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Abstract

Thermo-mechanical-physical properties of bulk metallic glasses (BMGs)
depend strongly on the concentrations of each of the chemical elements in
a given alloy. The proposed methodology for simultaneously optimizing these
multiple properties by accurately determining proper concentrations of each of
the alloying elements is based on the use of computational algorithms rather than
on traditional experimentation, expert experience and intuition. Specifically,
the proposed BMG design method combines an advanced stochastic multi-
objective evolutionary optimization algorithm based on self-adapting response
surface methodology and an existing database of experimentally evaluated
BMG properties. During the iterative computational design procedure,
a relatively small number of new BMGs need to be manufactured and
experimentally evaluated for their properties in order to continuously verify
the accuracy of the entire design methodology. Concentrations of the most
important alloying elements can be predicted so that new BMGs have multiple
properties optimized in a Pareto sense. This design concept was verified for
superalloys using strictly experimental data. Thus, the key innovation here lies
in arriving at the BMG compositions which will have the highest glass forming
ability by utilizing an advanced multi-objective optimization algorithm while
requiring a minimum number of BMGs to be manufactured and tested in order
to verify the predicted performance of the predicted BMG compositions.

1. Introduction

Metallic glasses are very special alloys whose alloying components are in an amorphous glassy
state rather than forming a standard crystalline structure. Thus, metallic glasses have no grain
structure implying no grain boundaries and no dislocations and stacking faults. They are
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several times stronger than steel and considerably harder and more elastic [1]. Duwez and
co-workers [2], when working on rapid solidification of Au—Si alloys in the 1960s, obtained the
first metallic glasses by using extremely high cooling rates (~10° Ks~!). However, extremely
high cooling rates are possible to implement only if heat transfer during cooling is basically one-
dimensional as is the case when creating melt-spun ribbons of thickness up to approximately
100 um. Since most of the industrial cast products are larger and truly three-dimensional,
the challenge is to make these materials in the bulk form which necessitates a significantly
lower cooling rate at the walls of a casting mold. Otherwise, extremely high cooling rates
would create extremely high thermal stresses in the cast object resulting in multiple fractures.
Drehman et al [3] in 1982 found that almost 5 mm thick castings can be made from the metallic
glass of composition Pd4gNiggPyo. Kui er al [4] were able to use suitable cooling and increase
the thickness of the metallic glass to more than 10 mm. Cooling rates of the newer alloys are
from 100 to 1 Ks~! and the possible thickness of these newer metallic glasses increased from
micrometers to a few centimeters. This gave rise to the possibility that metallic glasses can
be manufactured in the bulk form if the alloying elements and their concentrations are chosen
appropriately.

Due to the pioneering and systematic work of Inoue et al [4,5] in Japan since 1988, a large
number of compositions have been discovered in the La, Zr, Pd, Mg, Fe based systems. Based
on these results, Inoue had proposed three criteria for bulk metallic glass (BMG) formation.

1. Multi-component systems with more than three components. As the number of
components increases, the number of possible phases that can nucleate from the melt
increases. A somewhat naive explanation was given that there is confusion in the melt as
to which phase will nucleate first thus causing the melt to transform into glass. This is
known as the confusion principle.

2. The difference between the radii of the atoms of the components should be more than
15%. This would ensure that crystalline solutions do not form.

3. Heat of mixing between the components should be negative. This would lead to
intermetallic compound formation rather than cluster formation.

The glass forming ability (GFA) of an alloy melt can be judged by the difficulty in achieving
the lowest possible cooling rate, R, at which the glass will still form. If critical cooling rates
are lower, this means that thicker sections can be cast into glass, which implies a higher GFA.

Turnbull [3] suggested that a high reduced glass transition temperature, T, defined as
Ty
T
where T is the glass transition at temperature and Tj, is the melting (i.e. liquidus) temperature,
is a good measure of GFA (figure 1). When a BMG is heated, it first undergoes structural
relaxation where there is some rearrangement in atomic positions. Then, it undergoes a glass
transition at temperature Ty, where its viscosity reduces drastically and it enters the super-
cooled liquid region. At a slightly higher temperature, 7, crystallization occurs by nucleation
and growth of crystals.

Inoue et al [4,5] have shown that the width of the super-cooled liquid region given by

AT, =T, — T, (@)

T = —, ey

is also a good measure of GFA. The larger this temperature range of the super-cooled melt
region, the higher the GFA. Figure 1 shows the relation between the cooling rate, R., and the
two GFA parameters. It can be seen that systems having lower R, have larger values for T,
and AT,, but the scatter is less for AT,. Inoue’s criterion is widely accepted by the BMG
research community.
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Figure 1. (a) Relationship between Turnbull’s GFA criterion and critical cooling rate, R.
(b) Relationship between Inoue’s GFA criterion and critical cooling rate, R..
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Figure 2. Variation of critical cooling rate, R, and critical section thickness, Z, as functions of
Lu and Liu’s GFA parameter, y.

Recently, Fan et al [6] presented a novel formulation where an overestimation of GFA
using T;, can be corrected by introducing a new dimensionless ¢ criterion, expressed by

AT\

¢ =Ty ) 3
Here, exponent a = 0143. Their published results of R. versus ¢ are superior to those of R

versus Tr,.

Lu and Liu [7] have proposed yet another criterion for GFA defined as
T

=—* 4
14 To+Th “

where 7j is the liquidus temperature. Figure 2 shows the variation of R. with y. It can be seen
that by increasing the value of y, a lower cooling rate, R., is possible and consequently larger
objects can be cast as BMGs [1].

There is also a growing need to minimize the number of highly expensive alloying
components or their complete elimination by introducing some other alloying components [8]
that could offer comparable multiple thermo-physical properties of the resulting BMGs.

Thus, the BMG design could have several simultaneous objectives. For example [1, 8—13]:

e maximize glass transition temperature, T,
e maximize liquidus temperature, 7},
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maximize reduced glass transition temperature T, = T,/ Tj,
maximize the width of the super-cooled liquid region AT, = T, — Ty,
maximize hardness,

maximize Young’s modulus,

maximize density, and

minimize cost of the raw material.

It should be immediately pointed out that brute-force optimization of thermo-mechanical
properties of BMGs by varying chemical concentrations of N alloying elements is unfeasible.
This approach to designing new classes of BMGs, that has not been attempted before, would
involve creating an N-dimensional matrix of alloy compositions and then interpolating and
searching for the extreme points in such a matrix. If the concentration of each alloying element
is varied within its specified range, this variation could be approximated by, for instance, five
different concentrations for each alloying element. This means that in the case of a BMG
with seven alloying elements, this ‘optimization’ would require determining properties of
57 = 78 125 BMGs each having a different chemical composition. This is obviously unrealistic
and should be replaced by a more economical mathematical optimization in order to reduce
the number of BMG alloy candidates by orders of magnitude.

In order to reduce the number of experimentally evaluated alloys significantly, there has
been a strong effort to develop and use several very complex mathematical models that are based
on non-equilibrium thermodynamics of solids, thus minimizing the need for manufacturing
and experimental evaluation of the actual alloy samples. However, the exclusive use of this
strictly computational approach based on artificial neural networks (ANNs) alone [14] has been
shown to have its own limitations concerning reliability and versatility as frankly demonstrated
by Bhadeshia and Sourmail [15]. This is because ANNSs are efficient and relatively accurate
interpolating (‘data mining’) algorithms for multi-parameter functions, but they are not efficient
and accurate search algorithms and they are definitely not reliable extrapolation algorithms.
That is, the use of ANNSs alone is not reliable for an ‘out of the box’ search outside of an
initial experimental data set and therefore cannot be used for designing truly new BMGs with
possibly significantly better multiple properties than any of the BMGs that might belong in the
initial data set. Moreover, ANN requires a relatively large number of BMGs having different
chemical concentrations to be manufactured and tested in order to provide a sufficiently reliable
training set. Recently, an interesting effort using evolutionary optimization based on genetic
algorithms [16] was made for designing new general purpose alloys, but the number of alloys
that needed to be manufactured and experimentally evaluated for this approach is still too high.

Therefore, it is important to understand a need for mathematically sound multi-objective
optimization algorithms [17] capable of confidently searching outside a given initial database
and finding multiple options for the optimal chemical concentrations. However, the objective
of this paper is not to educate classical materials scientists about the fine points of multi-
objective evolutionary optimization algorithms, rather to provide a brief description of their
main features and to demonstrate to readers the power and proven potential of using these
advanced computational tools in designing new generations of alloys.

2. Multi-objective optimization algorithm

We propose a novel methodology for predicting the concentration of each of the important
alloying elements in BMGs so that the new BMGs will have improved GFA and thermal
stability. Specifically, we are currently concentrating on simultaneously maximizing T, Ti
and T,/ T; and minimizing density of Zr-based BMGs [18,19]. The proposed optimization
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method is based on combining experimentally obtained multiple properties of the BMGs and
a computational optimization algorithm [20-24] rather than on traditional experimentation
alone, expert experience and intuition.

Specifically, the proposed BMG design method combines an advanced stochastic multi-
objective evolutionary optimization algorithm based on self-organizing graph theory and a
self-adapting response surface methodology [22, 25]. During the iterative computational
design procedure, a small set of new BMG alloys is periodically predicted, manufactured
and experimentally evaluated for their properties in order to continuously verify the accuracy
of the entire design methodology [20-24]. The proposed BMG alloy design optimization
method is thus experimentally verified. It minimizes the need for costly and time-consuming
experimental evaluations of new BMG alloys and is capable of exploring BMG concentrations
that are outside the initial data set thus providing a more economical and robust design tool
than when using ANN or GA algorithms alone.

Specifically, the multi-objective optimization problem [17] maximizes not one objective
function (Tiiq, Ty, etc) of design variables (chemical concentrations of each of the alloying
elements in a given BMG), but simultaneously a number of often conflicting objectives
(maximizing Ty, Ty and T,/ T;, while minimizing density). These objectives thus form a
vector F'(X) of n objective functions. The goal is to maximize this vector by simultaneously
maximizing each of its components, that is,

max F; (X) fori=1,...,n ®)
subject to a vector of inequality constraints

g;(X) <0 forj=1,...,m (6)
and a vector of equality constraints

hy(X) =0 forg=1,...,k. )

The result of such a multi-objective optimization process is, in general, not unique. In the
case of BMGs, this means that there will be possibly more than one alloy concentration
that will satisfy the imposed constraints while having each of the optimized properties above
their respective desired threshold values. These optimized BMG concentrations are said to
form a Pareto front [17] composed of the ‘efficient non-dominated’ solutions, that is, the
BMG concentrations for which it is not possible to improve any individual objective without
deteriorating the values of at least some of the remaining objectives.

Classical gradient-based optimization algorithms [26, 27] are capable, under strict
continuity and derivability hypotheses, of finding the optimal value only in the case of a single
objective.. Unfortunately, such problems, as a rule, are difficult to formalize at the initial stage,
since the user does not know initially what values of some objectives could be reached and how
the remaining objectives will vary. That is, the user has very little if any a priori knowledge
of objective functions’ space topology which is, in most cases, non-smooth. Furthermore, this
approach is computationally very intensive and fails in situations where the Pareto front has
discontinuities.

The least imaginative approach to BMG design could be to perform a general multi-
objective optimization of the material properties. This strategy is the most accurate, but it
requires an extremely large number of BMGs to be manufactured and tested in order to create
an acceptably large data set. A hybrid multi-objective optimization concept [28] can accelerate
the convergence to the Pareto front, but its main benefit is robustness, not speed, of the entire
iterative approach to the Pareto front.

Another approach could involve formulation of a single optimization objective that may
be the convolution of individual objectives with different weight coefficients assigned to each
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of them thus creating a utility function [29]. However, the result of this strategy is only a single
point on the Pareto front of optimal solutions (BMG concentrations). To obtain other points
on the Pareto front, this entire optimization process would have to be repeated by choosing
different sets of weight coefficients for the individual objective functions. Therefore, this
approach was not used in this work. Instead, we used a true multi-objective optimization
approach where each of the three objectives was extremized simultaneously [17] without any
preferential weights among the objectives.

When performing multi-objective optimizations involving many simultaneous and often
conflicting objectives and many design variables (e.g. concentrations of each of the alloying
elements) and where each objective function evaluation (e.g. BMG alloy manufacturing and
experimental evaluation of its multiple properties) is very costly, the only practical method of
reducing the overall computing effort is to use metamodels or lower fidelity models. The most
popular such method is to perform analytical fits of the available high fidelity (experimental)
data to create multi-dimensional response surfaces (hyper-surfaces) [30]. Conceptually, this
represents a multi-dimensional extension of the ‘one-dimensional curve fitting’ method or an
extension of the well-known ‘one-parameter look-up tables’ method used by scientists and
engineers in the past. Each of the objectives requires the creation of such a response surface
and the dimensionality of each such response surface equals the number of the design variables
(alloying elements in a BMG alloy).

Thus, in order to develop and realize the most effective optimization strategies, we have
to perform a thorough preliminary search for the classes of base functions that will be able to
construct the most accurate response surface models requiring the minimum number of high
fidelity data (experimental data for BMGs each having different chemical concentrations).
However, the number of experiments that is necessary for true multi-objective optimization
problem solutions depends not only on the dimensionality of the problem (the number of
alloying chemical elements in a BMG). It also depends, to a considerable degree, on the
topologies of the objective functions. This is why any predictions concerning the necessary
number of trial points (different BMG alloy concentrations) in the initial plan of experiment
have a rather relative nature.

2.1. Conceptual features of IOSO optimization algorithm

Because of its proven robustness, computing speed and versatility we have decided to use
the multi-objective constrained indirect optimization based upon self-organization (IOSO)
algorithm [18-24, 25]. This multi-objective optimization algorithm allows for concentrations
of the alloying elements to be optimized so that several of the BMG alloy properties
(maximizing T, Ti and T,/ Ti and minimizing density) are simultaneously extremized, while
satisfying a number of equality and inequality constraints (minimum and maximum specified
concentrations for each of the alloying elements).

IOSO is a semi-stochastic multi-objective optimization algorithm incorporating certain
aspects of a selective search on a continuously updated multi-dimensional response surface
[18-25,30]. Evaluations of objective functions (T, T, T/ Ti and density) in this particular
project were obtained utilizing experimental testing and verification of the BMG samples in
order to determine optimum concentrations of each of the alloying elements.

The main benefits of the IOSO algorithm are its outstanding reliability in avoiding
local minimums, its computational speed and a significantly reduced number of BMGs that
need to be manufactured and experimentally evaluated as compared with more traditional
gradient-based and genetic optimization algorithms. Also, the self-adapting multi-dimensional
response surface formulation used by IOSO allows for the incorporation of realistic non-smooth
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variations of experimentally obtained data and allows for accurate interpolation of such data
using an efficient and accurate modified ANN algorithm.

Each iteration of the IOSO algorithm consists of two steps. The first step is the
creation of approximations of the objective functions. Each iteration in this step represents
a decomposition of the initial approximation functions into sets of simple approximation
functions so that the final response surface functions are multi-level graphs. The second step
is the optimization of coefficients in these approximation functions in order to fit the response
surface as accurately as possible through the available high fidelity (experimental) data points.

To further minimize the computing time, during each iteration of IOSO, the optimization
of the response surface function is performed only within the current search area. This
step is followed by a direct call to an actual experimental evaluation for the obtained BMG
concentration. During the IOSO operation, the information concerning the behavior of the
objective function in the vicinity of the extremum is stored, and the response surface function
is made more accurate only for this search area. While proceeding from one iteration to
the next, the following steps are carried out: modification of the experiment plan, adaptive
selection of current extremum search area, choice of the response surface function type
(global or middle-range), transformation of the response surface function, modification of
both parameters and structure of the optimization algorithms and, if necessary, selection of
new promising points (optimized BMG concentrations). Thus, during each IOSO iteration, a
series of response surface approximation functions for a particular objective of optimization
is built. These functions differ from each other according to both structure and definition
range. The subsequent optimization of these approximation functions, while accounting for
uncertainties, allows us to determine a set of vectors of optimized variables (concentrations of
alloying elements in the optimized BMGs). This approach allows for corrective updates of the
structure and the parameters of the response surface approximation for each of the objective
functions.

The distinctive feature of this multi-objective design optimization approach is a low
number of trial points (BMGs that need to be manufactured and experimentally tested) to
initialize the algorithm and that need to be created subsequently during each iteration with the
10SO optimization algorithm.

2.2. Proof-of-concept BMG design optimization results

The algorithms and approaches that we propose have a universal nature and are applicable
to any complex engineering system. An example of our recently published application of
IO0SO optimization to design of Ni-based steel superalloys [20-24] is depicted in figure 3. It
demonstrates the ability of the proposed methodology to immediately, in the first iteration,
create the superalloys with properties that are superior to any of the alloys in the original
experimental data set.

Our recent publications [18, 19] represent preliminary attempts to create a new generation
of BMGs with improved multiple properties. Because of the unavailability of a large
experimental data set for BMGs manufactured in a consistent manner, for the purpose of
this study, we have decided to create such an experimental data set by combining data from
several tables in the publications of Yi Li [31,32]. Densities of all BMGs were computed by
summing the products of concentrations of the alloying elements and their respective densities
(at room temperature) given in table 1.

Those BMGs for which experimental data were incomplete or inconsistent in these
publications were not taken into account. The final version of the initial population of
experimentally evaluated BMGs had 53 alloys (table 2). In this work, we required that
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Figure 3. Experimental confirmation of the maximum stress at 20°C and time-to-rupture at
975 °C for the initial data set of 120 Ni-base steel superalloys (black dots) and four generations of
20 Pareto-optimized Ni-base steel superalloys (other symbols) [21-24].

Table 1. Densities of the seven alloying elements used as design variables in the BMG optimization.

Element 7r Cu Al La CuNi Pd Si

Density (zcm™)  6.52 896 270 6.162 8908  12.023 233

concentrations of all seven alloying ingredients (Zr, Cu, Al, La, (Cu,Ni), Pd, Si) should be used
simultaneously as design variables. However, it should be noted that these 53 BMGs were not
produced at the same time and that different sets of the BMGs were using only 3 alloying
elements instead of all 7 alloying elements. Having such a disparate and incomplete initial
data set of the available BMGs is making any interpolation, data mining, neural networks or
optimization an extremely challenging task. It would have been much more advantageous to
design an initial data set of BMGs by utilizing Sobol’s algorithm [33] that would prescribe the
semi-random chemical concentrations of these initial BMGs. The use of Sobol’s algorithm
is very helpful in distributing the initial concentrations in the best possible way so that
the consequent multi-dimensional response surface fitting will be maximally accurate with
the minimum number of experimentally evaluated BMGs. We did not have the luxury of
manufacturing and experimentally evaluating the initial data set. This is why we had to use
any published experimentally obtained data on the same class of BMGs that were manufactured
and tested in the same laboratory, thus, presumably under same conditions.

We then specified that new Pareto-optimal BMGs be created by the IOSO algorithm while
simultaneously maximizing 7, and 7; or while simultaneously maximizing 7, and T;,. The
third simultaneous objective, minimizing the density of the new BMGs, was also implemented.

Initial data from table 2 were used as an input to IOSO optimization algorithm with
a request that it creates 50 new BMGs that should belong to a Pareto-optimal front when
simultaneously maximizing 7, and 7; without minimizing new BMG densities. Optimization
results after one iteration cycle with IOSO are shown in table 3 and in figures 4 and 5.

Table 3 shows the optimized concentrations [18,19] of each of the 7 alloying elements and
the corresponding maximized values of T, and 7; for the resulting 50 Pareto-optimal BMGs.
Note that T, values and densities of these optimized BMGs are also shown in table 3, although
the goal of this two-objective optimization problem was not to explicitly maximize T;, values
or minimize densities of the new BMGs.

A more realistic BMG optimization test case was then created that represented an example
of a three-objective optimization that involved simultaneously maximizing 7, and T, while
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Table 2. Experimental data for 53 BMGs collected from published works of Yi Li [31,32].

Zr Cu Al La Cu,Ni Pd Si Ty T P
# (%) (%) (%) (%) (%) (%) (%) K K Ty=Tg/Ti (gem™3)
1 50 36 14 0 0 0 0 724 1188 0.609 6.8636
2 50 38 12 0 0 0 0 722 1170 0.617 6.9888
3 50 40 10 0 0 0 0 714 1176 0.607 7.1140
4 50 43 7 0 0 0 0 703 1181 0.595 7.3018
5 49 44 7 0 0 0 0 704 1184 0.594 7.3262
6 48 45 7 0 0 0 0 708 1186 0.596 7.3506
7 49 45 6 0 0 0 0 704 1187 0.593 7.3888
8 48 46 6 0 0 0 0 706 1192 0.592 7.4132
9 49 46 5 0 0 0 0 701 1195 0.586 7.4514
10 49 47 4 0 0 0 0 697 1208 0.576 7.5140
11 45 49 6 0 0 0 0 717 1178 0.608 7.4864
12 45 50 5 0 0 0 0 714 1185 0.602 7.5490
13 44 51 5 0 0 0 0 719 1189 0.604 7.5734
14 45 48 7 0 0 0 0 720 1188 0.606 7.4238
15 45 47 8 0 0 0 0 722 1195 0.604 7.3612
16 46 49 5 0 0 0 0 711 1193 0.595 7.5246
17 47 49 4 0 0 0 0 704 1204 0.584 7.5628
18 54 38 8 0 0 0 0 692 1190 0.581 7.1416
19 56 36 8 0 0 0 0 685 1212 0.565 7.0928
20 52 38 10 0 0 0 0 705 1163 0.606 7.0652
21 54 36 10 0 0 0 0 698 1176 0.593 7.0164
22 54 40 6 0 0 0 0 684 1216 0.562 7.2668
23 0 0 124 70 17.6 0 0 403 759 0.530 6.2160
24 0 0 13.2 68 18.8 0 0 407 742 0.548 6.2212
25 0 0 14 66 20 0 0 405 674 0.600 6.2265
26 0 0 146 646 208 0 0 414 696 0.594 6.2277
27 0 0 152  63.1 21.7 0 0 420 699 0.600 6.2316
28 0 0 157 62 22.3 0 0 422 722 0.584 6.2308
29 0 0 159 614 227 0 0 426 729 0.584 6.2348
30 0 0 16.3  60.5 232 0 0 423 727 0.581 6.2347
31 0 0 16.6 59.6 2338 0 0 426 743 0.573 6.2408
32 0 0 17 58.6 244 0 0 431 764 0.564 6.2434
33 0 0 175 57.6 249 0 0 435 783 0.555 6.2399
34 0 0 179 56,5 256 0 0 440 813 0.541 6.2452
35 0 0 184 554 262 0 0 436 844 0.516 6.2444
36 0 0 20.5 502 293 0 0 435 930 0.467 6.2568
37 0 0 14 70 16 0 0 404 763 0.529 6.1166
38 0 0 14 68 18 0 0 405 724 0.559 6.1716
39 0 0 14 66 20 0 0 405 674 0.600 6.2265
40 0 0 14 64 22 0 0 411 715 0.574 6.2814
41 0 0 14 62 24 0 0 417 738 0.565 6.3363
42 0 0 14 59 27 0 0 422 773 0.545 6.4187
43 0 0 14 57 29 0 0 427 815 0.523 6.4736
44 0 2 0 0 0 81.5 16.5 633 1097.3  0.576 10.3624
45 0 4 0 0 0 79.5 16.5 635 1086.0  0.584 10.3011
46 0 6 0 0 0 71.5 16.5 637 1058.1 0.602 10.2398
47 0 8.2 0 0 0 75 16.8 645 11359  0.567 10.1434
48 0 10.2 0 0 0 73 16.8 652 1153.6  0.565 10.0821
49 0 36 14 50 0 0 0 428 862.7  0.496 6.6846
50 0 26 14 60 0 0 0 404 785.6  0.514 6.4048
51 0 20 14 66 0 0 0 395 731.0  0.540 6.2369
52 0 14 14 72 0 0 0 391 7927  0.493 6.0690
53 0 10 14 76 0 0 0 361 825.5 0437 5.9571
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Table 3. Results of IOSO optimization when maximizing 7y and 7} without minimization of BMG
density: concentrations of alloying elements, T, T}, Ti; and density of the 50 Pareto-optimal BMGs
predicted after the first iteration with IOSO using experimental data from table 2.

# Zr(%) Cu(%) Al(%) La(%) CuNi(%) Pd(%) Si(%) Ty (K) Ti(K) Tig=Tg/Ti p(gcm™3)
1 58000 0.000 0.000 30.189 4.452 0.027 2291 671.7 12433 0.540 6.0951
2 56996 9919 0.000 24.719 3.769 0.002 2.111 672.0 12427 0.540 6.5133
3 58.000 14.664 0.003 17215 4.617 0.000 1.807 672.1 12424 0.540 6.6097
4 57.820 11.863 0997 25.583 4.227 0.000 1.636 6724 1241.8 0.541 6.8507
5 57744 12.840 1280 26.893 4.362 0.000 1.483 672.6 12413 0.541 7.0301
6 57.631 14.539 1491 28.886 4.161 0.001 1439 672.8 1240.7 0.542 7.2847
7 58000 21.764 0.604 9.096 4.360 0231 3211 673.1 12402 0.542 6.7994
8 57.654 15215 2.087 27.989 4.172 0.000 1343 6732 1239.7 0.543 7.3062
9 56.681 16364 2.144 31.139 4.032 0.055 1.606 673.5 1239.0 0.543 7.5416
10 56.710 15.044 2.553 33.863 4.059 0.048 1.699 673.8 12384 0.544 7.6079
11 57.710 26463 0.090 23266 0.194 0.176 0.635 674.3 1238.0 0.544 7.6230
12 57467 27.146  0.105 24274 0.158 0306 0553 6747 12372 0.545 7.7416
13 57.359 28.139 0.029 25283 0327 0.187 0.790 6753 1236.1 0.546 7.8898
14 56.602 28.001 0.121 21.653 0.204 0.564 0407 675.6 12355 0.546 7.6322
15 56.255 28317 0.125 19.583 0.203 0.503 0240 676.0 12348 0.547 7.4992
16 56.124 28.685 0.185 20.111 0.232 0.873 0394 6763 1234.1 0.548 7.6083
17 56.197 29.121  0.169 20.089 0.290 0.963 0382 6767 1233.6 0.548 7.6662
18 56.496 29.745 0343 16291 0.000 1782 0056 677.0 1232.9 0.549 7.5773
19 56230 29.941 0.134 18502 0.269 1.021 0231 6774 12323 0.549 7.6446
20 56276 30.303 0412 16.197 0.022 2037 0058 677.7 12317 0.550 7.6417
21 56437 30951 0.166 16413 0233 1356 0.025 678.3 12308 0.551 7.6531
22 55982 30.864 0.129 17.015 0.186 1.691 0015 6787 12303 0.551 7.6876
23 55528 30.871 0216 16.849 0.300 1590 0.003 679.1 1229.5 0.552 7.6485
24 55562 31317 0018 17.305 0.065 1,551 0.034 679.7 1228.6 0.553 7.6883
25 55482 31457 0.042 17.544 0.064 1707 0.031 680.0 1228.1 0.553 7.7298
26 55.555 31.786 0.012 16.869 0.096 1396 0.025 6804 1227.5 0.554 7.6869
27 55.633 32308 0.000 16.591 0.398 1,538 0.000 6812 12264 0.555 7.7648
28 55.648 32.560 0.000 16.397 0.108 1256 0.001 681.6 12258 0.556 7.7166
29 55273 32525 0012 16.159 0217 1244 0.002 682.0 1225.1 0.556 7.6829
30 54.966 32.587 0.057 16720 0213 1205 0.001 6824 12244 0.557 7.6992
31 55.166 32.965 0.029 16.576 0.208 1217 0.000 6829 1223.7 0.558 7.7375
32 54731 32.862 0.000 16310 0.303 2025 0000 6833 1223.1 0.558 7.7883
33 54344 32808 0.012 18.397 1.031 1257 0.000 6837 1222.5 0.559 7.8597
34 54.190 32.856 0.028 18.817 1.122 1414 0.001 684.0 12220 0.559 7.9071
35 54.752 33.555 0.134 19.251 1.300 1279 0.000 684.5 1221.3 0.560 8.0357
36 54339 33436 0.091 17.609 0.255 1.052 0.009 684.9 12207 0.561 7.7757
37 54618 33.822 0.066 16965 0230 0.993 0.000 6853 12202 0.561 7.7785
38 54.649 34.086 0.079 16.837 0429 1508 0.021 685.8 1219.5 0.562 7.8768
39 54.653 34.423 0228 13.737 0.260 0716 0.094 6863 1218.6 0.563 7.6116
40 54596 34514 0218 13.335 0.221 0.651 0.092 686.6 12182 0.563 7.5797
41 53967 34233 0.168 17.456 0.735 0.785 0.000 687.0 1217.7 0.564 7.8260
42 54248 34538  0.000 20.010 0.000 1.185 0.000 687.4 12172 0.564 8.0070
43 55477 35.689 0.041 18214 0251 1.785 0011 688.0 1216.6 0.565 8.1754
44 54.000 34.788 0.088 12.031 0.003 0.540 0.011 6882 1216.1 0.565 7.4469
45 54.114 35.039 0.002 12.841 0.013 0390 0.011 688.7 12155 0.566 7.5073
46 13.810 51.000 16473 0.000 14.741 60.837 0.007 7248 12155 0.596 14.5425
47 15242 50.803 16863 0.018 15434 52467 0.001 7249 12150 0.59 13.6850
48 15.651 50.975 17.157 0001 15.115  53.317 0.000 7250 12145 0.596 13.8078
49 15494 50.980 17.326 0.180 15.153 55427 0.000 7250 12142 0.597 14.0715
50 15.727 51.000 17.515 0.000 15345 55044 0.000 725.0 1213.7 0.597 14.0527

10



Modelling Simul. Mater. Sci. Eng. 16 (2008) 075010 G S Dulikravich et al
730 A A
AN
oS ; @
720 - * %
X
X X
4 X
. 710 x
3 X x X X x
o i X
F 700 N .
AN
X
690 -
A 10SO With Density Optimization
680 1| © 10S0 Without Density Optimization
X Initial Data
< Hybrid-RSM
670 T T T T
1160 1180 1200 1220 1240
T (K)

Figure 4. Best BMGs from the original data set given in table 2 (x x x x), discontinuous Pareto
front of 50 optimized BMGs given in table 3 (o o 0 0) when simultaneously maximizing 7 and
Ti without density minimization using IOSO software, Pareto front of optimized BMGs given
in table 4 (A A A A) when simultaneously maximizing 7; and 7; and minimizing density using
I0SO software, discontinuous Pareto front of optimized BMGs (+++++) when simultaneously
maximizing 7y and 7} and minimizing density using our hybrid multi-objective optimization and
radial basis function based response surface software.
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Figure 5. A set of best BMGs (x x x x) from the initial data set (table 2) and Pareto-optimized
BMGs (e eee) given in table 5 when simultaneously maximizing 7; and Ty without density

minimization.

minimizing the density of BMGs. The IOSO optimizer was requested to create Pareto-optimal
BMGs for this problem starting with the initial data set given in table 2. Optimization results of
this three-objective optimization case after one iteration cycle with IOSO are shown in table 4.
These results represent concentrations of each of the 7 alloying elements and simultaneously
optimized values of Ty, T; and densities for the resulting 28 Pareto-optimal BMGs. T;, values
of these optimized BMGs are shown in table 4, although the goal of this three-objective
optimization problem was not to explicitly maximize T;, values of the new BMGs.
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Table 4. Results of IOSO optimization when maximizing 7y and 7; while minimizing density of
BMGs: optimized concentrations of alloying elements, Ty, Tj, Tig and density of Pareto-optimal
BMGs predicted after the first iteration with IOSO using experimental data from table 2.

No. Zr(%) Cu(%) Al(%) La(%) CuNi(%) Pd(%) Si(%) Ty(K) Ti(K) Tg=Te/Ti p(gem™)
1 57.999 30770  0.002 0.001 0.000 0.001 11.227 6735 12327 0.547 6.799
2 53330 29.935 0770 0.000 0.000 0.000 15.964 675.1 1230.7 0.548 6.552
3 56.866 38.133  4.974 0.000 0.000 0.000 0.022 679.1 1222.5 0.556 7.260
4 50227 47223  1.060 0.000 0.000 0.000 1.489 694.3 1213.3 0.571 7.569
5 39.138 46942 2272 0.000 0.001 0.001 11.645 705.5 1204.7 0.586 7.090
6 32.645 50993 11.075 0.001 0.000 0.001 5282 730.1 1197.5 0.608 7.119
7 38960 50.384  9.723 0.000 0.000 0.000 0.931 7277 1196.3 0.608 7.335
8 48256 34.613 16486 0.000 0.000 0.000 0.643 727.0 11934 0.609 6.705
9 40.999 43.022 15.859 0.001 0.000 0.001 0.117 7264 11903 0.610 6.955
10 37.970 41.550 15.124 0.001 0.000 0.000 5.344 726.1 1189.2 0.610 6.730
11 44287 50.864  4.847 0.000 0.000 0.000 0.000 718.7 1189.0 0.603 7.577
12 0393 17233 0216 0064 0000 73758 8334 6535 1157.1 0.565 10.640
13 0001 0000 1053 2568 0008  81.017 15353 632.1 10954 0.575 10.285
14 0500 0134 0223 9268 0024  81.111 8731 631.6 1093.0 0.576 10.582
15 3368 0546 1437 12258 0036  81.500 0.853 6313 1091.5 0.578 10.888
16 0005 8.134 6062 4713 0321 70319 10449 6385 1060.1 0.601 9.905
17 0006 5965 0.008 0000 0000 77330 16.689 637.1 1058.8 0.601 10.215
18 0.000 0.032 19.880 45.000 29.282 0.000 5.805 4349 9345 0.467 6.055
19 0000 1.449 20497 41.613 26.367 0.000 10.074 4351 9203 0.471 5.830
20 0.000 36.014 13.996 49.973  0.002 0.000 0.008 4280 862.5 0.495 6.684
21 0.000 0.001 16255 50.100 28.670 0.000 4.971 4329 8305 0.526 6.197
22 0.000 25735 15300 42.810 2.378 0.000 13.770 417.1  827.1 0.503 5.888
23 0.000 0.001 13.918 56.909 29.090 0.000 0.080 427.0 815.8 0.524 6.478
24 0.000 9318 16.130 63.464 0.000 0.000 11.087 389.5 796.5 0.488 5.438
25 0.000 26.620 13.917 59.456 0.000 0.000 0.000 4048 789.1 0.514 6.426
26 0.000 0.0137 12.416 70.057 17.513 0.000 0.001 4029 759.3 0.531 6.216
27 0.000 0.001 19.297 59.590 20.460 0.000 0.651 4264 739.3 0.577 6.032
28 0.000 5.422 18.150 50.853 17.858 0.000 7.717 423.0 7247 0.584 5.881

In order to confirm the reliability of the IOSO optimization software for design of these
types of alloys, we also used our own hybrid multi-objective optimization algorithm [34]
coupled with our response surface generation scheme based on polynomials of radial basis
functions [30, 35]. It is remarkable that although these two multi-objective optimization
algorithms use vastly different concepts, their results (see figure 4) are in good agreement
despite the fact that the initial data set is very small (only 53 alloys) and that it is only loosely
connected since none of the initial BMGs has more than three alloying elements.

In order to gain some understanding of the behavior of other objectives when one of
the most important GFA parameters, T;,, is maximized, we repeated the entire optimization
process by requesting that the IOSO algorithm generate concentrations of the alloying elements
for Pareto optimal BMGs that will simultaneously maximize T, and 7T;; without minimizing
density of the BMGs. The results are given in table 5 and also depicted in figure 5. Itis evident
that the optimization process resulted in a new generation of BMGs with superior values of Tr,.

In figure 6, it is educative to see the comparison of 7, and T;, values plotted against the
densities of the BMGs for all four cases: initial data set of 53 BMGs, two-objective optimized
set of 50 BMGs when the density of each alloy was not explicitly minimized, three-objective
optimized set of 28 BMGs when the density was minimized simultaneously as 7, and T} were
maximized and the 4 BMGs obtained in the two-objective case when T, and T;, were maximized
without explicitly minimizing the density.
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Table S. Results of optimization when simultaneously maximizing 7y and T;; without minimizing
density of BMGs: concentrations of alloying elements, Ty, Tiiq, Tr¢ and density of four best Pareto-
optimal BMGs predicted after the first iteration with IOSO using experimental data from table 2.

No. Zr(%) Cu(%) Al(%) La(%) (CuNi)(%) Pd(%) Si(%) Ty (K) T (K) Te=Te/Ti p(gem™>)

1 40.585 31.857 20.479 0.000 0.000 0.001 7.078 728.8 1196.1 0.609 6.21
2 36.500 41.391 16.168 0.000 0.000 0.001 5.943 7287 11933 0.611 6.65
3 35532 41.048 16.024 0.000 0.000 0.001 7.397 728.6 1182.6 0.615 6.60
4 45883 37.665 4.770 0.000 0.000 0.002 11.685 7285 1170.5 0.621 6.78

It is evident that the Pareto front is not continuous in some of these cases. Notice that in
such situations, the optimization approach that uses a linear combination of weighted individual
objectives and forms a single utility function would not perform well if the choice of the weight
factors is such that creates a search direction which passes through a gap in the Pareto front.

A three-dimensional perception of the relationship between alloy density, Ty, and T;
(figure 7) should help in understanding that the initial data set (table 2) was highly disconnected.
Also, the initial data set was quite small, while the optimization task was very ambitious
(optimize concentrations of 7 alloying elements for two or three simultaneous objectives by
creating a Pareto front having optimized BMGs).

Each of the initial BMGs had only three alloying elements instead of the 7 alloying
elements that were allowed to serve as design variables. To create seven-dimensional response
surfaces using such an incomplete and small initial data set was a challenge. Nevertheless, the
I0SO optimization algorithm with its self-adaptive response surface methodology was able to
work with such incomplete data and produce better results in just one iteration. From all of
these figures it is evident that the Pareto-optimized BMGs have better multiple properties than
those BMGs that belong to the initial data set of BMGs.

3. Inverse design of BMGs for specified performance

An inverse design option [23,36] of this computational methodology has also been developed.
It has the capability of designing a number of BMG alloys with the same multiple properties,
but having different concentrations of the alloying elements. This will make their availability,
cost and utility more affordable. Specifically, we utilized [18, 19] the original experimental
data set (table 2) and IOSO optimization algorithm to determine chemical concentrations of
the seven alloying elements (Zr, Cu, Al, La, (Cu,Ni), Pd, Si) in a number of new BMGs that
will all have T, = 680K for different values of 7; (1000 K, 1100 K, 1200 K, 1240 K). Results
of such inverse design optimization of BMGs are depicted in figure 8. These results confirm
intuitive expectations that with the increase in 7j, the inversely designed BMGs should have
higher concentrations of Zr and La, while having lower concentrations of Pd, Al, and Si.

4. Summary of the proposed BMG design optimization methodology

Based on the literature survey [1-13], Zr, Ti, Cu, Ni, Mg, Al, Fe, Nb, Si and Sn have been
the most commonly used elements and should be considered for this type of computational
optimization and experimental testing to achieve the best BMG compositions. However, a
number of other alloying elements could be utilized if they satisfy the basic glass forming
abilities suggested by Inoue and listed in the introductory part of this paper.

In our design optimization methodology presented here, it is necessary that the user
specifies the minimum and the maximum expected concentrations of a finite number of the
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Figure 6. Comparison of optimization results when simultaneously optimizing 7, and Ti:
(a) values of Ty versus density of the BMGs; (b) values of Ty versus density of the BMGs.
Here, (x x x x) represents initial data set of BMGs (table 2), (o o o o) depicts Pareto-optimized
BMGs without density minimization (table 3), (A A A A) are Pareto optimized BMGs when also
minimizing density of each new BMG (table 4), while (e e e @) depicts Pareto optimized BMGs
when maximizing 7y and T;g without density minimization (table 5).

most important BMG alloying elements. If the number of such elements is approximately five
or six and the number of simultaneous objectives is two or three, from our experience with
optimizing Ni-base superalloys [20-24], we expect that an initial database of approximately
80 BMGs has to be developed. These 80 initial BMGs then must be manufactured by casting
them in an identical manner, thus avoiding variability in the manufacturing process. These
casts should be then experimentally tested for the specified number of simultaneous objectives.

This information is then used for building approximation functions (multi-dimensional
response surfaces) which will further be enriched by the optimization algorithm using modified
radial basis functions and multiple ANNs. These approximation functions are then optimized
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Figure 7. A three-dimensional perspective view of the density 7; — Tj space depicting widely
scattered property values for the initial data set of BMGs from table 2 (x x x x) and a compact set
of BMGs from table 5 (e ® @ #) when simultaneously maximizing T, and T;; without minimizing
density.

using a non-gradient-based, robust, multi-objective optimization algorithm [17, 25, 28, 34].
At each optimization iteration, a multi-criterion optimization task with a specified number of
Pareto front optimal points (most likely 10) needs to be solved. The results of this complex
numerical optimization process will be chemical concentrations of 5-6 specified alloying
elements in these 10 new BMGs which the optimization algorithm predicted as belonging to
the non-dominated Pareto-optimal front, while accounting for a specified level of uncertainty
of BMG casting and testing.

Since the multi-dimensional response surfaces are fitted using a large number of points
created by the ANNs and the radial basis functions, instead of exclusively experimental data, the
initial accuracy of the fit of the response surface will be relatively low. Consequently, it could
be expected that not all of the 10 new optimized BMGs are actually superior to all of the initial
80BMGs. To clarify this point, these 10 optimized BMGs then need to be manufactured
and experimentally evaluated for the multiple properties. This concludes the first design
iteration. The second iteration starts by using all (80 + 10 = 90) experimentally evaluated
BMGs. The response surface building, enrichment and optimization process is then repeated
using these 90 data points with the same multiple objectives. The 10 newly Pareto-optimized
BMGs then need to be manufactured and experimentally tested to confirm that most of them
are better than any of the 90 BMGs used in the second iteration of the design optimization
process. The third iteration then starts with all accumulated experimentally tested BMGs
(80 + 10 + 10 = 100), repeats all optimization steps and results in 10 new optimized BMGs.
The entire iterative process continues typically 4-5 cycles until the Pareto front sufficiently
converges.

It should be pointed out that evolutionary optimization algorithms do not automatically
provide sensitivities of the objective functions with respect to each design variable (alloying
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Figure 8. Results of an inverse design optimization problem: 7y = 680K, 7; = variable [19].
Example showing inversely determined concentrations of alloying elements for these conditions.

element variation of concentration). This is because the evolutionary based optimizers do
not employ gradients of the objective functions when performing a search for the optima.
However, not all of the alloying elements in an alloy contribute significantly towards the Pareto
objectives in questions. Such sensitivity analysis could be performed in an a posteriori fashion
after the evolutionary optimization is completed by using, for example, finite differencing [37]
of perturbed Pareto-optimal solutions. Recently, a methodology has been suggested [38]
where, for example, out of a total of 108 variables, just one was actually found to influence
the objectives in question! This is remarkable and suggests that the alloy design using the
traditional cut-and-try approach of including and keeping those alloying elements that seem
to be influential in a similar type of alloys often leads to unnecessarily expensive and complex
new alloys.

However, this should not preclude future alloy designers from using initially a large number
of alloying elements in the optimization process, because evaluation of the multiple properties
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of the new alloys does not have to be performed with classical experimental techniques.
Specifically, there are several commercially available software packages such as JMatPro [39]
and FactSage [40] that allow users to specify concentrations of each of the alloying elements
and predict multiple properties of such virtual alloys quickly, cheaply and with a high degree
of precision [41].

Regretfully, despite decades of non-equilibrium thermodynamics theoretical deliberations,
mostly anecdotal visual observations of the microstructure and exhaustive trial-and-error
experimentation, the improvements in the GFA of the known BMG alloys have been
incremental at best. As a consequence, none of the commercially available software used for the
design of alloys has successfully ventured in the field of BMG design. Even atomistic modeling
(ab initio modeling) based on purely theoretical approaches to the design of BMGs has run into
serious difficulties when having more than three alloying elements in a BMG. Consequently,
at the present time, a combination of robust multi-objective optimization algorithms and
experimentally obtained multiple properties of BMGs appears to be a viable option for design
of new generations of improved BMGs. It should be emphasized that this is a design method,
not an analysis method. Thus, its goal is to efficiently design improved generations of alloys,
not to analyze the existing alloys and speculate about the insights of the how and why of glass
formation.

5. Conclusions

A new method was demonstrated that offers a realistic possibility of predicting chemical
concentrations of a number of new BMG alloys so that the new alloys will have superior
properties. The new BMG design concept uses a combination of a multi-objective
stochastic optimization algorithm and experimental data for thermo-mechanical properties
while requiring a minimum number of experimental evaluations of the candidate BMGs, in
order to verify the computational results. Conceptually, this design approach could include
additional objectives such as minimized cooling speed, maximized T;,, maximized hardness,
maximized modulus of elasticity and minimized cost of raw materials.

Acknowledgments

The authors are grateful for the partial financial support provided for this work by the United
States Army Research Office under the grant 50486-MS-H monitored by Dr William M Mullins
and by a research grant FA9550-06-1-0170 from the Air Force Office of Scientific Research
monitored by Dr Todd E Combs, Dr Fariba Fahroo and Dr Donald Hearn. The authors are
also grateful for the copies of pertinent publications kindly provided by Professor Yi Li of the
National University of Singapore and for the invaluable advice provided by Dr Laszlo Kecskes
of Army Research Laboratory at Aberdeen Proving Grounds, Maryland, and Professor Todd
Hufnagel of The Johns Hopkins University. Final graphical work was performed by Mr Carlos
Velez of the MAIDROC Laboratory at the Florida International University.

References

[1] Johnson W L 1999 Bulk glass-forming metallic alloys: science and technology MRS Bull. 24 45-56

[2] Klement W, Willens R H and Duwez P 1960 Non-crystalline structure in solidified gold—silicon alloys Nature
(London) 187 869-70

[3] Drehman J, Greer A L and Turnbull D 1982 Bulk formation of metallic glass: Pd4oNiagP20 Appl. Phys. Lett.
41 716-7

[4] Inoue A 2000 Stabilisation of metallic supercooled liquid and bulk amorphous alloys Acta Mater. 48 279-306

17


http://dx.doi.org/10.1038/187869b0
http://dx.doi.org/10.1063/1.93645
http://dx.doi.org/10.1016/S1359-6454(99)00300-6

Modelling Simul. Mater. Sci. Eng. 16 (2008) 075010 G S Dulikravich et al

(3]
(6]
(71
(8]
[91

[10]

[11]
[12]
[13]
[14]

[15]

[16]
[17]
[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

18

Inoue A and Takeuchi A 2004 Recent progress in bulk glassy, nanoquasicrystalline and nanocrystalline alloys
Mater. Sci. Eng. A 375-377 16-30

Fan G J, Choo H and Liaw P K 2007 A new criterion for the glass-forming ability of liquids J. Non-Cryst. Solids
353 102-7

Lu Z P and Liu C T 2002 A new glass-forming ability criterion for bulk metallic glasses Acta Mater.
50 3501-12

Kecskes L J, Trevino S F and Woodman R H 2002 Glass-forming ability and crystallization behavior in high-
density bulk metallic glasses Proc. 2002 MRS Symp. (MRS, Warrendale, PA) vol 754 pp 377-84

Zhang Y, Zhao D Q, Pan M X and Wang W H 2003 Glass forming properties of Zr-based bulk metallic alloys
J. Non-Cryst. Solids 315 206-10

Xu D, Lohwongwatana B, Duan G, Johnson W L and Garland C 2004 Bulk metallic glass formation in binary
Cu-rich alloy series —Cujoo—xZry (x = 34.36, 38.2, 40 at%) and mechanical properties of bulk CugsZr36
glass Acta Mater. 52 2621-4

Stoica M, Eckert J, Roth S and Schultz L 2004 Preparation of bulk amorphous Fe—Cr—Mo—-Ga—-P-C-B alloys
by copper mold casting Mater. Sci. Eng. A 375-377 399-402

NaJH, Kim W T, Kim D H and Yi S 2004 Bulk metallic glass formation in Ni-Zr-Nb—Al alloy systems Mater.
Lett. 58 778-82

Zhang Q S, Zhang H F, Deng Y F, Ding B Z and Hu Z Q 2003 Bulk metallic glass formation of Cu—Zr-Ti—Sn
alloys Scr. Mater. 49 273-8

Bhadeshia H K D H 1999 Neural networks in materials science IS1J Int. 39 966-79

Bhadeshia H K D H and Sourmail T 2003 Design of creep-resistant steels: success and failure of models Japan
Soc. Promotion of Science, 123rd Committee on Heat-Resisting Materials and Alloys (Tokyo, Japan) vol 44
pp 299-314

Chakraborti N 2004 Genetic algorithms in materials design and processing Int. Mater. Rev. 49 246-60

Deb K 2002 Multi-Objective Optimization Using Evolutionary Algorithms (New York: Wiley)

Dulikravich G S and Egorov I N 2006 Optimizing chemistry of bulk metallic glasses for improved thermal
stability Symp. on Bulk Metallic Glasses: TMS 2006 Annual Meeting Exhibition (San Antonio, TX, 12—-16
March 2006) ed P K Liaw and R A Buchanan

Dulikravich G S, Egorov I N and Jelisavcic N 2006 Evolutionary optimization of chemistry of bulk metallic
glasses Proc. 1II European Conf. on Computational Solid and Structural Mechanics (Lisbon, Portugal, 5-8
June 2006) ed C A Mota Soares et al (Heidelberg: Springer)

Dulikravich G S, Egorov I N, Sikka V K and Muralidharan G 2003 Semi-stochastic optimization of chemical
composition of high-temperature austenitic steels for desired mechanical properties 2003 TMS Annual
Meeting, Yazawa Int. Symp.: Processing and Technologies (San Diego, CA, 2—6 March 2003) vol 1
ed F Kongoli er al (Warrendale, PA: Minerals, Metals and Materials Society) pp 801-14

Yegorov-Egorov I N and Dulikravich G S 2004 Optimization of alloy chemistry for maximum stress and time-
to-rupture at high temperature /0th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conf. (AIAA,
Albany, NY, 30 August—1 September 2004) ed A Messac and J Renaud Paper AIAA-2004-4348

Egorov-Yegorov I N and Dulikravich G S 2005 Chemical composition design of superalloys for maximum stress,
temperature and time-to-rupture using self-adapting response surface optimization Mater. Manuf. Process.
20 569-90

Dulikravich G S and Egorov-Yegorov I N 2005 Robust optimization of concentrations of alloying elements
in steel for maximum temperature, strength, time-to-rupture and minimum cost and weight, ECCOMAS—
Computational Methods for Coupled Problems in Science and Engineering (Fira, Santorini Island, Greece,
25-28 May 2005) ed C Papadrakakis et al

Dulikravich G S and Egorov-Yegorov I N 2005 Design of alloy’s concentrations for optimized strength,
temperature, time-to-rupture, cost and weight 6th Int. Special Emphasis Symp. on Superalloys 718, 625,
706 and Derivatives (Pittsburgh, PA, 2—5 October 2005) ed E A Loria (Pittsburgh, PA: TMS Publications)
pp 419-28

Egorov I N 1998 Indirect optimization method on the basis of self-organization Proc. Int. Conf. on Optimization
Techniques and Applications (ICOTA’98) (Perth, Western Australia, July 1998) (Perth: Curtin University of
Technology) vol 2 pp 683-91

Tong S 1995 Engineous User Manual (Schenectady, N'Y: General Electric Corporate Research and Development
Center) pp 1-292

Dulikravich G S, Martin T J, Dennis B H and Foster N F 1999 Multidisciplinary hybrid constrained GA
optimization EUROGEN’99—Evolutionary Algorithms in Engineering and Computer Science: Recent
Advances and Industrial Applications (Jyvaskyla, Finland, 30 May-3 June) ed K Miettinen et al (New York:
Wiley) pp 231-60 Chapter 12


http://dx.doi.org/10.1016/j.msea.2003.10.159
http://dx.doi.org/10.1016/j.jnoncrysol.2006.08.049
http://dx.doi.org/10.1016/S1359-6454(02)00166-0
http://dx.doi.org/10.1016/S0022-3093(02)01876-8
http://dx.doi.org/10.1016/j.actamat.2004.02.009
http://dx.doi.org/10.1016/j.msea.2003.10.190
http://dx.doi.org/10.1016/j.matlet.2003.07.026
http://dx.doi.org/10.1016/S1359-6462(03)00285-9
http://dx.doi.org/10.2355/isijinternational.39.966
http://dx.doi.org/10.1179/095066004225021909
http://dx.doi.org/10.1081/AMP-200053592

Modelling Simul. Mater. Sci. Eng. 16 (2008) 075010 G S Dulikravich et al

[28]

[29]

[30]

[31]

[32]

[33]
[34]

[35]

[36]

[37]
[38]
[39]

[40]
[41]

Dulikravich G S, Moral T J and Sahoo D 2005 A multi-objective evolutionary hybrid optimizer EUROGEN
05—Evolutionary and Deterministic Methods for Design, Optimisation and Control with Applications to
Industrial and Societal Problems (Munich, Germany, 12—14 September 2005) ed R Schilling et al

Poloni C, Giurgevich A, Onesti L and Pediroda V 2000 Hybridization of a multi-objective genetic algorithm,
neural network and classical optimizer for a complex design problem in fluid dynamics Comput. Methods
Appl. Mech. Eng. 186 403-20

Sahoo D and Dulikravich G S 2006 Evolutionary wavelet neural network for large scale function estimation in
optimization Proc. 11th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conf. (Portsmouth, VA,
6-8 September 2006) AIAA Paper AIAA-2006-6955

Wang H, Tan H and Li Y 2005 Multiple maxima of GFA in three adjacent eutectics in Zr-Cu-Al alloy system—A
metallographic way to pinpoint the best glass forming alloys Acta Mater. 53 2969-79

Tan H, Zhang Y, Ma D, Feng Y P and Li Y 2003 Optimum glass formation at off-eutectic composition and its
relation to skewed eutectic coupled zone in the La based La-Al-(Cu,Ni) pseudo ternary system Acta Mater.
514551-61

Sobol I M 1976 Uniformly distributed sequences with an additional uniform property USSR Comput. Math.
Math. Phys. 16 23642

Moral R J and Dulikravich G S 2008 Multi-objective hybrid evolutionary optimization utilizing automatic
algorithm switching AJAA J. 46 673-700

Colaco M J, Sahoo D and Dulikravich G S 2007 A comparison of two methods for fitting high dimensional
response surfaces Proc. Int, Symp, on Inverse Problems, Design and Optimization (IPDO-2007) (Miami
Beach, FL, 16—18 April 2007) ed G S Dulikravich et al

Yegorov-Egorov IN and Dulikravich G S 2004 Inverse design of alloys for specified stress, temperature and time-
to-rupture by using stochastic optimization Proc. Int. Symp. on Inverse Problems, Design and Optimization—
IPDO2004 (Rio de Janeiro, Brazil, 17-19 March) ed M J Colaco et al

Martin T J and Dulikravich G S 2004 An implicit and explicit BEM sensitivity approach for thermo-structural
optimization Eng. Anal. Bound. Elem. 28 257-66

Pettersson F, Chakraborti N and Singh S B 2007 Neural networks analysis of steel plate processing augmented
by multi-objective genetic algorithms Steel Res. Int. 78 890-8

http://www.calphad.com/jmatpro.html

http://www.crct.polymtl.ca/fact/

Kumar A, Dulikravich G S and Egorov I N 2008 Titanium based alloy chemistry optimization for maximum
strength, minimum weight and minimum cost using JMatPro and I0SO software CD with Proc. from 2008
TMS Annual Meeting, Symp. on Materials Informatics: Enabling Integration of Modeling and Experiments
in Materials Science (New Orleans, LA, 9-13 March 2008) ed K Rajan

19


http://dx.doi.org/10.1016/S0045-7825(99)00394-1
http://dx.doi.org/10.1016/j.actamat.2005.03.012
http://dx.doi.org/10.1016/S1359-6454(03)00291-X
http://dx.doi.org/10.1016/0041-5553(76)90154-3
http://dx.doi.org/10.2514/1.28926
http://dx.doi.org/10.1016/S0955-7997(03)00056-0

	1. Introduction
	2. Multi-objective optimization algorithm
	2.1. Conceptual features of IOSO optimization algorithm
	2.2. Proof-of-concept BMG design optimization results

	3. Inverse design of BMGs for specified performance
	4. Summary of the proposed BMG design optimization methodology
	5. Conclusions
	 Acknowledgments
	 References

