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A multilevel approach, based on our previously developed hybrid optimizer, is presented for solving a problem that consists of a solidifying
thermosolutal flow in a square cavity subjected to variable thermal and magnetic boundary conditions. The objective is to reduce the standard
deviations of the vorticity within the liquid region as well as reduce the liquid area over the entire domain. Thus, the optimization problem is
formulated to simultaneously find thermal and magnetic boundary conditions that must induce such prescribed solute concentration and velocity
profiles. The optimizer is based on several deterministic and evolutionary techniques with automatic switching among them, combining the best
feature of each algorithm. A radial basis function based response surface scheme is implemented to reduce the overall computing time.
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1. Introduction

In liquids containing a solute, natural convection driven
by both temperature and solute concentration gradients
in the liquid phase has a considerable influence on
the solidification process in multicomponent systems.
Temperature gradients may be externally imposed (i.e., by
heating/cooling) and are caused internally by the latent heat
release or absorption within the mushy zone. The solubility
of a component may be variable in solid and liquid phases
for multicomponent solutions. Thus, during solidification,
a component may be incorporated or rejected, therefore
inducing local compositional gradients at the solid–liquid
interface. This convective flow, driven by both thermal and
solutal buoyancy forces, is commonly recognized as double-
diffusive natural convection in solidification. Diverse
double-diffusive convection patterns can be generated in
the liquid because of different molecular diffusivities of
heat and species for most fluids. Variations arise from
the boundaries of the moving of the mushy region, the
interactions among the heat and mass transfer, fluid flow,
and involvement of two distinct phases which have different
thermo physical properties.
Many research groups have contributed to this area

by studying experimentally [1–6], analytically [7–9], and
numerically [10–15] the solidification process in rectan-
gular, trapezoidal, and V-shaped enclosures. Experimental
methods play important roles in investigating the solidifi-
cation process. Mathematical numerical modeling has been
and continues to be a powerful tool in improving the
understanding of the solidification process.
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While growing single crystals from a melt it is desirable
that any impurities that originate from the walls of
the crucible do not migrate into the mushy region and
consequently deposit in the crystal. On the other hand,
it is highly desirable to achieve a distribution of dopants
in the crystal that is as uniform as possible [16, 17].
Similarly, microsegregation results in the interdendritic
spaces when freezing a solute-enriched liquid. It does not
constitute a major quality problem of the cast part, since
the effects of microsegregation can be removed during
subsequent soaking and hot working. Macrosegregation, on
the other hand, causes non-uniformity of composition in
the cast section on a larger scale [18]. Another example
is in the manufacturing of composites and functionally
graded materials when it would be highly desirable to have
the ability to manufacture composite parts with specified
distributions of concentration of micro-fibers or nano-
particles. We have recently demonstrated that control of
the distribution of micro-particles and a solute in a thermo-
convective flow could be achieved by applying appropriate
distributions of magnetic [19–21] fields acting on the
electrically conducting fluid containing the solute [22–25].
In this work, we will demonstrate the combined use of

optimized thermal and magnetic boundary conditions. The
problem consists of a solidifying thermosolutal flow in a
square cavity subjected to variable thermal and magnetic
boundary conditions where the objective is to reduce the
standard deviations of the vorticity and solute concentration
within the liquid region as well as reduce the liquid area over
the entire domain, thus, maximizing the solidification effect.
Numerical simulations using mathematical models for

the combined electro-magneto-hydrodynamics (EMHD)
[22, 23] are impossible because of the unavailability of
the large number of physical properties that still need
to be evaluated experimentally. Therefore, the combined
EMHD model has traditionally been divided into two sub-
models [24, 25]: a) magneto-hydrodynamics (MHD) that
models incompressible fluid flows under the influence of
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an externally imposed magnetic field, while neglecting any
imposed electric fields and electrically charged particles,
and b) electro-hydrodynamics (EHD) that models the
incompressible fluid flows under the influence of an
externally imposed electric field, while neglecting any
imposed magnetic fields.
In this work we will utilize an MHD model and

simultaneously optimize thermal and magnetic boundary
conditions in order to achieve desired distributions of solute
concentration and vorticity during solidification.

2. General model

In this paper we employed the same methodology derived
by Voller et al. [28] for the phase change model. In
their paper, they defined three different models: Model A
(mushy fluid model), Model B (columnar dendritic with
dispersed microstructure model), and Model C (columnar
dendritic with distinct microstructure model). In this paper,
our equations were based on Voller et al. Model A [28].
A brief review of the basic equations is shown below.
Let us consider a binary mixture, whose schematic phase

diagram is given in Fig. 1. The ordinate is the temperature
of the mixture, while the abscissa is the concentration of
the solute. The origin point of the abscissa corresponds
to a pure solvent. Several models exist to model mushy
region. Some of them assume that this region is a porous
media with variable porosity, while others consider the solid
phase to be fully dispersed within the liquid, both having
the same velocity, with viscosity rapidly varying within the
mushy region.
The liquid and mushy regions are separated by a curve,

called the liquidus line, which is simplified in this diagram
by a straight line. In the same way, the solidus line is the
line which delineates the solid and mushy regions. Two
temperatures are important in this diagram: the first one is
the melting temperature of a pure substance, represented
by the Tm in the diagram; the other important point is
the eutectic temperature, corresponding to the eutectic
concentration. The liquidus line connects the point of
melting temperature and zero concentration to the point of
eutectic temperature with eutectic concentration.
The model of a physical problem considered here

involves laminar natural convection of an incompressible

Figure 1.—A schematic phase diagram.

Newtonian fluid undergoing a solidification process. The
fluid physical properties are assumed constant. The energy
source term resulting from viscous dissipation is neglected
and buoyancy effects are approximated by the Oberbeck-
Boussinesq hypothesis [26, 27]. Radiative heat transfer,
Soret and Dufour effects are neglected [26, 27].
The general conservation equations for liquid and solid

phases can be written as [28]

�

�t
�gs�s�s�+ � · �gs�sus�s� = � · (gs��

s ��s

)+ Fs + P

(1.a)

�

�t
�gl�l�l�+ � · �gl�lul�l� = � · (gl��

l ��l

)+ Fl − P

(1.b)

where � is the quantity being conserved, g is the volume
fraction in a representative region, � is the density, � is
the diffusion coefficient, u is the velocity vector, F is
the body force, P represents the interphase source terms,
and the subscripts s and l refer to the liquid and solid
phases, respectively. Note that the interphase source terms
have opposite signs and will cancel out in an additive
combination of the phases. The volume fractions gs and gl
are related to the mass fractions, fs and fl, by [28, 29]

�fs = �sgs �fl = �lgl (2.a,b)

where the local mixture density is defined as

� = �sgs + �lgl (3)

The overall conservation equation can be obtained by
summing Eqs. (1.a) and (1.b), thus, obtaining

�

�t
�gs�s�s + gl�l�l�+ � · �gs�sus�s + gl�lul�l�

= � · �gs��
s ��s + gl�

�
l ��l�+ Fs + Fl� (4)

For the columnar dendritic zone, a porous media model
[28–31] must be employed such that the velocity of the solid
phase is imposed as zero. Also, the dissipative interfacial
stress is usually modeled in an analogy with Darcy’s law,
where the permeability is commonly approximated using
the Kozeny–Carman equation [28, 29]. This porous media
model will not be utilized in this work.
For the mushy zone model [18, 28], which is applicable to

amorphous materials (waxes and glasses), and the equiaxed
zone of metal casting, the solid is assumed to be fully
dispersed within the liquid and that

u = us = ul� (5)
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The velocity within the solid phase is reduced to a
negligible level by imposing a large difference of viscosity
between the solid and liquid phases, such that

	s

	l

≥ 105� (6)

Then, Eq. (4) reduces to

�

�t
�gs�s�s + gl�l�l�+ � · 
�gs�s�s + gl�l�l�u�

= � · �gs��
s ��s + gl�

�
l ��l�+ Fs + Fl (7)

If there is an equilibrium among the solid and liquid
phases such as �l = �s = � in a representative elementary
volume (for example, in the energy equation written for the
temperature [29]), then Eq. (7) after using Eq. (3) becomes

�

�t
����+ � · ���u� = � · ������+ F (8)

where

�� = gs�
�
s + gl�

�
l F = Fs + Fl� (9.a,b)

3. Model for the concentration equation

In the case of the equation for the concentration, quantities
�s and �l must obey the binary diagram and Eq. (8) is not
valid anymore. For this conservation equation we must use
Eq. (7) in its full form.
For the sake of simplicity, let us consider �s = �l [28, 29].

In the context of solidification, such an assumption will
imply no solidification-induced shrinkage [29]. Then, from
Eqs. (2) and (7) it follows that

�

�t

��fs�s + fl�l��+ � · 
��fs�s + fl�l�u�

= � · �fs��
s ��s + fl�

�
l ��l�+ F � (10)

For the mushy region, the concentration of the liquid and
solid phases are related through the partition coefficient, n,
defined as [30]

Cs = nCl (11)

where 0 < n < 1.
Thus, substituting Eq. (11) in Eq. (10) written in terms of

the concentration and knowing that fs = �1− fl�, it follows,
after some manipulations, that

�

�t
��Cs�+ � · ��Csu�

= � · �D+�Cs�−
�

�t

[
fl

(
1
n
− 1

)
�Cs

]

−� ·
[
fl

(
1
n
− 1

)
�Csu

]
(12)

where the diffusivity coefficient is

D+ = fs�sDs +
fl�lDl

n
� (13)

Equation (12) is the same equation proposed by Voller
et al. [28] in their Model A. Note, however, that it is only
valid for the mushy region and not for the solid and liquid
regions. Thus, in order to obtain a model valid for all phases,
let us define

C = fsCs + flCl D = fs�sDs + fl�lDl� (14.a,b)

Equation (14.a) assumes equilibrium (i.e., reversible)
solidification. Equilibrium solidification assumes complete
mixing in both liquid and solid at every stage of cooling. It
also assumes equilibrium at the interface of solid and liquid.
Using Eqs. (14), it is possible to rewrite Eq. (10) for the
concentration as

�

�t
��C�+� · ��Cu� = � · �D�C�+� · 
fs�sDs��Cs −C��

+ � · 
fl�lDl��Cl − C�� (15)

where the last two terms can be written as the source term

SC = � · 
fs�sDs��Cs − C��+� · 
fl�lDl��Cl −C��� (16)

The values of the coefficients in this source term
depend on the solid and liquid mass fractions, fs and
fl, respectively. In this equation, one must determine
the concentration of liquid and solid phases at a given
temperature. Considering the liquidus line as a straight line,
one can obtain the following equations for the mushy zone
by inspecting the binary diagram in Fig. 1.

Cl =
Tm − T

Tm − Te

Ce Cs =
Tm − T

Tm − Te

nCe� (17, 18)

Thus, it is possible to have three different values for the
coefficients in the source term given by Eq. (16), depending
on which region (liquid, mushy zone, solid) locally exists.
These values are summarized in Table 1.
One can check that Eq. (15) reduces to Eq. (12) when

0 < fs < 1. The solid fraction was modeled by the Lever
Rule [30]

fs =
1

1− n

(
Tl − T

Tm − T

)
(19)

Table 1.—Coefficients for the source terms for the
concentration equation.

fs fl Cs Cl

0 1 0 C
1 0 C 0
0 < fs < 1 �1− fs� Eq. (18) Eq. (17)
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which assumes complete mixing in both liquid and solid
phases.
In the Lever Rule, one must determine the temperature

of solidification and melting of the mixture at a given
concentration. Considering the liquidus line as a straight
line, one can obtain the following equation by inspection of
the binary diagram in Fig. 1:

Tl = Tm − �Tm − Te�
C

Ce

Ts = MAX

[
Te� Tm − �Tm − Te�

C

nCe

]
�

(20.a,b)

Note that, as the solidification begins, the solid phase
rejects solute and its concentration in the remaining liquid
and especially in the mushy regions increases. Thus, the
solid and liquid temperatures at each point of the domain
must be determined as the solidification front advances.
This indeed induces a buoyancy effect in the Oberbeck–
Boussinesq equation. The rejection of the solute by the
solid often leads to secondary reactions, such as formation
of oxides, sulphides, oxysulphides, and nitrides during
solidification, which can significantly alter microsegregation
patterns [31]. Such reactions will not be treated in this paper.

4. Model for the energy equation

In this work we used the enthalpy method [28] to deal
with the phase change problem. In this method, the energy
equation appears as a mixed enthalpy-temperature equation.
Writing the general conservation Eq. (4) in the enthalpy
form where � = h, we have

�

�t
�gs�shs + gl�lhl�+ � · �gs�sushs + gl�lulhl�

= � · �gsks�Ts + glkl�Tl�� (21)

Invoking the hypothesis of thermodynamic equilibrium
for the temperature implies constant density. In addition, by
defining

h = gshs + glhl k = gsks + glkl (22.a,b)

it is possible to rewrite the energy conservation equation in
enthalpy form as

�

�t
��h�+ � · ��uh� = � · �k�T�� (23)

Thus, it is necessary to obtain a relationship between the
equilibrium temperature and the mixture enthalpy to be used
in Eq. (23). For the case of a binary mixture, if h < hsolid,
then

T = h

CPs

(24)

or, if h > hliquid

T = h+ Ts�CPl − CPs�− L

CPl

(25)

or yet, if hsolid < h < hliquid

T = h+ 
Ts�CPl − CPs�− L��1− fs�

CPl + fs�CPs − CPl�
(26)

where the solid mass fraction, fs� is given by Eq. (19),
for the Lever Rule Model. Here, L is the latent heat of
liquid–solid phase change.
Note that if T < Tsolid, then fs must be set to unity. If

T > Tliquid, then fs must be set to zero. The other thermal
properties were approximated as linear functions within the
mushy region (Tsolid < T < Tliquid� and kept constant within
each phase. Thus, in the mushy region


 = f
s + �1− f �
l (27)

where 
 represents, for example, the density, thermal
conductivity, viscosity, magnetic permeability, and electric
conductivity. For the specific heat at constant pressure
within the mushy region, we used the thermodynamic
property approximated as [30]

CP = �h

�T
≈

√(
�h
�x

)2 + (
�h
�y

)2
√(

�T
�x

)2 + (
�T
�y

)2 � (28)

Note that enthalpy is a function of the temperature which
is a function of the solid fraction that is itself a function of
the temperature. Thus, if hsolid < h < hliquid, we must solve
a nonlinear system for T . From Eqs. (18), (19), and (26) it
follows that

T −
h+ 
Ts�CPl − CPs�− L�

[
1− 1

1−n

(
Tl−T

Tm−T

)]
CPl + 1

1−n

(
Tl−T

Tm−T

)
�CPs − CPl�

= 0 (29)

for the Lever Rule Model. This equation can be solved for
T by the secant method. It should be pointed out that in this
work we have not considered any sink for the momentum
due to viscous dissipation in the mushy region. We have
also not utilized dynamic computational grid clustering with
respect to the solid/melt interface in order to resolve the
details of the mushy region.
Once T is obtained, and knowing the value of C, the

values of the liquid and solid concentrations can be obtained
by inspecting the binary diagram given in Fig. 1. After,
calculating T and fs , if the local instantaneous mass fraction
of solid is equal to zero, then the local instantaneous
concentration of the liquid, Cl, is set to one and the
concentration of the solid, Cs , is set to zero. Otherwise, if
the local instantaneous solid fraction is equal to one, then
the concentration of the liquid, Cl, is set to zero and the
concentration of the solid, Cs , is set to one.
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5. General system of equations

The laminar magneto-hydrodynamic (MHD) natural
convection of an incompressible Newtonian fluid with all
physical properties assumed constant has a well-known
mathematical model involving a combination of Navier–
Stokes equations and Maxwell equations [22]. The energy
source term resulting from viscous dissipation, radiative
heat transfer, and Soret and Dufour effects are neglected.
Buoyancy effects are approximated by the Oberbeck–
Boussinesq hypothesis [26, 27]. Then, the MHD model
in this case can be written, for two-dimensional Cartesian
coordinate system, as

�Q

�t
+ �E

�x
+ �F

�y
= S (30)

Q = �� (31.a)

E = �u�∗ − �
��∗∗∗

�x
(31.b)

F = �v�∗∗ − �
��∗∗∗

�y
� (31.c)

The values of S� �����∗� �∗∗� �∗∗∗, and � are given in
Table 2 for the equations of conservation of mass, species,
x-momentum, y-momentum, energy, magnetic flux in the
x-direction, and magnetic flux in the y-direction.
Note that we used the Oberbeck–Boussinesq

approximation [26, 27] for the variation of the density
with temperature and concentration in the y-momentum
conservation equation only. Also note that in the energy
conservation equation, the term CPT was replaced by the
enthalpy, h, per unit mass. This is useful for problems
dealing with phase change where we could use the enthalpy
method [28].
The above equations were transformed from the physical

Cartesian �x� y� coordinates to the computational coordinate

Table 2.—Parameters for the Navier–Stokes and Maxwell equations.

Conservation of � � �∗ �∗∗ �∗∗∗ � S

Mass � 1 1 1 1 0 0
Species � C C C C D � · 
fs�sDs��Cs − C��

+� · 
fl�lDl��Cl − C��

x-Momentum � u u u u 	 − �p
�x

− By
	m

[
�By
�x

− �Bx
�y

]

y-Momentum � v v v v 	 − �p
�y

− �g
1− ��T − T0�− �S�C − C0��

+ By
	m

[
�By
�x

− �Bx
�y

]

Energy � h h h T k CP
�	2m

[
�By
�x

− �Bx
�y

]2

Magnetic x-flux 1 Bx 0 Bx Bx
1

	m�

��uBy�

�y

Magnetic y-flux 1 By By 0 By
1

	m�
��vBx�
�x

system (�� �) and solved by the finite volume velocity-
pressure coupling SIMPLEC method [32]. The WUDS
interpolation scheme [33] was used to obtain the values
of u� v� h� Bx, and By as well as their derivatives at the
interfaces of each control volume. The resulting linear
system was solved by the GMRES method [34] to accelerate
the iterative convergence rate.

6. Validation of the analysis code for a transient

solidification of a binary mixture

The MHD analysis code was validated against available
analytical and experimental benchmark test cases [20,
21, 35–39]. They involved forced convection in regular
and irregular channels, natural convection in regular and
irregular cavities, forced convection in the presence of
magnetic fields (Pouiseuille–Hartmann Flow), phase change
in heat conduction and heat convection problems, natural
convection in the presence of magnetic fields [16], steady-
state cooperating thermosolutal convection in enclosures
[4], and transient cooperating thermosolutal convection in
enclosures.
Let us now compare the following mathematical model

with the results obtained by Voller et al. [28]. They used
the SIMPLE method [40] to solve a thermosolutal problem
with solidification in a square cavity of size 0.025m, where
all surfaces were insulated, except for the left vertical wall
which was suddenly cooled to a temperature below the
melting temperature. They used a grid of 30 × 30 cells
which, in spite of being very coarse was also used in this
work. They did not mention weather they used a clustered
grid or not. They also did not mention if they used the co-
located or staggered grid scheme. The value of gravity was
not given in their paper.
In the Voller et al. paper [28], the initial concentration

and temperature inside the cavity was T0 = 600K and C0 =
0�1kgm−3, respectively. The temperature of the left wall
was suddenly imposed and kept at 400K. All the walls were
impermeable to mass. The physical properties representative
of an aqueous mixture of ammonium chloride and water
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(NH4Cl-H20) were used.

CP = 3000 Jkg−1 K−1 k = 0�4Wm−1 K−1

	l = 0�001 kgm−1 s−1 	s = 10000 kgm−1 s−1

D = 4�8× 10−9 m2 s−1 L = 3× 105 Jkg−1

� = 4× 10−5 K−1 �s = 0�025

Te = 250K Ce = 0�8 Tm = 630K n = 0�3�

In the original Voller et al. paper [28], the time step for
the numerical method was taken as 1.0 second and the final
time as 3000 seconds. In the present results, the time step
was taken as 0.001 seconds. The stopping criterion at each
iteration was taken as the one used by Voller et al. [28]:
the mass source within each control volume must be less
than 8× 10−6 and the error in the overall energy and solute
balance must drop below 1 × 10−2 and 1 × 10−4 percent,
respectively.
In Voller et al. paper [28], transient results were only

shown for its Model B, which stands for the columnar
dendritic with dispersed microstructure model, while their
steady state results were shown for all three models
presented in their paper. Figure 2 shows the comparisons

Figure 2.—Comparison between Voller et al. [28] (left) and current results (middle and right) for fs = 0�5, at different times, utilizing Eq. (12) (middle) and
Eq. (15) (right).

between current results and Voller et al. [28] results where
the mass fraction of solid equals to 0.5 at different times,
namely, t = 100 s, 250s, and 500s. For these results, we
used Eqs. (12) and (15) for the concentration. Note that we
are comparing a mushy zone based model (current results)
with a columnar dentritic with dispersed microstructure
model (Voller et al. results [28]). However, the results
are very similar. The model proposed by Eq. (12), despite
being valid only inside the mushy zone, was used in the
entire domain. One can see that the locations of the lines
of 50 percent of solid phase are in reasonable agreement.
However, despite the fact that streamlines are in relative
agreement at t = 100 s, they are significantly different at
larger times, probably because of the difference between
the models. However it is interesting to note that the results
are similar for short times, even for different models.
Figure 3 shows the comparison of the macro segregation

profiles at t = 3000 s for the original Voller et al. Model A
[28] and our current results. One can see that the results are
very similar for the case where we used Eq. (12), but are quite
different for Eq. (15). The discrepancies between the present
results when using Eq. (12) and those presented by Voller
et al. [28] can be attributed to different time integration
accuracy because of different time step sizes in the present
work when compared with the one from Voller et al. [28].
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Figure 3.—Comparison between Voller et al. [28] (a) and current results for the macro segregation profiles at t = 3000 s, utilizing Eq. (12) (b) and Eq. (15) (c).

7. Multilevel hybrid optimizer

with response surface

A hybrid optimization is a combination of the
deterministic and the evolutionary/stochastic methods, in
the sense that it utilizes the advantages of each of
these methods. The hybrid optimization method usually
employs an evolutionary/stochastic method to locate a
region where the global extreme point is located and then
automatically switches to a deterministic method to get to
the exact point faster. The global procedure is illustrated
in Fig. 4. It switches automatically among four different
methods of optimization, namely, the Broyden–Fletcher–
Goldfarb–Shanno (BFGS) quasi-Newton method [41], the
particle swarm method [42], and the differential evolution
method [43].
In order to speed-up the optimization task, the

optimization procedure starts with a very coarse grid and
then proceeds through a sequence of refined grids illustrated
in Fig. 5. In this paper we also used an interpolation
scheme based on the radial basis function method [44–46].
Thus, after a certain number of objective functions were
calculated, all this information was used to obtain a response
surface. Such a response surface is then optimized using
the same proposed hybrid code so that it fits the calculated
values of the objective function as closely as possible.

Figure 4.—Global procedure for our hybrid optimization method.

Figure 5.—A multilevel optimization sequence of computational grids.

New values of the objective function are then obtained
very cheaply by interpolating their values from the response
surface.
The most active module in our hybrid optimizer is the

particle swarm algorithm which is a nongradient based
optimization method created in 1995 as an alternative to
the genetic algorithm methods. The original idea came from
the observation of birds looking for a nesting place. When
the individuality is increased, the search for alternative
places for nesting is also increased. However, if the
individuality becomes too high, the individual might never
find the best place. In other words, when the sociability is
increased, the individual learns more from the neighbor’s
experience. However, if the sociability becomes too high,
all the individuals might converge to the first place found
(possibly a local minimum).
In the particle swarm method, the iterative procedure is

given by

xk+1
i = xki + vk+1

i (32.a)

vk+1
i = �vki + �r1i�pi − xki �+ �r2i�pg − xki � (32.b)

where

xi is the ith individual of the vector of parameters�
vi = 0� for k = 0�
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r1i and r2i are random numbers with uniform distribution
between 0 and 1�

pi is the best value found for the vector xi�
pg is the best value found for the entire population�
0 < � < 1� 1 < � < 2

In Eq. (32.b), the first term on the right-hand side
represents the inertia of the particles and, in general, must
be decreased as the iterative process proceeds. The second
term on the right hand side represents the individuality and
the third term the sociability. In this equation, the vector pi

represents the best value ever found for the ith component
vector of parameters xi during the iterative process. Thus,
the individuality term involves the comparison between the
current value of the ith individual xi and its best value in
the past. The vector pg is the best value ever found for the
entire population of parameters (not only the ith individual).
Thus the sociability term compares xi with the best value
of the entire population in the past.
The differential evolution method [43] is an evolutionary

method based on Darwin’s theory of evolution of the
species. This nongradient based optimization method was
also created as an alternative to the genetic algorithm
methods. Following Darwin’s theory, the strongest members
of a population will be more capable of surviving in
a certain environmental condition. During the mating
process, the chromosomes of two individuals of the
population are combined in a process called crossover.
During this process mutations can occur, which can be
advantageous (individual with a better objective function)
or disadvantageous (individual with a worse objective
function). The mutations are used as a means of escaping
from local minima. However, their excessive usage can
lead to a nonconvergence of the method. The differential
evolution method starts with a randomly generated
population matrix P in the domain of interest. Thus,
successive combinations of chromosomes and mutations are
performed, creating new generations until an optimum value
is found.
The iterative process is given by

xk+1
i = �1x

k
i + �2
�+ F��− ��� (33)

where

xi is the ith individual of the vector of parameters�
���� and � are three members of population matrix P�
randomly chosen�

F is a weight function, which defines the mutation
�0�5 < F < 1��

k is a counter for the generations�
�1 and �2 delta Dirac functions that define the mutation�

In this minimization process, if U�xk+1� < U�xk�, then
xk+1 replaces xk in the population matrix P. Otherwise, xk
is kept in the population matrix.

The binomial crossover is given as

�1 = 0� if R < CR

1� if R > CR�
(34.a,b)

where CR is a user specified factor that defines the crossover
�0�5 < CR < 1� and R is a random number with uniform
distribution between 0 and 1.
In the hybrid optimizer, when a certain percent of

the particles find a minimum, the algorithm switches
automatically to the differential evolution method and the
particles are forced to breed. If there is an improvement
in the objective function, the algorithm returns to the
particle swarm method, meaning that some other region is
more likely to having a global minimum. If there is no
improvement of the objective function, this can indicate that
this region already contains the global value expected and
the algorithm automatically switches to the BFGS method
in order to find its location more precisely.
In Fig. 4, if the BFGS cannot find any better solution,

the algorithm uses a radial basis function interpolation
scheme to obtain a response surface and then optimizes such
response surface using the same hybrid algorithm proposed.
When the minimum value of this response surface is found,
the algorithm checks to see if it is also a solution of the
original problem. Then, if there is no improvement of the
objective function, the entire population is eliminated and a
new population is generated around the best value obtained
so far. The algorithm returns to the particle swarm method in
order to check if there are no changes in this location and the
entire procedure repeats itself. After a specified maximum
number of iterations is performed (e.g., five) the process
stops. Details of certain parts of this hybrid optimizer as well
as other optimizers can be found in a recent tutorial [47].

8. Inverse problem of determining the unknown

magnetic field boundary conditions

In this paper we deal with the inverse determination of
the magnetic and thermal boundary conditions that interact
with thermal and concentration buoyancies and create such
a fluid flow that gives some pre-specified concentration
distribution of the solute within a certain region. Figure 6
shows the geometry and the boundary conditions for the

Figure 6.—Geometry and boundary conditions for MHD controlled
thermosolutal problems.
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test cases considered here. The geometry considered is a
square cavity, whose height and length are equal to 150mm.
All boundaries were impermeable both to the velocities and
to the concentration. The top and bottom walls were kept
thermally insulated.
The initial thermal condition was set equal to 1685.04K

throughout the container, while the melting temperature
was set to 1685K. At time zero, left wall temperature was
set equal to 1624.96K. During the optimization process,
the temperature of the “hot” right vertical wall was kept
constant at 1685.04K, while the temperature of the “cold”
left vertical wall was allowed to vary in the range between
1620K and 1630K at each boundary point. Thus, a
solidification front starts from the left “cold” wall and a
combined buoyancy force due to the thermal and solutal
gradients causes the fluid flow.
The objective function was formulated as a multiobjective

function. The objective was to solidify the material as fast
as possible (thus, “reducing” the liquid area) and also keep
the standard deviation of the vorticity (�) low within the
liquid zone (thus, “reducing” the natural convection effects).

Figure 7.—Contours of constant void fractions (a), solute concentration (b), fluid vorticity (c), and velocity vectors (d) with no applied magnetic field (B = 0).

Our ultimate objectives are to control local orientations
and concentrations of micro particles in the final solid
phase. This could be accomplished only if orientations and
concentrations of micro particles do not change appreciably
in the mushy region while the solidification front passes
over such a region. Vorticity causes micro particles in the
melt to spin thus causing rapid change in orientation of the
micro particles in the melt. Therefore, one of the objectives
was to minimize the vorticity in the melt. The objective
function that was minimized was then formulated as

F = �liquid area fraction�2

+
√√√√ 1

#liquid cells

#liquid cells∑
i=1

(
�i − �̄i

�max

)2

(35)

where the liquid area fraction varies from 0 to 1 (0 means
no liquid area and 1 no solid area). The vorticity was
normalized by its maximum value over the entire domain.
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Figure 8.—Contours of constant void fractions (a), solute concentration (b), fluid vorticity (c), and velocity vectors (d) resulting from magnetic flux B optimized
at six points per boundary and temperature optimized at six points on the left vertical “cold” wall.

The optimization objectives were to be achieved by
allowing simultaneous variation of the normal components
of the boundary values of the externally imposed magnetic
field on the four walls in addition to allowing the
temperature to vary along the “cold” wall. In order to satisfy
the magnetic flux conservation equation

� • B = 0 (36)

the following periodic conditions were imposed

B1�y� = B2�y� and B3�x� = B4�x�� (37.a,b)

The magnetic field and thermal boundary conditions
were discretized at six points equally spaced along the
x = 0�0 and along y = 0�0 boundaries and interpolated
using B-splines for the other points at those boundaries.
The magnetic boundary conditions at x = 150mm and y =
150mm were then obtained using periodic conditions from
Eqs. (37.a) and (37.b). Thus the number of parameters to be
optimized were equal to 18 (six for the magnetic boundary
conditions at x = 0�0, six for the magnetic boundary

conditions at y = 0�0mm, and six for the thermal boundary
conditions at x = 0�0mm – cold wall). The number of
individual distributions of thermal and magnetic boundary
conditions in the optimization population necessary for
the particle swarm method was set equal to 50, which
is approximately 2.7 times greater than the number of
parameters to be optimized.
The initial condition for the concentration was set equal

to C0 = 0�1kgm−3. The eutectic temperature and concen-
tration were set to 1681K and 0.8kgm−3, respectively. The
equilibrium partition coefficient n was set to 0.3 and the
final time of the simulation was 1 hour.
The physical properties were taken for molten silicon

[38] as

�l = 2550 kgm−3 �s = 2550 kgm−3

kl = 64Wm−1 K−1 ks = 64Wm−1 K−1

CPl = 1059 Jkg−1 K−1 CPs = 1059 Jkg−1 K−1

	l = 0�0032634 kgm−1 s−1 	s = 326�34 kgm−1 s−1

�l = 12�3× 1051/m� �s = 4�3× 1041/m�
� = 1�4× 10−4 K−1 �s = 0�0875
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Dl = 6�043× 10−9 kgm−1 s−1 Ds = 0 kgm−1 s−1

g = 9�81ms−2 	m = 1�2566× 10−5 TmA−1

L = 1�8× 106 Jkg−1�

Figure 7 shows the calculated iso-void, iso-concentration,
and iso-vorticity profiles and velocity vectors predicted for
this test case without any magnetic field applied for four
different times: t = 15min, 30min, 45min, and 60min. One
can see the large curvature profile for both the void fraction
and the concentration lines. A void fraction equals to one
represents a pure solid, while a void fraction equals to zero
represents a pure liquid. It is worth to note that the solid
phase rejects solute to the liquid phase, as the solidification
front propagates upwards, as one can see on the bottom of
Fig. 7. For this case, the temperature at the left “cold” wall
was set to 1624.96K.
Figure 8 shows iso-void, iso-concentration, and iso-

vorticity profiles and the velocity vectors resulting from
six optimized terms in the B-spline on each boundary for
the estimation of the magnetic boundary conditions for
four different times. Under the influence of the optimized
magnetic field, both the iso-concentration and iso-void
fraction profiles are more flat. One can see that the gradients
of vorticity are reduced significantly. Using more design
variables (B-spline control points) in the optimization
could create even better results where the gradients of
concentration in the y-direction would be further reduced.
From Fig. 8 is also evident that the velocity field is flatter
than the one presented in Fig. 7.
Figure 9 shows the optimized magnetic and thermal

boundary conditions for x = 0 and y = 0. Notice that the
strengths of the required magnetic field are very small and
could be easily achieved with small permanent magnets.
Note also the almost periodic character of the boundary
condition for the temperature obtained by the optimizer
on the left vertical “cold” wall. It is quite interesting
that the algorithm tries to maintain a larger value of the
temperature for the upper half of the container, in such a
way that this could minimize the natural convection within
the liquid area. Note also that the liquid area is reduced
when compared with Fig. 8.

Figure 9.—Optimized magnetic and thermal boundary conditions at x = 0
and y = 0 with the estimation of magnetic flux B at six points per boundary
and estimation of temperature at six points on the left vertical “cold” wall.

Figure 10.—Convergence history of the optimization problem of thermal and
magnetic boundary conditions.

Finally, Fig. 10 shows the convergence history, where the
number of function evaluations means the number of times
that the solver for the Navier and Maxwell equations is
called. For these results we used two grids in the multigrid
optimizer. The first grid had 10× 10 cells and the final grid
had 30 × 30 cells. The results are presented for the finer
grid.

9. Conclusions

In this paper we presented the results of a transient MHD
analysis code that is capable of dealing with thermosolutal
problems with and without phase change in enclosures.
The code was validated against analytical and numerical
(benchmark) results showing good agreement and was
applied to test cases involving steady state optimization.

1. The ability to minimize the natural convection effects
in problems involving phase change was demonstrated
by determining an optimized distribution of magnetic
and temperature fields applied simultaneously along the
boundaries of a solidification container.

2. The practical objective was to solidify the material as
fast as possible (thus “reducing” the liquid area) and also
keep the standard deviation of the vorticity low within
the liquid zone (thus “reducing” the natural convection
effects).

3. A response surface hybrid optimization algorithm was
used, which reduced the CPU time required for the
minimization of the objective function proposed.

4. Transient results were shown where, under the influence
of the optimized magnetic and thermal boundary
conditions, both the iso-concentration and iso-void
fraction profiles became more uniform.

5. It was shown also that the gradients of vorticity were
reduced significantly.

6. Due to high computational cost involved in this
optimization work, only a coarse computational grid was
used in this work. Although the quantitative results were
not fully converged, the qualitative behavior was studied
and the methodology was demonstrated.
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In future works, faster algorithms and a more refined grid
should be used. Also, time dependent boundary conditions
could be optimized, thus, creating an optimal control
algorithm for solidification of binary mixtures.
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