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In this work, a multi-objective hybrid optimizer is presented. The optimizer uses several multi-objective
evolutionary optimization algorithms and orchestrates the application of these algorithms to multi-objective
optimization problems, using an automatic internal switching algorithm. The switching algorithm is designed to
favor those search algorithms that quickly improve the Pareto approximation and grades improvements using five
criteria. A thorough testing of the reliability and accuracy of the multi-objective hybrid optimizer against a number
of prominent multi-objective optimization algorithms and one hybrid optimizer confirmed that multi-objective

hybrid optimizer performs reliably and accurately.

I. Introduction

YBRID schemes for single-objective optimization have been

used to create robust optimization software by combining
known gradient-based and nongradient-based search algorithms
[1,2]. What distinguishes single-objective hybrid optimization
algorithms from one another is the switching methodologies
employed. One method is to use a population-based search until a
candidate optimal region in the objective space is determined. Then
the search switches automatically to a gradient-based search to
quickly close in on the optimum [1]. A second methodology is to
monitor the currently used constituent optimization algorithm to see
if it stops or fails to progress the search. Then switching is performed
to another constituent search algorithm to counter the deficiency that
the previous algorithm experienced [2,3]. A third, simpler, method is
to switch between algorithms after a predetermined number of
function evaluations, thus allowing each constituent algorithm to
work on the problem for a guaranteed number of generations/
function evaluations.

Hybrid optimization schemes for multi-objective optimization
also exist and provide performance gains. Curteanu etal. [4] created a
hybridized multi-objective optimizer by making a weighted sum of
objective function values from each of the constituent optimization
algorithms and applying a genetic algorithm to find a candidate
minimum design vector. Then sequential quadratic programming
was used to minimize this weighted sum of objective functions.
Although these types of methods are useful, they do not optimize
multiple objectives in a Pareto-optimal sense.

The multi-objective hybrid optimization (MOHO) [2,3] software
described in this work optimizes multiple objectives in a Pareto-
optimal sense. Many types of hybrid metaheuristics exist. In his
thorough taxonomy of the subject, Talbi [5] pointed out many
examples of this type of work. Using the notation developed by
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Talbi, the work presented here can be classified as an HRH(A| +
A, +--- 4+ A,) heterogeneous, global, general hybrid algorithm.
HRH stands for high-level relay hybrid, meaning that each of the
separate and complete n search algorithms run on their own in some
sequential execution (nonparallelized) scheme. Vrugt and Robinson
[6] presented an HTH(AI + A2 4 A3) (high-level-teamwork
hybrid) metaheuristic algorithm called the genetically adaptive
multiobjective (AMALGAM) method. In that algorithm, multiple
searches run in parallel and contribute a portion of each new
generation’s population. The portion that each search contributes to
the new generation is dependent on the success of the algorithm to
provide past useful solutions to the search. Vrugt and Robinson’s
results show that AMALGAM, which uses nonsorting genetic
algorithm (NSGA-II), can outperform NSGA-II on the test problems
used in the original NSGA-II paper [7].

The next section of this paper describes the constituent algorithms
and operating methodology for MOHO. This is followed by the
section that presents the description and results of some numerical
tests comparing the capabilities of MOHO with several well-known
multi-objective optimization algorithms. Results showing the load
distribution for each constituent algorithm are also shown. Finally,
discussions of the results and conclusions will be presented, together
with suggestions for future work.

II. Multi-Objective Hybrid Optimization Algorithm

The MOHO software is a high-level relay hybrid metaheuristic
algorithm. In its current version, three different evolutionary multi-
objective search algorithms are coordinated and applied to expedite
the search for a Pareto front. Like many other evolutionary
algorithms, MOHO runs in steps of population generations. At each
generation, the algorithm that is selected makes a new generation
using any or all of the information provided to it: the last generation’s
population and the latest nondominated set. Then the MOHO
algorithm combines the new generation and the latest nondominated
set to create a new nondominated set. MOHO keeps track of this
process to detect five possible improvements to the dominated set
(the Pareto approximation). If the particular search algorithm can
achieve at least two of any of the five improvements, this algorithm is
allowed to create the next generation.

If the search algorithm in question is not able to achieve at least
two improvements or it has consecutively run for the user-specified
limiting number of iterations, the latest population and non-
dominated set are passed to the next search algorithm. MOHO runs
until the maximum number of function evaluations is performed. All
optimization run parameters are specified by the user in an external
(to the software) input file.

The population in MOHO (generation 1) is initialized using
Sobol’s [8] quasi-random sequence generator. The Sobol algorithm
used in MOHO is available from netlib.org and originally appeared
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in [9]. This algorithm is preferred because it evenly distributes
populations with design vectors of over 1000 variables. When the
design variable limit of the ACM Sobol [8] algorithm is reached,
the sequence is just repeated over the remaining variable
dimensions.

MOHO was successfully run on Microsoft Windows work-
stations, Linux workstations, and Beowulf-style clusters. The
software can run in two modes: serial and parallel. In serial mode, the
optimization and objective function evaluation occur on the same
processor. In parallel mode, the optimizer runs on a processor (the
cluster server in this case) and the objective function evaluations are
then made into jobs that are submitted to the job manager of the
cluster in question. This architecture is preferred by the authors to
allow for large parallelized computational-fluid-dynamics- and
finite-element-analysis-based objective function calls that consume
significant amounts of computing time.

The remainder of this section is organized into two subsections. In
the first subsection, the constituent multi-objective search algorithms
are presented. In the second subsection, the automatic switching
algorithm is discussed in greater detail.

MOHO uses three multi-objective optimization algorithms:
strength Pareto evolutionary algorithm (SPEA-2) by Zitzler et al.
[10], a multi-objective implementation of the single-objective
particle swarm (referred to as MOPSO here) by Eberhardt et al. [11],
and a nonsorting differential evolution (NSDE) algorithm, which is a
low-level hybrid metaheuristic search combining NSGA-II by Deb
et al. [7] and differential evolution by Storn and Price [12]. Each of
these constituent search algorithms was modified, if needed, to fit
into MOHO’s system of maintaining the nondominated set and
clustering outside of the search algorithms. Also, each search
algorithm was set up to be able to accept populations and
nondominated sets in a generalized format to allow the hybridization
to run smoothly. These conditions do not adversely affect the
application of the individual search algorithms.

SPEA-2 is used in the following manner for this work:

1) A population P and a nondominated set P’ are handed to the
algorithm from the centralized part of the MOHO software.

2) The fitness is then calculated for members of P and P’.

3) Binary tournament selection is used to select the new set of
offspring from the mating pool of P + P'.

4) Two-point crossover and bit mutation are performed, but can be
changed by the user from the input to better suit a given problem.

5) The new population and the old nondominated population are
returned to the centralized portion of MOHO in which the new P’ is
generated and clustering is performed, if needed.

The SPEA-2 algorithm does not perform the merging of
populations and nondominating sets. This step is performed by
MOHO, external to the search, so that the switching algorithm can
monitor the progress of the nondominated set.

The multi-objective particle swarm algorithm used for this work is
derived from the original particle swarm optimization (PSO)
algorithm developed by Eberhardt et al.[11]. Some MOPSO
algorithms use weighted sums of PSO algorithms [13]. Although this
type of application of PSO is effective in its own right, an
optimization algorithm solving multi-objective problems in a Pareto-
optimal sense was needed. To modify PSO for multi-objective
optimization, the definitions of personal best value and global best
values were modified. In MOPSO, the personal best value for a
particle is the nondominated objective in the particle’s search history.
The global best value is the member of the current generation’s
nondominated set that is closest (in objective space) to the particle for
which the velocity is being calculated. Other than the method for
choosing the global and personal best for each particle, the rest of
MOPSO remains true to the original PSO. The MOPSO algorithm is
used in the following way for this work:

1) A population P and a nondominated set P’ are handed to the
algorithm from the centralized part of the MOHO software.

2) A velocity vector for each particle is calculated using the
technique described earlier.

3) The displacement for each particle is calculated using the
equations of motion and unit time step.

4) The new population and the old nondominated population are
returned to the centralized portion of MOHO in which the new P’ is
generated and clustering is performed, if needed.

The NSDE created for this work is a low-level combination of
NSGA-II [7] and differential evolution (DE) [12]. In particular, the
mutation operator from DE replaces the mutation operator in the
original NSGA-II. The rest of the algorithm is from NSGA-II. At the
beginning of the algorithm, the last population and the nondominated
population are used to play the roles of the offspring and parents from
the last generation, respectively. At this point, NSDE continues on
like NSGA-II until the new generation is created. Then the new
population and the old nondominated set are handed back to the
switching algorithm in MOHO.

III. Automatic Switching Among Constituent
Search Algorithms

After each generation is created and the new nondominated set is
identified, the software assigns the new nondominated set a score
from zero to five. If the new nondominated set gets a score of two or
better, the algorithm that generated the set is allowed to create the
next generation of population points. An algorithm scores a point
for each of five possible improvements that are achieved from one
generation to the next. Also, if an algorithm has run consecutively
beyond a user-specified iteration (generation) limit, the run switches
to the next constituent search algorithm determined by the
algorithm pointer array. This rule is used to allow all constituent
search algorithms an opportunity to improve the Pareto
approximation.

The switching algorithm compares the nondominated set from the
current generation to the nondominated set of the previous
generation. The comparison process consists of looking at five
desired improvements to the Pareto approximation. The improve-
ments are actually gains in five performance criteria (quality factors).
More than one quality factor is used, because of the work of Zitzler
et al. [14], in which it is shown that as opposed to the situation in a
single-objective optimization, one quality factor alone should not be
used to compare two Pareto approximations. This is why an
algorithm must score a minimum of two to continue creating new
generations of population points. This work also puts forth
definitions of compatibility and completeness for quality factors.
After the improvement metrics for the MOHO algorithm are
presented, the applicability of the compatibility and completeness
presented in Zitzler et al. will be discussed.

The main part of MOHO handles combining the new generation
with the most recent nondominated set to form the new
nondominated set by employing objective space-based clustering
as needed and calculating the improvements. The clustering is
employed only as a nondominated-set trimming tool when the
software determines that the nondominated set will grow beyond the
user-defined limit. Five improvements were developed and used in
this work, because there is a concern that adding too many Pareto-
based calculations would add considerable overhead to the software.
Now that the algorithm switching logic has been discussed, the five
improvements will be defined.

A. Improvement 1: Nondominated-Set Size Changes

For this improvement, the size of the nondominated set changes.
This change can be either the nondominated set getting larger or
smaller. The nondominated set grows in size when a new point on the
Pareto approximation front is discovered and the old nondominated
set is below the user-defined nondominated-set size limit. Shrinking
of the nondominated set occurs when a new point(s) dominates a
larger set of points from the old nondominated set. This indicates one
of two things:

1) The new point(s) significantly redefine the geometry of the
nondominated set.

2) Clustering has yet to be employed on the Pareto approximation
and multiple points were clustered around each other.
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B. Improvement 2: A Point from the New Generation Dominates

This improvement is satisfied if any population member of the new
generation dominates any member in the last generation’s
nondominated set. Any opportunity to improve the Pareto
approximation by removing a dominated point is considered an
improvement. This can be expressed as follows:

1) Set A equal to false.

2) Let m equal the size of the population and n be the size of the
nondominated set.

3) (POP; » NonDom ? True:False) VA (j=1,...,m and
k=1,...,n).

4) The second improvement is equal to A.

C. Improvement 3: Change in the Dominated Hypervolume

The hypervolume quality factor has its roots in the
hypervolume calculation presented by Deb [15]. When the first
population generation is created using Sobol’s [8] quasi-random
sequence generator, the worst objective value for each objective
from the entire population is collected into a worst-case objective
vector. This worst-case objective vector is used as the common
diagonal for all hypervolume calculations in the search: a static
datum for the entire run. The improvement is considered fulfilled
when the new generation’s contribution to the nondominated set
causes a change in the dominated hypervolume for the
nondominated set.

C. Improvement 4: Average Distance Change

In this calculation, the average Euclidian distance of all the
objective vectors of the new generation’s nondominated set is
calculated. This is basically the magnitude of the objective vectors,
because the datum is the origin of the objective space. If the measure
changes from the value of the old generation, this improvement was
met. This improvement tries to capture changes in the geometry of
the nondominated set.

E. Improvement 5: Spread of the Nondominated Set

The equation for the spread is found in a book by Deb [15] and its
origins are attributed to Zitzler et al. [16]. This improvement is
fulfilled if the new generation’s nondominated set increases the
spread over that of the last generation. The equation for the spread is
as follows:

SPRD (i — ol )’ 1
= | 2_(max i, —minf, M

m=1

Improvements 3 and 5 are common metrics for trying to determine
if one Pareto approximation set is better than another. The other
improvements are not. In fact, the other improvements would be
useless to compare final Pareto approximations made by two
different multi-objective algorithms.

This brings us back to the aforementioned work of Zitzler et al.
[14]. In that work, the definitions of compatibility and completeness
are made for the scenario of the accuracy and usefulness of
indicators that determine which of two Pareto approximations, A or
B, is better. In short, compatibility is the capability of a comparison
method to accurately yield a true result when one approximation is
better than another approximation, with respect to the comparison
metric. A metric having only the compatibility property has a price:
there can be sets that are better than others and the comparison
method will yield a false result. Comparison methods that are
complete yield a true result for all approximations that are
compared. Obviously, the choice of quality indicators is important
to create comparisons that have both the properties of completeness
and compatibility.

In Zitzler et al. [14], the two Pareto approximations are made by
two different optimization algorithms. Each algorithm comes to its
own Pareto approximation independently from the other. In the case
of the switching criteria used in this work, this scenario does not

apply. At a given generation, the new population is combined with
the last generation’s nondominated set. A new nondominated set is
determined from this union. If the size of the resulting nondominated
set surpasses the user-set limit, clustering is applied to the set until the
size of the set is acceptable. Using this methodology for progressing
the Pareto approximation yields three possible outcomes for the new
nondominated set, with implications about the desired improve-
ments.

The first possibility is that the new generation provides no
contribution to the nondominated set. Here, the algorithm detects no
improvements. The old nondominated set is the new one.

The second possibility is that some of the new generation
population becomes a part of the new nondominated set. In this
situation, it is certain that the switching algorithm will detect at least
one of the improvements. There is no chance that the newest
nondominated set and the last one are incomparable, because a part of
the old set still exists in the new set.

In the third possibility, members of the new generation (some or
all) form a completely new nondominated set and retire the set from
the last generation. Here, we are certain that more than one
improvement will be detected. Regardless of which of the three
situations occurs, detection of an improvement always means that
the nondominated set has changed in a favorable manner, because
detecting an improvement is not the method by which the Pareto
approximation is developed. The Pareto approximation is
developed using dominance calculations and objective-based
clustering [15]. The improvements are used to benchmark how
many of five aspects of the Pareto approximation change from
generation to generation.

IV. Numerical Experiments

MOHO was tested to evaluate its capability by running it on test
problems from three previously published works. The first work
examined is the well-known multi-objective optimization
comparison paper by Zitzler et al. [16] (referred to as ZDT from
this point forward). A copy of the original data from the ZDT paper
can be found on the Web site cited in that paper. In the present work,
we will present this data again and inject the results from our MOHO
into this original comparison. The second and third works that
MOHO will be compared with are related to each other. In the
original NSGA-II paper, Deb et al. [7] revisited some of the ZDT
problems, presented results for some other unconstrained problems,
and used NSGA-II to solve some constrained problems. In the
present work, our MOHO will be used to solve the unconstrained
problems of the original NSGA-II paper. Results from that paper will
be compared with MOHO results. Finally, the paper by Vrugt and
Robinson [6] compared their AMALGAM algorithm to the
performance of NSGA-II for some unconstrained multi-objective
optimization test problems. These results will also be included in this
work and compared with results from MOHO using the same
experimental conditions.

In the ZDT work, the SPEA, NSGA, vector-evaluated genetic
algorithm, niched Pareto genetic algorithm (NPGA), Hajela and
Lin’s evolutionary algorithm, Fonseca and Fleming’s evolutionary
algorithm, and a single-objective evolutionary algorithm were
studied. The algorithms were applied to six multi-objective problems
designed by those authors specifically for that work. The six
problems from the ZDT paper [15] are summarized in Egs. (2-7). All
test problems represent two-objective optimizations in which both
objectives are to be minimized.

ZDT1:

fi=x

g=1+9.zm—1
i=2
(@)

where the number of variables is m = 30 and x; € [0, 1], and the true
Pareto front is found by setting g = 1.
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g:1+9.i i h:l—(%)z fa=h-g
3)

where the number of variables is m = 30 and x; € [0, 1], and the true
Pareto front is found by setting g = 1.
ZDT3:

m

g=1+9'zmx—il

i=2

h=1- \/]Tl— (ﬁ) -sin(107f,)
8 8

where the number of variables is m = 30 and x; € [0, 1], and the true
Pareto front is found by setting g = 1.

fi=x
)
fa=h-g

ZDT4:
fi=x;  g=1+10-(m—1)+ > (x? - 10cos(4mx;))
i=2
(5)
h=1-— ﬁ fa=h-g
g

where the number of variablesis m = 10, x, € [0, 1],andx; € [-5, 5]
(where i # 1), and the true Pareto front is found by setting ¢ = 1.
ZDTS5:

m 1
fi=T+u)  g=) vulx) h =

i=2 ‘ ©)
v(u(x))) = {%—{-u(xl) g Zg';ii- fo=h-g

where the number of variables is m = 11, x; € [0, 1] for 30-bit
resolution, and x; € [0, 1] for 5-bit resolution (where i # 1), the true
Pareto front is found by setting g = 10, and u(x;) is the number of
ones in the bit vector representation of x;.

35

Table 1 Run parameters for ZDT comparison

Number of generations 250
Population size 100
Crossover rate 0.8
Mutation rate 0.01
ZDTé6:
) m 5\ 025
f1=1—exp(—4x,)sin®(6mx;) g=1+9- (Z’;zl’)
m—
@)

) v

where the number of variables is m = 10 and x; € [0, 1], and the true
Pareto front is found by setting g = 1.

Table 1 shows the run conditions for MOHO. All seven algorithms
were compared in two ways. First, a plot of the nondominated sets for
each algorithm was made. To allow for performance fluctuations
caused by the random number generators driving the initial
population and genetic operators, all algorithms were run 30 times on
each of the six problems. The nondominated plot is generated by
making a union of the nondominated sets for the first five runs of each
algorithm on each problem. The nondominated set of the unions is
then plotted. In the figures presented here, the results for MOHO are
injected into the plot results from ZDT and the random number data
from the original plots are removed to provide a clearer view of the
performances of the search algorithms. Figures 1-6 are the plots for
ZDT test problems 1 through 6, respectively, using the original ZDT
paper data and MOHO data run for this work.

From these figures, it is evident that our MOHO algorithm
performs very well on almost all of the ZDT test cases as far as
accuracy is concerned. In addition to being an accurate evolutionary
search algorithm, these figures demonstrate that MOHO is also a
reliable algorithm that consistently gives good results.

The second comparison mechanism is the “cover” function
proposed in the ZDT work. The cover function evaluates what
fraction of the nondominated set of algorithm A is either equal to or
weakly dominates the nondominated set of algorithm B. The formula
for the cover functions, as shown in the ZDT work, is

ZDT1

[ |

I |
Optimization Algorithm
—— Analytic
++ SPEA

BE:-I L= =

% NSGA 1
© O Hybrid
8 FFGA
HHE HLGA
&8 NPGA 1

‘@ of

# M SOEA
<O VEGA

0 0.1 0.2 0.3 0.4

0.6 0.7 0.8 0.9 1

Fig. 1 Results for test problem 1 from ZDT with MOHO results added (circles).
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ZDT 2
35 l l
Optimiztation Algorithm
® S
=+ SPEA
| % % NSGA I
© O Hybrid
! 36 FFGA
l. B8 HLGA
25 HE |
18 SOEA
J 5 EETEPRY SV S —T
................ 3-......
E E o,
| o

0 0.1 02 0.3 04

0.5

Fy

0.6 0.7 0.8 0.9 1

Fig. 2 Results for test problem 2 from ZDT with MOHO results added (circles).

ZDT3

I 1

Optimization Algorithm
— Analytic

++ SPEA
¥ % NSGA
©O Hybrid
18 FFGA

B8 HLGA
&8 NPGA
M SOEA
© O VEGA

[\

05

228 rs0mmnnly.

0 0.1 0.2 0.3 04

05

Fy

0.6 0.7 0.8 0.9 1

Fig. 3 Results for test problem 3 from ZDT with MOHO results added (circles).

[{a” € B;3a’ € A: a’<da"}|

C(A.B) = B

®)

Of note is the fact that C(A, B) is not necessarily equal to C(B, A).

Figure 7 shows the results for the cover function analysis for all
test problems and optimization algorithms compared. In this
analysis, all 30 runs of each algorithm are used. The reference and
random results were removed, because the purpose of this work is not
to show the effectiveness of evolutionary algorithms in general. Each
cell in Fig. 7 is made by treating the algorithms in the row as

algorithm A in Eq. (8). Each of the 30 Pareto approximations for
algorithm A is compared with the algorithm B (column). So for each
Pareto approximation of algorithm A, comparisons with 30
algorithm B Pareto sets are performed. This means that 30 cover
function values are generated. Each column in the box plot (Fig. 7)
represents the results for one of the ZDT problems. So each column
in the box plot represents a total of 900 Pareto approximation set
comparisons.

Using the data generated from solving the ZDT test problems, it
was possible to perform another analysis of the MOHO algorithm’s
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ZDT4

Optimization Algorithm
- Analytic
~++ SPEA
¥ % NSGA

50

40

© O Hybrid
18 FFGA
80 HLGA
&8 NPGA
M SOEA

' 30

<O VEGA

20

0 0.1 0.2 03 04

o+
o+

Fig. 4 Results for test problem 4 from ZDT with MOHO results added (circles).

ZDT5

25—

20

I

Optimization Algorithm
—— Analytic
-++ SPEA
¥ % NSGA
© O Hybrid ]

3B FFGA
B @ HLGA
R NPGA
M SOEA
< © VEGA

35

Fig. 5 Results for test problem 5 from ZDT with MOHO results added (circles).

performance. Figure 8 shows the average percent of the total number
of function evaluations used by each of the three constituent search
algorithms in MOHO when applied to a given ZDT test problem.
Figure 8 takes into account all 30 runs used for the ZDT data
comparison.

In the original NSGA-II paper, Deb et al. [7] presented two
measures for evaluating the performance of multi-objective
optimization algorithms. The gamma parameter measures the
average Euclidian distance of each point in an algorithm’s Pareto
approximation from the actual Pareto front of the problem. This

parameter is designed to give an idea of the accuracy of an
algorithm’s Pareto approximation.

The second measure for evaluating the performance is the
diversity metric A, which measures the spread and uniformity of the
Pareto approximation. The equation for this measure is given in
Eg. (9):

_dtdi+ 1 |di — davel
dy+d;+ (N = Ddavge

(C)]
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ZDT6
6.5 — I T I
IE; Optimization Algorithm
6 o —— Analytic ]
: ++ SPEA
55 . ¥ % NSGA
== I 3} OO Hybrid
, ol 310 FFGA
- S8 HLGA
m &E NPGA
45 (= =8 SOEA
o ©O VEGA
B
23 R R Ay IRk RhEit REREd RECEEET ECREERY EEEEEER ,..&.B
35 —ﬂ ....................
R Il SRRy IS (ERIEE ELECIP SEPPORE HOUUPSS RN OO [:: EEEETPY PEPPPP POPRO S M [::]
3

0.25 0.3 0.35 04 0.45 0.5 0.55

0.65 0.7 0.75 0.8 0.85 0.9 0.95
F1

Fig. 6 Results for test problem 6 from ZDT with MOHO results added (circles).

FFGA

-

LNl

VEGA

Fig. 7 Cover function analysis from ZDT with MOHO data inserted
into the original analysis. As in the original analysis the value at the
bottom of the graph is 0 and the value is 1 at the top. The black boxes in
the box plots show the average cover value for all 30 runs. The shaded
boxes and the whiskers display the one-standard-deviation spread and
two-standard-deviation spreads, respectively, (i.e., +0.5 standard
deviations and 1 standard deviation). The plots are read left to right:
the leftmost box shows the results for ZDT1 and rightmost box shows the
results for ZDT6.

Deb et al. [7] used this measure to analyze the Pareto
approximations for two-objective optimization problems. To use this
measure, the Pareto approximation to be analyzed must be sorted by
the first objective in ascending order. The parameter d, is the
Euclidian distance between the first Pareto approximation point and
the true Pareto front point with the minimum first objective value. In
kind, the parameter d, is the Euclidian distance from the last Pareto

100%
90‘%' —é %

80%

70% -

ENSDE
HSPEA
PSO
EINIT

60% -

50%

40% -

30%

20% -

10%

0% - -
ZDT1 ZDT2 ZDT3 DT 4 D75 ZDT 6
Fig. 8 Average percent of total execution time that each constituent
optimization algorithm was used in MOHO for each of the six ZDT test
problems. The average is taken over 30 runs used in the ZDT
comparison.

T T

approximation point to the true Pareto point with the largest first
objective value.

A “perfect” Pareto approximation would have a A value of zero.
This would mean that the first and last Pareto approximation points
lie on the end points of the true Pareto front, d, = d; = 0 and that
Pareto approximation is perfectly distributed so that all d; = dvg.

Deb et al. [7] used these measures to analyze NSGA-II's
performance on the ZDT1, ZDT2, ZDT3, ZDT4, and ZDT6 test
problems previously defined. The performance of NSGA-II on the
well-known Fonseca and Fleming [17], Kursawe [18], Poloni and
Pediroda [19], and Schaffer [20] two-objective test problems was
also analyzed in that work. These problems are defined in Eqs. (10—

13).
Fonesca:
m ; f
fi=x g:1+9';m h=1-\" fo=hg
(10)
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where the variable range is m =3 and x € [—4, 4], and the ideal
optima are x1 = x2 = x3 and [-(1/+/3), (1//3)].

Kursawe:
(—10 exp(—O.Z,/}cl2 + x?+l))
i=1

£2= (1x°* + 5sinx})
i=1

n—1

f1=Z

L)

where the variable range is m = 3 and x € [—5, 5], and the ideal
optima are found using MOHO for 2 x 10° function evaluations.
Poloni:

fi=[0+ (A, —B) + (A, — By)]
f2=10 +3)° + (x + 1)7]

A; =05sinl —2cos1 +sin2—1.5cos2

(12)
A, =1.5sinl —cos1 4 2sin2 —0.5cos2

B, =0.5sinx; —2cosx; + sinx, — 1.5cos x,

B, =1.5sinx; —cosx; + 2sinx, —0.5cos x,

where the variable range is m =2 and x € [—, 7] and the ideal
optima are found using MOHO for 2 x 10° function evaluations.
Schaffer:

f1=x2 f2=(X—2)2 (13)

where the variable range is x € [—10°, 10’] and the ideal optima are
x €10,2].

In Table 2, the results for the work by Deb et al. [7] are shown
alongside MOHO results for the problems from that paper. The same
conditions were used: population size of 100 processed through 250
generations, for a total of 25,000 function evaluations.

As mentioned earlier, Vrugt and Robinson [6] created a high-
level-teamwork hybrid optimization algorithm named AMALGAM
that works by running all of the constituent search algorithms

simultaneously, thus requiring a multiprocessor. Notice that this is
conceptually different from our MOHO, in which the constituent
search algorithms are run sequentially, thus requiring only one
processor. Each constituent search algorithm in AMALGAM is
preassigned a number of new offspring to create. The offspring are
then combined with the old population and the fast nondominated
sorting from NSGA-II is applied to the combined population. In the
work introducing AMALGAM, the algorithm was compared with
NSGA-II (real-coded) using the gamma and delta metrics defined in
the work by Deb etal. [7]. An analysis very similar to the one found in
Deb et al. was performed, except that the algorithms were run for 150
generations, or 15,000 function evaluations. Table 3 shows the data
from the AMALGAM compared with NSGA-II (real-coded). Added
to this table are our MOHO results for the same test conditions used
by Vrugt and Robinson [6].

V. Future Work

During our next investigation, the software will be tested against
more test problems and some real-world design optimization
problems. From this work, it became apparent that more algorithm
measurement methodologies need to be investigated. This will be
necessary to avoid the discrepancies with the NSGA-II results found
in Tables 2 and 3. It is apparent that a researcher-prepared, well-
distributed, ideal Pareto front can be interpreted to mean many
things.

Two sets of improvements will be made to the software. First,
another constituent evolutionary search algorithm will be added to
our MOHO. Careful consideration will be made to insure that the
new search algorithm’s principle of operation differs as much as
possible from the three constituent search algorithms already used in
MOHO. This will be done in an attempt to broaden the types of
objective functions that the hybrid algorithm will be able to handle
efficiently. The final planned improvement will deal with the
clustering algorithm. An attempt to normalize the clustering distance
will be made so that Pareto fronts covering many orders of magnitude
will not affect the searches.

Table 2 Performance comparison of NSGA-II and MOHO for 25,000 function evaluations

NSGA-II (real) [3] NSGA-II (binary) [5] MOHO
Problem Name Gamma Delta Gamma Delta Gamma Delta
Fonseca and Fleming [17] 0.0019 0.38 0.0025 0.45 0.0057 0.33
Kursawe [18] 0.0290 0.41 0.0290 0.40 0.0348 0.37
Poloni and Pediroda [19] 0.0155 0.45 0.0170 0.50 0.0501 0.88
Schaffer [20] 0.0034 0.48 0.0028 0.44 0.0038 0.34
ZDT1 0.0335 0.39 0.0009 0.46 0.0177 0.35
ZDT2 0.0724 0.43 0.0009 0.44 0.0130 0.34
7ZDT3 0.1145 0.73 0.0434 0.58 0.6348 0.59
7ZDT4 0.5130 0.70 3.2276 0.48 10.07 0.97
7ZDT6 0.2966 0.67 7.8068 0.64 0.1696 0.95

Table 3 NSGA-II, AMALGAM, and MOHO performance comparison for 15,000 function evaluations

NSGA-II (real) [3] AMALGAM [3] MOHO
Problem name Gamma Delta Gamma Delta Gamma Delta
Fonseca and Fleming [17] 0.0026 0.38 0.0017 0.33 0.006 0.33
Kursawe [18] 0.0108 0.48 0.0099 0.47 0.037 0.37
Schaffer [20] 0.0036 0.49 0.0032 0.37 0.004 0.34
ZDT1 0.0053 0.34 0.0011 0.33 0.0158 0.35
ZDT2 0.0068 0.36 0.0009 0.35 0.0128 0.34
ZDT3 0.0027 0.56 0.0010 0.55 0.600 0.62
ZDT4 0.0523 0.73 0.0022 0.32 14.6 0.99
7ZDT6 0.0504 0.53 0.0011 0.40 0.289 1.00
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VI. Conclusions

For the first results comparing MOHO with the evolutionary
multi-objective optimization algorithms from the ZDT work, it was
shown that MOHO can outperform the classic evolutionary
algorithms for all test problems except ZDTS5. In their work, Zitzler
et al. [16] point out that the test problem ZDTS, as originally stated,
did not work out for the purposes of their numerical testing and it
changed the target Pareto from the original problem definition, as
shown in Table 1 and Fig. 5 of this work. Difficulties surrounding the
ZDTS test case are not trivial, as was confirmed by Deb et al. [7], who
tested all the ZDT test problems except ZDTS.

In the second set, composed of four test cases (Table 2), MOHO’s
performance was comparable with the real-coded NSGA-II, except
in the case of ZDT4. Figure 4 shows that ZDT4 has an almost vertical
portion of the nondominated front at which f| goes to its minimum
value. This portion of the front has an abrupt change in the value of
the second objective. It is difficult to distribute ideal Pareto front
points in this portion of the front. This accounts for the large gamma
value for MOHO in ZDT4. The same phenomenon occurs in ZDT6,
in which it affected the gamma value for the binary-coded NSGA-II.

Finally, when comparing MOHO with the method of Vrugt and
Robinson [6], MOHO does not seem to perform as well as the
AMALGAM algorithm or NSGA-II. These results are for 150
generations, or 15,000 function evaluations. What is curious is that
the results show a tenfold improvement of performance in gamma
when using NSGA-II on the ZDT problems, while using 40% fewer
function evaluations. The only explanation for these results is that the
methodology to prepare ideal Pareto fronts in the work of Vrugt and
Robinson [6] was completely different from the methodology used
by Deb et al. [7] and in this work.
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