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Abstract 

This work deals with the use of the conjugate gradient method with adjoint problem for the estimation 

of an unknown source term in a two-region problem.  The physical problem consists of heat conduction in two 

contacting rectangular regions, where the source term is known to exist in only one of them. The source term is 

supposed to vary in time as well as within the region. Results are presented for the inverse identification problem 

by using simulated temperature measurements containing random errors. In addition, results are presented for an 

inverse design problem with application in hot embossing microreplication microfabrication technology 

employed for the fabrication of polymer based Micro-electromechanical Systems (MEMS).  PSS� 6/26/06 8:52 AM
Deleted: applied to 
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NOMENCLATURE 

A,B,C  Dimensions of the rectangular region 

d  Direction of descent 

G(X,Y,τ)  Dimensionless source term 

S  Objective functional 

X,Y  Dimensionless Cartesian coordinates 

 

Greeks 

Δθ(X,Y,τ) Sensitivity function, solution of the sensitivity problem given by eqs. (6) and (7) 

β  Search step size 

γ  Conjugation coefficient 

λ(X,Y,τ)  Lagrange multiplier, solution of the adjoint problem given by eqs. (9) and (10) 

µ(τ)  Measured or desired temperature 

θ(X,Y,τ)  Dimensionless calculated temperature, solution of the direct problem given by eqs. (1) and (2) 

τ  Dimensionless time 

τf  Dimensionless final time 

 

Subscripts 

A,B  Regions A and B, respectively 

 

Superscripts 

k  Number of iterations 
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1. INTRODUCTION 

Inverse problems dealing with the identification of source terms have been drawing the attention of 

different research groups for more than a decade, because of its importance in many practical applications, such 

as predicting and controlling chemical reactions and phase-change, detecting inclusions or non-homogeneities, 

etc. For the solution of such kind of inverse problem, a variety of methods have been examined [1-20]. 

This paper is concerned with the estimation of the source term in a two-region heat conduction problem.  

The physical problem of interest is typical of the manufacturing of Micro-electromechanical Systems (MEMS) 

and is called Hot Embossing Microfabrication Microreplication (HEMM). Such technique consists of pressing a 

mold on a substrate under a prescribed thermal history and can also be used for the fabrication of micro- and 

macro-scale polymer parts. In general, the polymer substrate and the mold are heated to a temperature just above 

the polymer glass transition temperature. At this temperature, the polymer undergoes significant variations in its 

physical properties, notably in the Young’s modulus, and changes from hard and brittle to soft and pliable. The 

mold is then pressed on the polymer until features get replicated and then both the mold and the substrate are 

cooled down to a temperature below the glass transition temperature for de-embossing [21].  

The estimation of the source term within the mold by using the temperature variation at selected points 

within the substrate is under picture in this paper. Such inverse problem can be aimed at the identification of the 

unknown source term by using temperature measurements within the substrate, or, alternatively, at the design of 

the source term that will result on a prescribed temperature history required for the Hot Embossing 

Microfabrication Microreplication technique. Results are presented for both the identification and the design 

types of inverse problems. For the estimation of the source term, no information is a priori assumed available 

regarding its functional form, except for the functional space that it belongs to. It is assumed that the unknown 

belongs to the Hilbert space of square integrable functions in the spatial and time domains of interest. The 

unknown source term is estimated by using the conjugate gradient method with adjoint problem formulation [22-

24], as described below. 

  

2. PHYSICAL PROBLEM AND MATHEMATICAL FORMULATION 

The physical problem considered in this work consists of the two-dimensional heat conduction in two 

contacting rectangular regions, as depicted in Figure 1. The widths of both regions are a, while the thickness of 

region A is b and the thickness of region B is (c-b).  Regions A and B are supposed to be initially at the uniform 
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temperatures T0A and T0B, respectively. For t > 0, the two regions are put in contact and heat is generated in 

region B at a volumetric rate g(x,y,t). The contact conductance at the interface between the two regions, hc, is 

supposed to be uniform and the other boundaries of regions A and B are supposed to be insulated. By assuming 

that the thermal properties of regions A and B are constant, the mathematical formulation for this problem is 

given in dimensionless form as: 

 

Region A: 

    in 0 < X < 1 , 0 < Y < B , for τ > 0  (1.a) 

     at  X = 0 , 0 < Y < B , for τ > 0  (1.b) 

     at  X = 1 , 0 < Y < B , for τ > 0  (1.c) 

     at  Y = 0, 0 < X < 1, for τ > 0  (1.d) 

    at  Y = B, 0 < X < 1, for τ > 0  (1.e) 

     for τ = 0, in 0 < X < 1 , 0 < Y < B  (1.f) 

Region B 

   in 0 < X < 1 , B < Y < C , for τ > 0  (2.a) 

     at  X = 0 , B < Y < C, for τ > 0  (2.b) 

    at  X = 1 , B < Y < C, for τ > 0   (2.c) 

    at  Y = B, 0 < X < 1, for τ > 0  (2.d) 

     at  Y = C, 0 < X < 1, for τ > 0  (2.e) 

     for τ = 0, in 0 < X < 1 , B < Y < C   (2.f) 
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Figure 1. Geometry and coordinates 

 

In order to write eqns. (1.a-f) and (2.a-f), the following dimensionless groups were defined: 

 

       (3.a-e) 

           (3.f-k) 

 

where k is the thermal conductivity, α is the thermal diffusivity and the subscripts A and B refer to regions A and 

B, respectively. 

 

3. DIRECT PROBLEM AND INVERSE PROBLEM 

The problem defined by eqns. (1.a-f) and (2.a-f), with known initial and boundary conditions, contact 

conductance, thermophysical properties and source term constitutes a direct problem that is concerned with the 

determination of the transient temperature fields θA(X,Y,τ) and θB(X,Y,τ).  

For the inverse problem of interest here, the source term G(X,Y,τ) is regarded as unknown, while the other 

quantities appearing in the formulation of the direct problem are considered to be known with high degree of 

accuracy. For the solution of the inverse problem, we consider available the transient temperature histories 
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µAm(τ) at positions (Xm,Ym), m=1,..,M, in region A, as well as µBn(τ), n=1,..,N, at positions (Xn,Yn) in region B. For 

the design inverse problem, µAm(τ) and µBn(τ) represent desired temperatures for the fabrication procedure, while 

for the identification inverse problem, µAm(τ) and µBn(τ) represent temperature measurements. The measurements 

contain errors, which are supposed to be additive, uncorrelated, normally distributed, with known and constant 

standard deviation and zero mean.  

For the estimation of the unknown function G(X,Y,τ), we make no a priori assumption regarding its 

functional form, except that it belongs to the Hilbert space of square-integrable functions [22-24] in the domain  

0 < X < 1, B < Y < C and 0 < τ < τf, where τf is the duration of the time interval of concern for the inverse 

analysis. For the solution of the present inverse problem, we consider the minimization of the following 

functional: 

 

  (4) 

 

The minimization of the objective functional (4) is performed by the conjugate gradient method with 

adjoint problem formulation [22-24]. The iterative procedure of such method is presented below. 

 

4. CONJUGATE GRADIENT METHOD 

The iterative procedure of the conjugate gradient method, as applied to the estimation of the function 

G(X,Y,τ), is given by: 

     (5.a) 

where the superscript k denotes the number of iterations and β k is the search step size. The direction of descent, 

d k , is obtained as a linear combination of the gradient direction at iteration k with directions of descent at 

previous iterations. It is given as [22-24]: 

 

   (5.b) 
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Different expressions are available in the literature for the conjugation coefficient, γ k . In this work, we 

use the so-called Fletcher-Reeves version of the conjugate gradient method, where the conjugation coefficient is 

written as [22-24]: 

 

  for k = 1,2,3,…    with γ0 =0  (5.c) 

 

For the implementation of the iterative procedure of the conjugate gradient method given by eqns. (5.a-c), 

expressions are required for the gradient direction , as well as for the search step size β k . Two 

auxiliary problems are used to derive these expressions, namely the sensitivity and adjoint problems, as 

described next. 

 

5. SENSITIVITY PROBLEM AND SEARCH STEP SIZE 

The sensitivity problem is used to determine the variations ΔθA(X,Y,τ) and ΔθB(X,Y,τ) that the temperatures 

θA(X,Y,τ) and θB(X,Y,τ) undergo, respectively, when the unknown function is perturbed by ΔG(X,Y,τ) [22-24]. 

The sensitivity problem is derived by substituting into the direct problem given by eqns. (1.a-f) and (2.a-f), 

θA(X,Y,τ) by [θA(X,Y,τ)+ ΔθA(X,Y,τ)], θB(X,Y,τ) by [θB(X,Y,τ)+ ΔθB(X,Y,τ)] and G(X,Y,τ) by 

[G(X,Y,τ)+ ΔG(X,Y,τ)]. The original direct problem is then subtracted from the resulting equations in order to 

obtain the following sensitivity problem: 

 

Region A: 

     in 0 < X < 1 , 0 < Y < B, for τ > 0  (6.a) 

     at  X = 0 , 0 < Y < B , for τ > 0  (6.b) 

     at  X = 1 , 0 < Y < B , for τ > 0  (6.c) 

     at  Y = 0, 0 < X < 1, for τ > 0  (6.d) 
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   at  Y = B, 0 < X < 1, for τ > 0  (6.e) 

     for τ = 0, in 0 < X < 1 , 0 < Y < B  (6.f) 

 

Region B: 

   in 0 < X < 1 , B < Y < C , for τ > 0  (7.a) 

     at  X = 0 , B < Y < C, for τ > 0  (7.b) 

    at  X = 1 , B < Y < C, for τ > 0   (7.c) 

   at  Y = B, 0 < X < 1, for τ > 0  (7.d) 

     at  Y = C, 0 < X < 1, for τ > 0  (7.e) 

     for τ = 0, in 0 < X < 1 , B < Y < C   (7.f) 

 

The search step size is obtained by minimizing the objective functional with respect to β k  at each iteration 

[22-24]. The following expression results: 

 

    

(8) 

where ΔθA(X,Y,τ;dk) and ΔθB(X,Y,τ;d k ) are the solutions of the sensitivity problem given by eqns. (6.a-f) and 

(7.a-f), obtained by setting ΔG(X,Y,τ)= d k (X,Y,τ). 

 

6. ADJOINT PROBLEM AND GRADIENT EQUATION 

The adjoint problem is derived by multiplying the governing equations of the direct problem, eqns. (1.a) 

and (2.a) by the Lagrange multipliers λA(X,Y,τ) and λB(X,Y,τ), respectively. The equations are then integrated in 
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the spatial and time domains that they are valid and added to the original functional (4). The directional 

derivative of the extended functional in the direction of the perturbation of the unknown function is then 

obtained and the resultant expression, after some lengthy but straightforward manipulations, is allowed to go to 

zero [22-24]. The following adjoint problem for the determination of the Lagrange multipliers λA(X,Y,τ) and 

λB(X,Y,τ) results: 

 

Region A: 

    

in 0 < X < 1 , 0 < Y < B , 0 < τ < τf  (9.a) 

     at  X = 0 , 0 < Y < B , 0 < τ < τf  (9.b) 

     at  X = 1 , 0 < Y < B , 0 < τ < τf  (9.c) 

     at  Y = 0, 0 < X < 1,  0 < τ < τf  (9.d) 

   at  Y = B, 0 < X < 1,  0 < τ < τf  (9.e) 

    for τ = τf, in 0 < X < 1 , 0 < Y < B  (9.f) 

 

Region B: 

     

  in 0 < X < 1 , B < Y < C , 0 < τ < τf (10.a) 

     at  X = 0 , B < Y < C, 0 < τ < τf  (10.b) 

    at  X = 1 , B < Y < C, 0 < τ < τf  (10.c) 

    at  Y = B, 0 < X < 1,  0 < τ < τf  (10.d) 
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     at  Y = C, 0 < X < 1,  0 < τ < τf  (10.e) 

    for τ = τf, in 0 < X < 1 , B < Y < C   (10.f) 

 

By applying the limiting process used to obtain the adjoint problem, the directional derivative of the 

objective functional along the direction of the perturbation ΔG(X,Y,τ) reduces to: 

 

    (11.a) 

 

We now invoke the hypothesis that the unknown function belongs to the Hilbert space of square 

integrable functions in the domain 0 < X < 1, B < Y < C and 0 < τ < τf, so that we can write such directional 

derivative as: 

   (11.b) 

 

Therefore, by comparing eqns. (11.a) and (11.b) we obtain the gradient direction as: 

 

     (12) 

 

After developing the expressions for the search step size and for the gradient direction, the iterative 

procedure of the conjugate gradient method given by eqns. (5.a-c) can be applied until a suitable convergence 

criterion is satisfied. In this paper, the iterative procedure was stopped when the objective functional given by 

equation (4) became sufficiently small. The discrepancy principle [22-24] was used to specify the tolerance for 

the stopping criterion when simulated temperature measurements were used for the inverse analysis of source 

term identification. For the inverse design problem, the tolerance was specified as a small number. 

 

7. RESULTS AND DISCUSSIONS 
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7.1. Identification Problem 

Let us consider first the solution of the inverse problem for the identification of the source term function 

G(X,Y,τ) by using simulated temperature measurements containing random errors.  For the results presented 

below, the dimensions of regions A and B were taken as a = 0.3 m, b = 0.015 m and (b-c) = 0.1 m, so that B = 

0.05 and C = 0.38. In order to examine strict cases involving materials with thermal conductivity and thermal 

diffusivity of different orders of magnitudes, we assumed regions A and B to be made of Teflon and steel, 

respectively, with the following thermophysical properties: kA = 0.23 W/mK, αA = 1.005 x 10-7 m2/s, kB = 45 

W/mK and αB= 1.240 x 10-5 m2/s, that is, K = 195.65 and Λ = 123.35. Both regions A and B were supposed to be 

initially at the same temperature T0A = T0B = 27 oC and in perfect thermal contact. The duration of the experiment 

was taken as 2340 s, with a measurement frequency of 1.1 Hz. In dimensionless terms, the duration of the 

experiment was τf = 2.613 x 10-3. However, in order to overcome the difficulties encountered in the inverse 

problem solution in the neighborhood of the final time, which result from the null gradient at τ = τf , see eqns. 

(9.f), (10.f) and (12), the results are presented below up to τ =2x10-3. The sensors were supposed to be located 

only within region A, which constitutes a difficult situation for the estimation of the source term in region B. For 

the cases examined below, the sensors were evenly distributed at the vertical position Y = 0.03, which 

corresponds to 0.006 m below the interface between regions A and B. The simulated measurements contained 

random errors with standard deviation of 0.003, which is equivalent to 1oC.  Such simulated measurements were 

generated by using functions containing discontinuities and sharp-corners for the source term. These functions 

were supposed to vary from zero to a maximum value of 106 W/m3. The initial guess for the iterative procedure 

of the conjugate gradient method was taken as a null source term.  

The direct, sensitivity and adjoint problems were solved numerically by using the finite-volume method. 

Regions A and B were discretized with 30 volumes along the X direction and 25 and 50 volumes along their 

thickness, respectively. A step of Δτ =10-6 was used to march the solution in time. Such numbers of volumes and 

time step were selected though a grid convergence analysis and by comparing the numerical and analytical 

solutions for the direct problem. 

For the test-cases examined below in the inverse identification problem, the source-function was assumed 

to be separable in the form: 

 

     (13) 
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Table 1 summarizes the test-cases examined for the inverse identification problem. Test-cases 1-3 deal 

with the identification of a spatially uniform function that only varies in time. These test-cases differ by the 

number of sensors used in the inverse analysis. For test-case 4, the unknown function is uniform along the Y 

direction and constant in time, thus varying only along the longitudinal X direction. Test-case 5 involves a 

function that varies in time and along the longitudinal X direction, but is uniform along the Y direction. 

 

Table 1. Test-cases examined for the identification inverse problem 

 

Test-case Unknown Function Number of 

Sensors 

1  5 

2  10 

3  1740 

4  10 

5  10 

 

 

Figures 2.a-d present the results for test-case 1, involving the estimation of the time variation of a spatially 

uniform source term, obtained by using 5 sensors. Figures 2.a-d present the results obtained for the positions Y = 

0.05, 0.16, 0.27 and 0.38, respectively, and for each of these figures the results for X = 0.02, 0.22, 0.42 and 0.98 

are given. We notice in Figures 2.a-d that the accuracies of the estimated functions deteriorate for vertical 

positions closer to the interface at Y=0.05, or closer to the upper boundary at Y=0.38. On the other hand, the 

estimated functions are very little affected by the longitudinal position X, except for Y=0.05. At Y=0.05, the 

estimated functions are less accurate in regions near the surfaces at X=0 and X=1. It is interesting to notice in 

Figures 2.a-d that the differences between estimated and exact functions, in the regions where the exact function 

is underestimated, are practically identical to those differences in the regions where the exact function is 

overestimated. Therefore, the total energy input is accurately estimated, despite the fact that the source term 

functional form is not exactly recovered for some cases. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 2. Test-case 1 - Inverse problem solution obtained with 5 sensors for a uniform exact function containing 

discontinuities in time: (a) Y = 0.05, (b) Y = 0.16, (c) Y = 0.27 and (d) Y = 0.38 

 

Figures 3.a-d present the results obtained for test-case 2, involving the same exact function of Figures 2.a-

d, but the measurements of 10 sensors instead of 5. A comparison of Figures 2 and 3 shows that, as expected, the 

solution improves as the measurements of more sensors are used, since more information is available for the 

inverse analysis. Ideally, if a large number of sensors could be used, including sensors in the mold, the 

agreement between the exact and the estimated functions would be excellent even for regions distant from the 

interface, as illustrated in figure 4 (test-case 3). This figure shows the results for Y = 0.38, obtained with one 

sensor in each control-volume in the substrate and one sensor in 2/3 of the control-volumes of the mold. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

Figure 3. Test-case 2 - Inverse problem solution obtained with 10 sensors for a uniform exact function 

containing discontinuities in time: (a) Y = 0.05, (b) Y = 0.16, (c) Y = 0.27 and (d) Y = 0.38 
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Figure 4. Test-case 3 - Inverse problem solution at Y = 0.38, obtained with 1740 sensors for a uniform exact 

function containing discontinuities in time 

 

We now examine a test case involving the identification of a source term that varies along the X direction, 

but is constant in time and uniform along the Y direction. Figures 5.a-c present the results obtained for test-case 

4, involving the estimation of a source term containing sharp corners for τ = 0.0001, τ = 0.001 and τ = 0.002, 

respectively, obtained by using 10 sensors in the inverse analysis. In each of these figures the results for Y = 

0.05, 0.16, 0.27 and 0.38 are given.  These figures show that the accuracy of the inverse problem solution 

deteriorates for the positions located farther from the interface, because the measurements are less affected by 

the source term in such locations. However, as for the results shown in Figures 2-4, the total energy input was 

accurately estimated. The inverse problem solution was not affected by the time variable in this case, even for τ 

= 0.002, which is near the final time considered for the problem. 
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(a) 

 

(b) 

 

(c) 

 

Figure 5. Test-case 4 - Inverse problem solution obtained with 10 sensors for an exact function varying along the 

longitudinal direction: (a) τ = 0.0001, (b) τ = 0.001 and (c) τ = 0.002 

 

The results for test-case 5, dealing with a source term that varies in time and along the longitudinal X 

direction, but is uniform along the Y direction, are presented in Figures 6.a-c for τ = 0.0001, τ = 0.001 and τ = 

0.002, respectively. Such results were obtained with the measurements of 10 sensors. As for the case involving 

only the variation of the source term along the X direction (see Figures 5.a-c), we notice in Figures 6.a-c that the 

results for vertical positions close to the interface are more accurate. Furthermore, the results for this case 

become less accurate as the final time is approached (see figure 6.c, for τ = 0.002), when the estimated function 

is affected by the null gradient. We also examined test-cases involving the identification of source terms varying 

along the vertical Y direction. However, the exact function could not be recovered unless measurements were 
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considered available within region B as well, which was an expected result from the analysis of Savateev [25] 

regarding the solvability of an inverse identification problem similar to the present one.  

 

 

 

(a) 

 

(b) 

 

(c) 

 

Figure 6. Test-case 5 - Inverse problem solution obtained with 10 sensors for an exact function varying in time 

and along the longitudinal direction: (a) τ = 0.0001, (b) τ = 0.001 and (c) τ = 0.002 

 

7.2. Design Problem 

We now consider the inverse problem of designing the heat source term in the mold so that the 

temperature at the mold/substrate interface follows a desired history imposed by the manufacturing process. 

Based on data of reference [21], we assumed the substrate and the mold to have the following properties:  

kA = 0.19 W/mK, αA = 1.144 x 10-7 m2/s, kB = 14.8 W/mK and αB= 9.056 x 10-6 m2/s, that is, K = 77.89 and  
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Λ = 79.16. Both regions A and B were supposed to be initially at the same temperature T0A = T0B = 27 oC. The 

mold and substrate dimensions (see figure 1) were supposed to be a = 0.075 m, b = 0.001 m and (b-c) = 0.065 m 

and the duration of the hot embossing process was taken as 1400 s, that is, B = 0.013, C = 1 and τf = 0.028. The 

regions were discretized with the same number of volumes used for the inverse identification problem examined 

above, but the time increment was taken as Δτ = 10-5. Uniform interface temperature and perfect contact between 

regions A and B were assumed for the results presented hereafter.  

Figure 7 presents the desired temperature variation at the interface between regions A and B, as well the 

calculated temperatures obtained with the heat source term that resulted from the solution of the present inverse 

design problem. The agreement between desired and calculated temperatures is perfect within the graph scale, 

despite the fact that the desired temperature variation contains sharp corners. Figures 8.a-d present the resultant 

heat source term at positions Y = 0.013, 0.34, 0.67 and 1.0, respectively. Each of these figures shows the results 

for X = 0.02, 0.22, 0.42 and 0.98. We note in figures 8.a-d that the source term resultant from the design 

procedure does not vary along the X direction for such test case. In addition, periods of heating (positive source) 

and cooling (negative source) can be clearly identified, as required for the sharp increase and decrease in 

temperature at times τ = 0 and τ = 0.02, respectively (see figure 7). The obtained results reveal that the conjugate 

gradient method of function estimation is capable of providing smooth and stable solutions for the source term. 

The magnitude of the source term decreases for positions farther from the interface. This is due to the low 

sensitivity of the interface temperature with respect to the source term at these locations, similarly to the inverse 

identification problem examined above. We note that the present inverse design analysis assumes that the source 

term is continuous within mold, but for practical implementation discrete heat sources and cooling channels will 

be required. The results obtained with the conjugate gradient method of function estimation permit the selection 

of the number and position of the heat sources and cooling channels, as well as the heating power, cooling fluid 

temperature and convective heat transfer coefficient, which will result on the desired interface temperature 

variation. 
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Figure 7. Comparison between desired and calculated interface temperatures for the inverse design 

problem. 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

Figure 8. Inverse design solution: (a) Y = 0.013, (b) Y = 0.34, (c) Y = 0.67 and (d) Y = 1. 
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8. CONCLUSIONS 

This work dealt with the solution of the inverse problem of estimating the source term function in a 

rectangular region, by using as input data the temperature history at points in another contacting region. The 

conjugate gradient method of function estimation was applied for the solution of the inverse problem. Several 

test cases were examined in the paper, including the identification of functions varying only in time, only in 

space and varying simultaneously in space and time, by using simulated temperature measurements in the 

inverse analysis. In addition, results were also presented for the design of the source term for a prescribed 

interface temperature required for a manufacturing process.  

Generally, for the inverse identification problem the agreement between estimated and exact functions 

improves for those locations closer to the interface between the two regions. For the inverse design problem, the 

conjugate gradient method is capable of recovering smooth functions that result in perfect agreement between 

desired and calculated interface temperatures. 
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