problems. It can be seen that the results are remarkably good and
very similar to the ones obtained for test cases 5–8, where the
same grid was used for both problems. Only for the cases with 10
particles, some deviations were observed in the lower value of the
heat flux. However, when the number of particles was increased,
the estimate was very good. Also, even for a small number of par-
ticles, the discontinuity in the function was very well captured,
showing that the ASIR filter is a very powerful inverse technique
tool, even in the presence of several source of errors.

Figure 7 shows the estimated values of the u and v components
of the velocity field, as well as the temperature close to the half
height of the cavity for the final time. Since there was no grid
points located exactly at half height of the cavity, the closest points
were taken. It can be verified that in spite of some deviations for
the u component of the velocity field (which has a very low value
compared with v and T), the other two quantities agree very well
with the real ones. It is worthwhile to mention that the real values
were obtained by using a grid with 111� 111 volumes, while the
estimated ones came from a grid with only 21� 21 volumes.

Conclusions

In this paper, we applied the SIR and the ASIR algorithms to
the estimate of an unknown heat flux at the top wall of a square

cavity undergoing a natural convection process. Two different
heat flux profiles were estimated with very good results. Also, the
number of particles as well as the frequency of the measurements
were analyzed, showing that as the frequency decreases, the
results improve, with lower error bars. Also, when the number of
particles increases, the results become less spread around the
exact value of the unknown heat flux. Numerical experiments
revealed that a drastic reduction on the number of particles used
to represent the posterior density function could be achieved by
using the ASIR algorithm instead of the SIR algorithm. Results
were also shown for cases where different grid sizes were used for
the direct and inverse problems. In this test case, besides the ex-
perimental errors included in the temperatures, an additional
source of error was considered, due to the fact that the measure-
ment points were not at the same locations for the two grids. Even
in this case, the ASIR algorithm was capable to recover the
unknown heat flux, as well as the velocity and temperature pro-
files. Therefore, the ASIR algorithm appears as a robust and effi-
cient tool for complicated state estimation problems, such as the
one dealing with natural convection examined above.
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Nomenclature
Cp ¼ specific heat at constant pressure

g ¼ acceleration of the gravity
H ¼ height of the cavity
k ¼ thermal conductivity
n ¼ measurement noise vector
p ¼ pressure
q ¼ heat flux
t ¼ time

T ¼ temperature
Tc ¼ “cold” temperature
Th ¼ “hot” temperature

Tref ¼ reference temperature
u, v ¼ velocity vector components in the x and y directions

v ¼ state noise vector
w ¼ weights used in the posterior density function

x, y ¼ Cartesian coordinates
x ¼ state variable vector
z ¼ observation vector
b ¼ thermal expansion coefficient
l ¼ molecular viscosity
q ¼ density
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